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Abstract. In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the
difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main
result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville
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an explicit formula for the solution of systems of time-invariant Caputo equations.
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1. Introduction

Recently, the theory of fractional calculus became very popu-
lar and its development is still very fast (see e.g. [9, 37] and
the references therein). In the literature, one can find results
on theoretical problems as well as practical applications (see
for example [24, 27, 32, 36, 40]). In control theory the stabil-
ity is one of the most important properties of control sys-
tems and it is widely studied for standard order dynamical sys-
tems. In the theory of fractional systems the stability problem
was well investigated for linear continuous-time systems and
meanwhile it is completely solved for time-invariant systems
[12, 33–35,39].

This paper is devoted to study linear discrete-time fractional
systems. In the discrete-time framework four types of fractional
differences are considered: forward/backward Caputo and for-
ward/backward Riemann-Liouville operators [1,5,8]. For linear
discrete time-invariant fractional systems the stability problem
is studied in [3, 6, 13–15, 25, 30]. In the historically first pa-
per [6], the authors show that all solutions x : N → R of the
one-dimensional fractional difference equation

(∆α x)(n+1−α) = λx(n), n ∈ N0,

with positive initial value x(0), where ∆α denotes the backward
Riemann-Liouville (or nabla) operator, tend to infinity, if the
order α of the fractional equation is in the interval [0.5,1] and
the coefficient λ of the equation is in the interval (0,1). A much
deeper result about the same type of equation is obtained in [14],

∗e-mail: michal.niezabitowski@polsl, mniezabitowski@us.edu.pl

where it is shown that if the order α of the system is in the interval
(0,1), the coefficient λ of the equation is in the interval (0,1)
and the initial value x(0) is positive, then all solutions tend to
infinity, but if

λ ∈ (−∞,0]∪ (2α ,∞)

then the equation is asymptotically stable. Moreover, in [14] the
authors obtain the exact rate of divergence for α,λ ∈ (0,1) and
x(0)> 0, and the exact rate of convergence for α ∈ (0,1) and

λ ∈ (−∞,0]∪ (2,∞) .

In both cases it is shown that the rates are polynomial in these
subregions of stability and instability. This is in contrast to
integer-order systems, where it is well-known that the growth
rates of solutions are exponential. Higher-dimensional discrete
linear time-invariant fractional equations

(∆α x)(n+1−α) = Ax(n), n ∈ N0,

with coefficient matrix A ∈ Rd×d , are considered in [15] in the
context of discretizations of linear continuous time-invariant
Riemann-Liouville equations with discretization step size h> 0.
From the results of [15], with h = 1, one may obtain both neces-
sary and sufficient conditions for stability of higher-dimensional
linear discrete time-invariant fractional equations with backward
Riemann-Liouville operator. In certain subregions of the stabil-
ity region, solutions x converge with the rate n−1−α , i.e. the
limit limn→∞ x(n)n1+α exists and is different from zero. The
relation of stability of solutions to properties of the discrete
Mittag-Leffler function, as well as results about scalar frac-
tional backward equations, are presented in [30]. The stability
of higher-dimensional equations with forward Caputo operator
is investigated in [3]. The main result [3, Thm. 3.2] provides
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1.	 Introduction

Recently, the theory of fractional calculus became very popu-
lar and its development is still very fast (see e.g. [9, 37] and 
the references therein). In the literature, one can find results 
on theoretical problems as well as practical applications (see 
for example [24, 27, 32, 36, 40]). In control theory the stabil-
ity is one of the most important properties of control systems 
and it is widely studied for standard order dynamical systems. 
In the theory of fractional systems the stability problem was 
well investigated for linear continuous-time systems and mean-
while it is completely solved for time-invariant systems [12, 
33–35, 39].

