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Abstract
As a result of the development of modern vehicles, even higher accuracy standards are demanded. As
known, Inertial Navigation Systems have an intrinsic increasing error which is the main reason of using
integrating navigation systems, where some other sources of measurements are utilized, such as barometric
altimeter due to its high accuracy in short times of interval. Using a Robust Kalman Filter (RKF), error
measurements are absorbed when a Fault Tolerant Altimeter is implemented. During simulations, in order
to test the Nonlinear RKF algorithm, two kind of measurement malfunction scenarios have been taken
into consideration; continuous bias and measurement noise increment. Under the light of the results, some
recommendations are proposed when integrated altimeters are used.
Keywords: fault tolerance, robust Kalman filtering, integrated altimeter.
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1. Introduction

Inertial Navigation Systems (INS) are ubiquitously employed to provide position and velocity
measurements. However, measurements from INS gets degraded over time as INS errors are
nonlinear and they are accumulated over time [1]. The errors can be divided into horizontal and
vertical ones. Errors in the vertical channel directly contribute to malfunctions within altitude
estimations. Joint measurements from external sources and INS ones are utilized to keep the
vertical error growth within a predetermined bound.

Inertial and barometric altimeters gather diverse benefits and drawbacks [2–4]. The main
reason to integrate these two navigators is primarily to combine the best features and remove the
shortcomings. The principal advantages in the case of inertial altimeters are: the good features
of the INS with high bandwidth and frequencies are maintained, in certain operation periods
acceptable accuracy is attained and easily dynamic system adaptation to the computer environment
is acquired. For the case of barometric altimeters, however, the benefits are: they give a high
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accuracy, usually they are cheap and easy to implement, even though they need a recalibration
periodically.

On the other hand, combining Global Positioning System and Inertial Navigation System has
other advantages. Despite GPS measurements are typically less accurate than barometrical ones,
it is also true that no recalibration of GPS sensor is needed depending on the flight day, in this
case, because they always have the same mean error. In other words, measurements do not depend
on pressure or temperature. The barometric altimeter augmented with integrated inertial GPS
altimeter can provide more reliable and accurate navigation solutions under high maneuverings
environments.

Reference [5] introduces an integrated navigation system based on a multi-sensor INS/GPS/
Baro-altimeter. As known from the bibliography, the inertial errors grow exponentially and this
effect is even more tangible when low-cost sensors are utilized. In order to restrain the afore-
mentioned inaccuracy, a GPS receiver and a barometric altimeter are employed. The augmented
system’s vertical error is principally absorbed using the 3rd order vertical channel damping loop
and the application of the adaptive error damp coefficients. This integration is done with an
extended Kalman filter (EKF).

In [6] Model Aided Inertial Navigation has been used for the UAV automatic landing system.
The integrated measurement system presented in this work can estimate the UAV altitude using
the ground effect.

In [7], three integrated systems have been considered: baro-inertial, inertial-GPS and baro-
inertial-GPS. An optimal Kalman filter has been implemented in the design of them. According
to this study, pressure-based measurements are more accurate than those ones calculated through
GPS. However, when all the signals are multiplexed, the final output is better than both sources
separately. This is the main and most important conclusion of this analysis. The integrated
altimeters which described in [5–7] are not robust to the sensor faults. The fault-tolerant properties
of the aforementioned integrated systems are not provided in this study.

The fault-tolerant integrated altimeter, comprising of the radar and inertial altimeters is
discussed in [8]. The integration is performed via Nonlinear Robust Adaptive Kalman Filter
having real-time correction of its filter gain coefficients. It is based on the assessment of the
posterior probability of the normal operation of altimeter using current altitude measurement. In
conclusion, faults in the integrated altimeter are corrected by the proposed algorithm, without
affecting the good estimation altitude behavior.

The integrated navigation systems with application of multi-height sensor data fusion and
fault tolerant estimation procedure are presented in [9]. In this study at first for the altitude
sensors fault detection problem is fulfilled in real time. Then data fusion is completed by using
fault tolerance in real time. Fault tolerant altimeter architecture has been designed by using three
sub-filters corresponding to the GPS, baro- altimeter and radar altimeter.