This paper is devoted to study linear discrete-time frac-
tional systems. In the discrete-time framework four types of 
fractional differences are considered: forward/backward Caputo 
and forward/backward Riemann-Liouville operators [1, 5, 8]. 
For linear discrete time-invariant fractional systems the stability 
problem is studied in [3, 6, 13–15, 25, 30]. In the historically 
first paper [6], the authors show that all solutions x : N1 ! R 
of the one-dimensional fractional difference equation

(∇0
αx)(n) = λx(n), n 2 N1,

with positive initial value x(0), where ∇0
α denotes the backward 

Riemann-Liouville (or nabla) operator, tend to infinity, if the 
order α of the fractional equation is in the interval [0.5, 1] and 
the coefficient λ of the equation is in the interval (0, 1). A much 
deeper result about the same type of equation is obtained in [14],
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a necessary and sufficient condition for the asymptotic stability,
which is that solutions z ∈ C of the equation

det
(
I − z−1(1− z−1)−α A

)
= 0,

where A is the coefficient matrix, lie inside the unit circle. Fur-
ther investigation of linear equation with forward Caputo op-
erator can be found in [13], where the authors present explicit
necessary and sufficient conditions for stability of linear time-
invariant fractional systems. They also prove that O(n−α) is
an upper bound for the decay rate as n → ∞. In [13] a deeper
analysis of one-dimensional time-invariant Riemann-Liouville
and Caputo equations with coefficient λ is performed and it is
shown [13, Cor. 4.1] that scalar Riemann-Liouville equations
are asymptotically stable if and only if λ ∈ (−2α ,0], and scalar
Caputo equations, if and only if λ ∈ (−2α ,0). Moreover, they
show that for λ ∈ (−2α,0), the exact decay rates of solutions
of scalar Caputo and Riemann-Liouville equations are n−α and
n−α−1, respectively. Finally, the paper [25] continues investi-
gations of systems of backward Riemann-Liouville equations
from [15] and answers on open question from [15] about sta-
bility on the boundary curve separating asymptotic stability and
unstability regions.

Backward and forward Caputo and Riemann-Liouville frac-
tional differences can be expressed as a convolution of sequences
with generalized binomial coefficients, a summary of these facts
is presented e.g. in [1]. Using these relations, a discrete-time
fractional equation can be expressed as a convolution Volterra
difference equation. Then its dynamical behavior may be studied
using results about asymptotic behavior of convolutions of se-
quences (see e.g. [11,17,18,28,31] and the references therein).
This approach is considered e.g. in [4,10,38] for general Volterra
equations to obtain the exact decay rates of solutions. In [15]
and [13], results from [4] are used to determine the exact decay
rates of solutions. However, the required assumptions allow to
determine decay rates only in certain subregions of the stability
region.

The main objective of this paper is to investigate decay and
growth rates of solutions to linear discrete-time forward Caputo
and Riemann-Liouville equations. It is organized as follows:
Section 2 collects basic notation and facts. A partial analysis of
decay rates of one-dimensional time-invariant forward Caputo
and Riemann-Liouville equations is presented in Section 3. Sec-
tion 4 contains a polynomial separation result for solutions to
linear systems of time-varying Caputo equations. The last sec-
tion concludes with some remarks.

2. Basic notions

We introduce some necessary notions concerning fractional
summation and fractional differences. Denote by R the set of
real numbers, by Z the set of integers, by N := Z≥0 the set
of natural numbers {0,1,2, . . .} including 0, and by Z≤0 :=
{0,−1,−2, . . .} the set of non-positive integers. For a ∈ R we
denote byNa := a+N the set {a,a+1, . . .}. By Γ : R\Z≤0 →R

we denote the Euler Gamma function defined by

Γ(α) := lim
n→∞

nα n!
α(α +1) · · ·(α +n)

(α ∈ R\Z≤0), (1)

which is well-defined, since the limit exists (see e.g. [26, p.
156]), and

Γ(α) =





∞∫

0

xα−1e−x dx if α > 0,

Γ(α +1)
α

if α < 0 and α ∈ R\Z≤0.

(2)

Note that Γ(α)> 0 for all α > 0.
For s ∈ R with s+ 1,s+ 1−α /∈ Z≤0 the falling factorial

power (s)(α) is defined by

(s)(α) :=
Γ(s+1)

Γ(s+1−α)

(
s ∈ (R\Z≤−1)∩(R\α+Z≤−1)

)
. (3)

By �x� := min{k ∈Z : k ≥ x} we denote the least integer greater
or equal to x and by �x� := max{k ∈ Z : k ≤ x} the greatest
integer less or equal to x.

For a ∈R, ν ∈R>0 and a function f : Na →R, the ν-th delta
fractional sum ∆−ν

a f : Na+ν → R of f is defined as

(∆−ν
a f )(t) :=

1
Γ(ν)

t−ν

∑
k=a

(t − k−1)(ν−1) f (k) (t ∈ Na+ν).

In the majority of our further considerations we will assume that
a = 0 and then we will write simply ∆−ν f instead of ∆−ν

0 f .
Let α ∈ (0,1), a ∈ R and f : Na → R. The Caputo forward

difference C∆α
a f : Na+1−α → R of f of order α is defined as

the composition C∆α
a := ∆−(1−α)

a ◦ ∆ of the (1 − α)-th delta
fractional sum with the classical difference operator t �→ ∆ f (t)
:= f (t +1)− f (t), i.e.

(C∆α
a f )(t) := (∆−(1−α)

a ∆ f )(t) (t ∈ Na+1−α).

The Riemann-Liouville forward difference R-L∆α
a f :Na+1−α→R

of f of order α is defined as R-L∆α
a := ∆◦∆−(1−α)

a , i.e.

(R-L∆α
a f )(t) := (∆∆−(1−α)

a f )(t) (t ∈ Na+1−α).

Similarly, as for the fractional sum, if a = 0 we simply write
C∆α f and R-L∆α f .

Finally, we list several results for the binomial coefficient
(

α
k

)
:=

α(α −1) · · ·(α − k+1)
k!

=
Γ(α +1)

Γ(k+1)Γ(α − k+1)
(α ∈ R, k ∈ N),

with the convention that for k = 0 the empty product

k

∏
�=1

(α − �+1) = α(α −1) · · ·(α − k+1)

equals 1, i.e.
(

α
0

)
:= 1. These results can be found e.g. in [13, p.

656] and [22, pp. 165].

(
α + k−1

k

)
= (−1)k

(
−α

k

)
(α ∈ R,k ∈ N), (4)

n

∑
k=0

(−1)k
(

α
k

)
= (−1)n

(
α −1

n

)
(α ∈ R,n ∈ N), (5)

and

lim
n→∞

(
α

n+1

)
Γ(−α)n1+α

(−1)n+1 = 1 (α ∈ R\Z), (6)

since

1 = lim
n→∞

Γ(−α)(−1)n+1n1+α α(α −1) · · ·(α −n)
n!(n+1)

n+1
n

= lim
n→∞

(
α

n+1

)
Γ(−α)n1+α

(−1)n+1

by (1).
In our further consideration we need the following technical

lemma.

Lemma 1. Let α > 0 and the sequence (u−α(k))k∈N be de-
fined by

u−α(k) := (−1)k
(
−α

k

)
(k ∈ N). (7)

Then the following statements hold:
(i) u−α(k)> 0 for k ∈ N.
(ii) If 0 < α < 1, then (u−α(k))k∈N is a decreasing sequence.

(iii)
n

∑
k=0

u−α(k) = u−α−1(n) for n ∈ N.

(iv) There exist m, M > 0 such that

m
n1−α < u−α(n)<

M
n1−α (n ∈ N\{0}).

(v) For n ∈ N,

u−(i+1)α−1(n− i)

=
n

∑
k=i

u−α(n− k)u−iα−1(k− i) (i ∈ {0, . . . ,n}),
(8)

i.e. for 0 ≤ i ≤ n,

(−1)n−i
(
−(i+1)α −1

n− i

)

=
n

∑
k=i

(−1)n−k
(
−α

n− k

)
(−1)k−i

(
−iα −1

k− i

)
.