In the present research, three different fault tolerant Integrated altimeters have been analyzed:
integrated baro-inertial (IBI), integrated inertial-GPS (IIG) and integrated baro-inertial-GPS
(IBIG). The first and the second are designed through a complementary Kalman filter (CKF).
When some random faulty cases are introduced in the measuring system, the Robust Kalman
Filter (RKF) case is considered. The fault-tolerant integrated IBI, IIG and IBIG altimeters based
on the developed RKF are proposed and compared with the conventional integrated altimeters.

2. Integrated altimeter design

Because of its outstanding characters such as high-accuracy, self-contained and jam-proof,
the INS has become the core of navigation systems for most vehicles. Nevertheless, Inertial
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Navigation Systems suffer from an increasing error as stated before. Hence, this fact justifies the
use of integrated navigation systems, where some other sources of measurements are utilized,
such as barometric altimeter due to its high accuracy in tight time intervals. First, it is needed to
show the error models of the inertial, barometric and GPS altimeters. Every single model has an
unavoidable error. In this section, these error models are presented.

2.1. Error models

The barometric altimeter’s measuring model used in this research includes the bias error of
the first order Markov process and a random white Gaussian noise as stated in [5], being expressed
in the next equations:

hB = hT + B + vB , (1)

Ḃ = −1
τ

B +UB , (2)

being hB the altitude output from the barometer; hT represents the true height, measurement
noise is taken into account by vB; τ is the bias error’s B correlation time and UB compounds the
white Gaussian noise.

Due to the large variety of outputs from diverse channels, the INS carries a complex error
model. In this study, the main parameter that simulations are focused at is the vertical altitude
error. The linear, discrete error model of the vertical INS channel is given by [10]:

∆HI (i) = ∆HI (i − 1) + Td∆Wz (i − 1), (3)

∆Wz (i) = ∆Wz (i − 1) +
2gTd

RI
∆HI (i − 1) + Td∆az (i − 1) + Td∆g(i − 1), (4)

∆az (i) = ∆az (i − 1) − Tdα∆az (i − 1) + TdU∆az (i − 1), (5)

∆g(i) = ∆g(i − 1) − Td βg∆g(i − 1) + TdU∆g (i − 1), (6)

where: ∆Wz (i − 1) and ∆HI (i) represent the measurement errors of the vertical speed and the
altitude; ∆az (i − 1) and ∆g(i − 1) are the measurement errors of the vertical acceleration and
the gravitational acceleration; U∆az (i − 1) and U∆g (i − 1) are the white Gaussian noises with
zero mean, α and βg are the terms used for the correlation period, Td is the sampling time;
RI = R0 + H , H is the flight altitude and R0 is the radius of Earth.

For the case of GPS error model, a Gaussian random white noise error has been taken, with
zero mean and without bias.

2.2. Scheme 1: Integrated Baro-Inertial altimeter

As known [3], information provided by the inertial channel gets inaccurate over time ever since
the errors are accumulated growing exponentially. The errors can be separated into horizontal
and vertical errors. Errors in the vertical channel directly contribute to malfunctions in altitude
estimations. Joint measurements from other external navigation systems and INS ones are used to
keep the vertical channel error growth within bounds. The schema of the proposed IBI altimeter
structure is presented in Fig. 1.

The central processing unit (CPU) block is necessary because of the existent discrepancy
in altitude references between the barometrical altimeter the inertial one, measuring the former
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Fig. 1. Schema of the IBI altimeter structure.

from sea level conditions and the latter from a set up initial alignment location. In a system where
measurements are not coherent because of the sensors combination, the dissimilarity in altitudes
can be adjusted via Central Processing Unit. The measurement matrix for this system in order to
be consistent with the theory aforementioned explined is:

HIBI(k) =
[
1 0 0 0 − 1

]
. (7)

The scheme shown in Fig. 1 symbolizes the acquiring process of vertical measurements when
baro-inertial altimeter is used. For these integrated systems, the state vector proposed is:

XT (i) =
[
∆HI (i) ∆Wz (i) ∆az (i) ∆g(i) B(i)

]
, (8)

where B(i) represents the baro-altimeter bias error. The state space model of the integrated
baro-inertial altimeter could be expressed through the following equations:

X (i) = φ(i, i − 1)X (i − 1) + G(i, i − 1)U (i − 1), (9)

Z (i) = HIBI(i)X (i) + V (i), (10)

being φ(i, i − 1) the system transition matrix, G(i, i − 1) represents the system noise transition
matrix; Z (i) is the measurement vector, V (i) is the white Gaussian measurement noise vector, and
UT (i − 1) =

[
U∆az (i − 1) U∆g (i − 1) UB (i − 1)],

]
is the white Gaussian system noise vector.

The index (i, i − 1) in transition matrix shows the transition of the system from time i−1 to time
k time). The matrices φ(i, i − 1) and G(i, i − 1) are defined as follows:

φ(i, i − 1) =



1 Td 0 0 0
2gTd

RI
1 Td ∆t 0

0 0 1 − αTd 0 0

0 0 0 1 − βgTd 0

0 0 0 0 1 − βTd


, (11)
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where β =
1
τ

is the inverse correlation time of the bias error B,

G(i, i − 1) =



0 0 0
0 0 0

Td 0 0
0 Td 0
0 0 Td


, (12)

R(i) = σ2
HI
+ σ2

HB
. (13)

2.3. Scheme 2: Integrated Inertial GPS altimeter

There are many cases in which appliance of integrated inertial GPS altimeters is common.
To integrate the above mentioned navigation systems an Indirect Kalman filtering technique is
utilized. The measurement matrix of the integrated altimeter for this case is:

HIIG(i) =
[
1 0 0 0 0

]
. (14)

In this case, the last value is set to zero because GPS bias error has not been taken into
consideration for this integrated inertial GPS altimeter. The state vector proposed is:

XT (i) =
[
∆HI (i) ∆Wz (i) ∆az (i) ∆g(i)

]
. (15)

The system transition matrix φ(i, i − 1) and system noise transition matrix G(i, i − 1) are
defined in this case as follows:

φ(i, i − 1) =



1 Td 0 0
2gTd

RI
1 Td Td

0 0 1 − αTd 0
0 0 0 1 − βgTd


, (16)

G(i, i − 1) =



0 0
0 0

Td 0
0 Td


, (17)

R(i) = σ2
HI
+ σ2

HG
. (18)

2.4. Scheme 3: Integrated Baro-Inertial GPS altimeter

The integrated inertial GPS altimeter is designed using a loosely coupled integration archi-
tecture that incorporates a GPS navigation solution. Due to atmospheric effects and satellite’s
geometry, the GPS vertical channel typically has a poor accuracy.

By augmenting the barometric altimeter measurements, the vertical channel can be stabilized
under GPS faulty conditions. The flight data results show that the baro-altimeter augmented IIG
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altimeter can provide more reliable and accurate height measurements. The structure scheme of
the integrated baro-inertial-GPS altimeter is given in Fig. 2 [7]. As shown, the measurements
obtained by the sensors pass through local filters and then arrive at the integration block. Here,
they are fused via data fusion algorithm before providing the estimation of the altitude to the user.

Fig. 2. IBIG altimeter structure scheme.

The data fusion algorithm is used for fusing the measurements in the IBIG altimeter is:

∆HIBIG =
Var (∆HIBI)∆HIIG + Var (∆HIIG)∆HIBI

Var (∆HIBI) + Var (∆HIIG)
, (19)

Var (∆HIBIG) =
[

1
Var (∆HIBI)

+
1

Var (∆HIIG)

]−1
=

Var (∆HIBI)Var (∆HIIG)
Var (∆HIBI) + Var (∆HIIG)

, (20)

where: ∆HIBIG is the IBIG altimeter error; Var (∆HIBI) and Var (∆HIIG) are the variances of the
IBI and IIG altimeters errors respectively; Var (∆HIBIG) is the variance of the IBIG altimeter
error.

Hence, the altitude estimation value can be determined as:

ĤIBIG(i) = HI (i) − ∆ĤIBIG(i). (21)

3. Kalman filtering for the integration of altimeters

As known, the optimum Kalman filter (OKF) is a linear filter, and the actual differential
equations for INS errors are nonlinear. Therefore, in OKF applications the INS error model is
valid for linearized version. So the requirements for the errors is to remain small. The equations
of the Kalman filter in its general form is presented below.