(9)

(vi) For i ∈N, (u−iα−1(n))n∈N is a positive increasing sequence
and u−iα−1(n)≥ 1 for i,n ∈ N.

Proof. Let α > 0.
(i) u−α(0) = 1 and for k ∈ N\{0},

u−α(k) = (−1)k (−α)(−α −1) · · ·(−α − k+1)
k!

=
α(α +1) · · ·(α + k−1)

k!
.

Thus, u−α(k)> 0 for k ∈ N.
(ii) If α ∈ (0,1) then

u−α(k+1) =
α(α +1) · · ·(α + k)

(k+1)!

=
α + k
k+1

u−α(k)< u−α(k) (k ∈ N),

i.e. (u−α(k))k∈N is a decreasing sequence.
(iii) This follows directly from (5).
(iv) Using (1),

Γ(α) = lim
n→∞

nα n!
α(α +1) · · ·(α +n)

= lim
n→∞

1

(−1)nn−α(α+n)
(−α)(−α−1) · · ·(−α−n+1)

n!

= lim
n→∞

1

n1−α
(α

n
+1

)
(−1)n

(
−α
n

)

= lim
n→∞

1

n1−α
(α

n
+1

)
u−α(n)

.

Hence,
lim
n→∞

Γ(α)
(α

n
+1

)
n1−α u−α(n) = 1.

Using (i) and the fact that Γ(α)> 0, there exist m,M > 0 such
that

m ≤ Γ(α)
(α

n
+1

)
n1−α u−α(n)≤ M (n ∈ N).

Hence

m
n1−α ≤ m

Γ(α)
(α

n
+1

)
n1−α

≤ u−α(n)

≤ M

Γ(α)
(α

n
+1

)
n1−α

≤ M
n1−α (n ∈ N\{0})

with
m :=

m
Γ(α)(α +1)

and
M :=

M
Γ(α)

.
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equals 1, i.e.
(

α
0

)
:= 1. These results can be found e.g. in [13, p.

656] and [22, pp. 165].

(
α + k−1

k

)
= (−1)k

(
−α

k

)
(α ∈ R,k ∈ N), (4)

n

∑
k=0

(−1)k
(

α
k

)
= (−1)n

(
α −1

n

)
(α ∈ R,n ∈ N), (5)

and

lim
n→∞

(
α

n+1

)
Γ(−α)n1+α

(−1)n+1 = 1 (α ∈ R\Z), (6)

since

1 = lim
n→∞

Γ(−α)(−1)n+1n1+α α(α −1) · · ·(α −n)
n!(n+1)

n+1
n

= lim
n→∞

(
α

n+1

)
Γ(−α)n1+α

(−1)n+1

by (1).
In our further consideration we need the following technical

lemma.

Lemma 1. Let α > 0 and the sequence (u−α(k))k∈N be de-
fined by

u−α(k) := (−1)k
(
−α

k

)
(k ∈ N). (7)

Then the following statements hold:
(i) u−α(k)> 0 for k ∈ N.
(ii) If 0 < α < 1, then (u−α(k))k∈N is a decreasing sequence.

(iii)
n

∑
k=0

u−α(k) = u−α−1(n) for n ∈ N.

(iv) There exist m, M > 0 such that

m
n1−α < u−α(n)<

M
n1−α (n ∈ N\{0}).

(v) For n ∈ N,

u−(i+1)α−1(n− i)

=
n

∑
k=i

u−α(n− k)u−iα−1(k− i) (i ∈ {0, . . . ,n}),
(8)

i.e. for 0 ≤ i ≤ n,

(−1)n−i
(
−(i+1)α −1

n− i

)

=
n

∑
k=i

(−1)n−k
(
−α

n− k

)
(−1)k−i

(
−iα −1

k− i

)
.