3.1. Optimal Kalman filter for the integration of altimeters

The state space model used throughout this study is expressed by (8)–(9). For the estimation
of the states of the system (8), the following statements are the Kalman equations to be used. The
equation of the estimation value on the iteration i is:

X̂ (i/i) = X̂ (i/i − 1) + K (i)∆(i), (22)
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being K (i) the Kalman gain matrix and ∆(i) represents an innovation sequence defined in the
following lines taken from [8]. The variable X̂ (i/i − 1) estimates the extrapolation value of the
space state vector. The first element of the double index shows the time instant in which the
parameter is estimated, and second one – number of measurements on which the estimation is
carried out. The expressions of these three variables are:

X̂ (i/i − 1) = φ(i, i − 1) X̂ (i − 1/i − 1), (23)

∆(i) = Z (i) − H (i) X̂ (i/i − 1), (24)

K (i) = P(i/i − 1)HT (i)
[
H (i)P(i/i − 1)HT (i) + R(i)

]−1
, (25)

where R(i) is the covariance matrix of measurement noise. On the other hand, matrixes P(i/i) and
P(i/i−1) represent covariance matrixes of estimation and extrapolation errors, which respectively
have the following form:

P(i/i) = [I − K (i)H (i)] P(i/i − 1), (26)
P(i/i − 1) = φ(i, i − 1)P(i − 1/i − 1)φT (i, i − 1) + G(i, i − 1)Q(i − 1)GT (i, i − 1), (27)

where Q(i − 1) is the covariance matrix of system noise. The software used to implement these
algorithms has been MATLAB.

3.2. Robust Kalman Filter

Throughout this paper, a Robust Kalman Filter (RKF) is proposed since it deals in a better
way with abrupt fault cases in the estimation system such as computer malfunctions, abnormal
measurements or noise increments, which are all described in the next section. The equation of
the estimation value is [8]:

X̂ (i/i) = X̂ (i/i − 1) + prob (1/i)K (i)∆(i). (28)

Here prob (1/i) is the posterior probability of the normal operation of the estimation system,
given for measurement results at the ith time step. The other parameters have been already defined
in the last section. When prob (1/i) = 1, this filter will be exactly the same as the OKF, but when
prob (1/i) , 1 a new calculation in order to estimate the variables of interest is done. During
normal operation of the measurement channel, ∆̃(k) normalized innovation sequence of Kalman
Filter is:

∆̃(i) =
[
H (i)P(i/i − 1)HT + R(i)

]−1/2
∆(i), (29)

will satisfy the normal distribution N (0, 1). Consequently, the adaptative filtration algorithm with
the filter gain matrix correction can be presented in the form below:

X̂ (i/i) = X̂ (i/i − 1) + KA(i)∆(i), (30)

KA(i) = prob (1/i)K (i), (31)

prob (1/i) =
1

√
2πσ

∆̃
(i)

3∫
−3

exp


−

[
∆̃(i) − ˆ̃

∆(i)
]2

2σ2
∆̃

(i)


d∆̃. (32)
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The rest of the equations and parameters have been already defined throughout the last
section. If the posterior probability prob (1/i) changes, then the gain coefficient of the robust
filter KR (i) is automatically changed. Calculating the integral defined earlier, it gives to the
Kalman Filter the ability to adapt to change in operating conditions [11]. If there is a fault
in the measurement channel, the value prob (1/i) decreases, and the gain coefficient of the filter
decreases too. Therefore, the correction effect of innovation sequence decreases and the estimated
X̂ (i/i) approaches to the extrapolation value X̂ (i/i − 1).

4. Simulations

In order to test the proposed OKF and RKF algorithms in the current section, the sensor
malfunction scenarios are examined. The continuous bias, and measurement noise increment type
sensor faults are taken into consideration. The following simulation scenarios are investigated in
this study: Integrated baro-inertial altimeter; Integrated inertial-GPS altimeter; Integrated baro-
inertial-GPS altimeter. The simulations are performed on programming language “MATLAB”
using the parameters given in Table 1 [7].

Table 1. Values of parameters used in simulations.

Variable Value Units Definition

∆t 0.5 s Discrete time

R0 6378150 m Radius of the Earth

H 1000 m Flight altitude

g 9.81 m/s2 Gravitational acceleration

β 0.01 s−1 Term of the correlation period

βg 0.005 s−1 Term of the correlation period

α 0.001 s−1 Term of the correlation period

σw 0.0001 m/s Vertical speed white noise standard deviation

σ∆az 0.00002 m/s2 Vertical acceleration white noise standard deviation

σ∆g 0.00002 m/s2 Gravitational acceleration white noise standard deviation

σB 1 m Baroaltimeter error standard deviation

σINS 3 m Inertial system vertical channel error standard deviation

σGPS 2.23 m GPS vertical error standard deviation

The following fault-free simulation scenarios are investigated in this study:
– Fault-free scenario 1: Integrated baro-inertial altimeter;
– Fault-free scenario 2: Integrated inertial-GPS altimeter;
– Fault-free scenario 3: Integrated baro-inertial-GPS altimeter.

4.1. Definition of faulty cases

4.1.1. Continuous bias at measurements

Continuous bias term is created by adding a constant term to the measurement channel
between the 200th and 400th iteration. As a result, the measured error is displaced upwards
stepwise because of the added positive constant. The abbreviation for this faulty case is CBM.
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4.1.2. Measurement noise increment

Finally, the last measurement error is based on noise increments. In this measurement mal-
function scenario, measurement fault is characterized by multiplying the variance of the mea-
surement noise by a constant term between 200th and 400th iteration. The effect of this error is
an amplification on the noises. The abbreviation for this faulty case is MNI.

4.1.3. Faulty case scenarios

The following faulty simulation scenarios are investigated below:
Faulty Case Scenario 1: IBI and IIG altimeters are performing in MNI faulty case;
Faulty Case Scenario 2: IBI altimeter is operating in CBM mode and the IIG altimeter is

measuring in normal conditions;
Faulty Case Scenario 3: IBI and IIG altimeters are performing in CBM faulty case;
Faulty Case Scenario 4: IBI altimeter is operating in MNI mode and the IIG altimeter is

measuring in normal conditions;
Faulty Case Scenario 5: IBI altimeter is operating in MNI mode and the IIG altimeter in

CBM mode.

4.2. The error of estimating the error

It should be underlined that, the integration algorithm here in this study is based upon error
models and error values. The use of the system designed in this study is to find out instantaneous
errors at the integrated altimeter. So the discrimination between navigation error and filter error
is somehow very important. The error definition in the results is standing for the error of finding
the error. As the system design is mainly based on Kalman filter, it will be more convenient to
express this definition as the error of estimating the error.

4.3. Integrated altimeters simulation results (fault free case)

In this section, the main output of this fused integrated navigation system is shown. Due to
the visual similarity with previous results, only the behaviours of the altitude errors are given.
The simulation results are presented in the Fig. 3.

Fig. 3. Altitude measurements comparison between altimeters.
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The largest errors are seen on IIG altimeter which is one of the three altimeters. The second
largest errors give the IBI altimeter and finally, the best results are obtained by the fused IBIG
altimeter, as expected. In the Table 2 are shown the mean error of estimating the error for all the
cases, verifying the visual results. The standard deviation of error of estimating the error is given
in Table 2. As seen from the presented results, the standard deviation of the IBIG altimeter error
is the smallest.

Table 2. Comparison between altimeters in altitude measurements.

Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 1.87 0.0418

Inertial-GPS (IIG) 2.17 0.0588

Baro-Inertial-GPS (IBIG) 1.43 0.0165

4.4. Faulty case Scenario 1

The first experiment has been run when both channels are performing in MNI faulty case.
The results obtained are presented in Fig. 4. As can be checked in Table 3, the mean error of
estimating the error and the standard deviation of the error obtained for the IBIG system are much
better than the ones calculated for each integrated system separately.

Fig. 4. Results of Scenario 1.

Table 3. Mean Errors of Scenario 1.