(9)

(vi) For i ∈N, (u−iα−1(n))n∈N is a positive increasing sequence
and u−iα−1(n)≥ 1 for i,n ∈ N.

Proof. Let α > 0.
(i) u−α(0) = 1 and for k ∈ N\{0},

u−α(k) = (−1)k (−α)(−α −1) · · ·(−α − k+1)
k!

=
α(α +1) · · ·(α + k−1)

k!
.

Thus, u−α(k)> 0 for k ∈ N.
(ii) If α ∈ (0,1) then

u−α(k+1) =
α(α +1) · · ·(α + k)

(k+1)!

=
α + k
k+1

u−α(k)< u−α(k) (k ∈ N),

i.e. (u−α(k))k∈N is a decreasing sequence.
(iii) This follows directly from (5).
(iv) Using (1),

Γ(α) = lim
n→∞

nα n!
α(α +1) · · ·(α +n)

= lim
n→∞

1

(−1)nn−α(α+n)
(−α)(−α−1) · · ·(−α−n+1)

n!

= lim
n→∞

1

n1−α
(α

n
+1

)
(−1)n

(
−α
n

)

= lim
n→∞

1

n1−α
(α

n
+1

)
u−α(n)

.

Hence,
lim
n→∞

Γ(α)
(α

n
+1

)
n1−α u−α(n) = 1.

Using (i) and the fact that Γ(α)> 0, there exist m,M > 0 such
that

m ≤ Γ(α)
(α

n
+1

)
n1−α u−α(n)≤ M (n ∈ N).

Hence

m
n1−α ≤ m

Γ(α)
(α

n
+1

)
n1−α

≤ u−α(n)

≤ M

Γ(α)
(α

n
+1

)
n1−α

≤ M
n1−α (n ∈ N\{0})

with
m :=

m
Γ(α)(α +1)

and
M :=

M
Γ(α)

.
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(v) Let n ∈ N, i ∈ {0, . . . ,n}. Expanding the equality

(1− x)−(i+1)α−1 = (1− x)−α(1− x)−iα−1 (x ∈ R\{−1})

with the binomial series, yields

∞

∑
n=0

(−1)n
(
−(i+1)α −1

n

)
xn

=
∞

∑
k=0

(−1)k
(
−α

k

)
xk

∞

∑
j=0

(−1) j
(
−iα −1

j

)
x j

for |x|< 1
Comparing the coefficients of xn−i, we receive the claim (9)

(−1)n−i
(
−(i+1)α −1

n− i

)

=
n

∑
k=i

(−1)n−k
(
−α

n− k

)
(−1)k−i

(
−iα −1

k− i

)
.

(vi) Let i ∈ N. From

u−iα−1(n) = (−1)n
(
−iα −1

n

)

=
(iα +1)(iα +2) · · ·(iα +n)

1 ·2 · · ·n
≥ 1 (n ∈ N),

it follows that n �→ u−iα−1(n) is increasing.

For two sequences f ,g : N→R the convolution f ∗g : N→R
is defined as

( f ∗g)(n) =
n

∑
i=0

f (n− i)g(i) (n ∈ N).

In this paper we consider linear bounded non-autonomous
fractional difference systems of the form

(∆α x)(n+1−α) = A(n)x(n) (n ∈ N), (10)

where x : N → Rd , ∆α is either the Caputo C∆α or Riemann-
Liouville R-L∆α forward difference operator of a real order α ∈
(0,1) and A : N→ Rd×d is bounded, i.e.

M := sup
n∈N

‖A(n)‖< ∞. (11)

For an initial value x0 ∈ Rn, (10) has a unique solution x : N→
Rd which satisfies the initial condition x(0) = x0. We denote
x by ϕC(·,x0) or ϕR-L(·,x0), respectively. In Theorem 1 below,
we characterize solutions of (10) as solutions of an associated
Volterra convolution equation. For the proof of this characteri-
zation we use the following Lemma which provides an alterna-
tive representation of fractional differences [1,2] and fractional
sums [23].