Integrated Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 9.37 0.4376

Inertial-GPS (IIG) 6.27 0.2392

Baro-Inertial-GPS (IBIG) 4.45 0.2009
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4.5. Faulty case Scenario 2

The second experiment has been performed when the IBI altimeter is operating in CBM
mode and the IIG altimeter is measuring in normal conditions. The result is depicted in Fig. 5. As
shown, the fused integrated system absorbs partially the errors introduced by the IBI altimeter,
and the mean error of estimating the error and the standard deviation of the error are presented in
Table 4.

Fig. 5. Results of Scenario 2.

Table 4. Mean Errors of Scenario 2.

Integrated Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 7.54 0.2734

Inertial-GPS (IIG) 1.25 0.0920

Baro-Inertial-GPS (IBIG) 4.61 0.1849

As seen from Table 4, IBIG results are worse than the results in the non-faulty altimeter.

4.6. Faulty case Scenario 3

The third experiment has been done when both channels are performing in CBM faulty
case. The results when both channels are performing continues bias type faulty case between of
200–400th iterations are presented in Fig. 6. Mean error of estimating the error and the standard
deviation of the error for the Scenario 3 are given in Table 5.

Table 5. Mean Errors of Scenario 3.

Integrated Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 7.57 0.3587

Inertial-GPS (IIG) 7.54 0.3577

Baro-Inertial-GPS (IBIG) 7.28 0.3473

As seen in Table 5, IBIG results are better than the results in the both faulty altimeters.
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Fig. 6. Results of Scenario 3.

4.7. Faulty case Scenario 4

The fourth experiment has been performed when the IBI altimeter is operating in MNI mode
and the IIG altimeter is measuring in normal conditions. The result when the IBI altimeter is
operating in MNI mode between of 200–400th iterations and the IIG altimeter is measuring in
normal conditions are depicted in Fig. 7. The mean error of estimating the error and the standard
deviation of the error for this case are presented in Table 6.

Fig. 7. Results of Scenario 4.

As seen in Table 6, IBIG results are worse than the results in the non-faulty altimeter.
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Table 6. Mean Errors of Scenario 4.

Integrated Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 6.72 0.3687

Inertial-GPS (IIG) 1.27 0.0279

Baro-Inertial-GPS (IBIG) 6.15 0.3437

4.8. Faulty case Scenario 5

The fifth experiment consists when the IBI altimeter is operating in MNI mode and the IIG
altimeter in CBM mode. The results are presented in Fig. 8 and Table 7.

Fig. 8. Results of Scenario 5.

Table 7. Mean Errors of Scenario 5.

Integrated Altimeter Mean Error of Estimating Standard Deviation
the Error [m] of the Error [m]

Baro-Inertial (IBI) 6.59 0.2370

Inertial-GPS (IIG) 7.54 0.3075

Baro-Inertial-GPS (IBIG) 5.62 0.1979

As can be checked in Table 7, the mean error of estimating the error and the standard deviation
of the error obtained for the IBIG system are better than the ones calculated for each integrated
system separately.

5. Conclusions

This study presents a fault-tolerant integrated Baro-Inertial-GPS altimeter based on Nonlinear
RKF algorithm. Integration is performed using a complementary Kalman filter with correction
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of its filter gain coefficients. The faulty measurements are considered with small weights and
the proposed RKF compensates for erroneous results by reducing the values of the filter gain
coefficients.

In the demonstrations, two type of integrated altimeters are implemented and compared:
OKF based and RKF based. During simulations, two kinds of sensor malfunction scenarios are
examined; continuous bias and measurement noise increment. In faulty scenarios, the accuracy
of OKF based integrated altimeters are worse than the other method. When fault occurs on the
measurements, the accuracy of RKF based integrated altimeters are considerably better than the
accuracy of the conventional OKF based altimeters.

As a result, the following recommendations for the use of integrated altimeters have been
proposed:

– In the fault free case the conventional OKF based IBIG altimeter can be preferred.
– If one of the integrated altimeters (IBI or IIG) is faulty, it is proposed to use the fault-free

integrated altimeter instead of the IBIG altimeter, because in this case, IBIG altimeter
accuracy is worse than the fault-free integrated altimeter accuracy.

– If both of integrated altimeters are faulty, then the RKF based IBIG altimeter provides
better altitude accuracy and it is preferred.
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