Lemma 2. Let α > 0 and f : N→ R. Then

(R-L∆α f )(n)

=
α+n

∑
k=0

(−1)k
(

α
k

)
f (n− k+α) (n ∈ N1−α),

(12)

(C∆α f )(n) =
α+n

∑
k=0

(−1)k
(

α
k

)
f (n−k+α)

− (n)(−α)

Γ(1−α)
f (0) (n ∈ N1−α),

(13)

(∆−α f )(n)

=
−α+n

∑
k=0

(−1)k
(
−α

k

)
f (n− k−α) (n ∈ Nα).

(14)

Theorem 1. (Equivalent Volterra difference equation)
Let α ∈ (0,1).
(a) x : N → Rd is a solution of (10) with Caputo forward

difference operator if and only if

x(n+1) = x(0)+
n

∑
k=0

(−1)n−k
(
−α
n−k

)
A(k)x(k) (n ∈N). (15)

and this equation is equivalent to

x(n+1) = A(n)x(n)+
n

∑
k=0

(−1)n−k
(

α
n− k+1

)
x(k)

+(−1)n+1
(

α −1
n+1

)
x(0) (n ∈ N).

(16)

(b) x : N→ Rd is a solution of (10) with Riemann-Liouville
forward difference operator if and only if

x(n+1) =
n

∑
k=0

(−1)n−k
(
−α

n− k

)
A(k)x(k)

+(−1)n+1
(

−α
n+1

)
x(0) (n ∈ N)

(17)

and this equation is equivalent to

x(n+1) = A(n)x(n)

+
n

∑
k=0

(−1)n−k
(

α
n− k+1

)
x(k) (n ∈ N).

(18)

Proof. (a) In order to prove (15), we recall the following identity
from [3, Thm. 2.4] (it should be noticed that there is a misprint in
[3, Thm. 2.4] and the correct formula is stated some lines above
this theorem). Let a ∈ R, x : Na → R, α ∈ R>0 \N, m := �α�.

Then

x(t) =
m−1

∑
k=0

(t −a)(k)

k!
∆kx(a)

+
1

Γ(α)

t−α

∑
s=a+m−α

(t − s−1)(α−1)(C∆α
a x)(s)

(t ∈ Na+m).

(19)

Using (19) for a = 0 and α ∈ (0,1), we have

x(t) = x(0)

+
1

Γ(α)

t−α

∑
s=1−α

(t−s−1)(α−1)(C∆α x)(s) (t ∈ N\{0}).

For n ∈N and t := n+1, the substitution s = k+(1−α) yields

x(n+1) = x(0)

+
1

Γ(α)

n

∑
k=0

(n−k+α−1)(α−1)(C∆α x)(k+1−α) (n ∈ N).

From the definition (3) of falling factorial power,

1
Γ(α)

(n− k+α −1)(α−1) =
Γ(n− k+α)

Γ(α)Γ(n− k+1)

=

(
n−k+α−1

n−k

)
=

(
α+(n−k)−1

n−k

)
(k ∈ {0, . . . ,n}).

Using (4),

1
Γ(α)

(n−k+α−1)(α−1) = (−1)n−k
(
−α
n−k

)
(k ∈ {0, . . . ,n})

and therefore

x(n+1)=x(0)+
n

∑
k=0

(−1)n−k
(
−α
n−k

)
(C∆α x)(k+1−α) (n ∈ N).

With (10) for the Caputo forward difference operator

(C∆α x)(k+1−α) = A(k)x(k) (k ∈ N),

we receive equation (15). In order to prove (16), use (10) and
apply (13) to x(·+1−α) : N1−α → R to get

A(n)x(n) = (C∆α x)(n+1−α)

=
n+1

∑
k=0

(−1)k
(

α
k

)
x(n+1−k)− (n+1−α)(−α)

Γ(1−α)
x(0)

= x(n+1)+
n+1

∑
k=1

(−1)k
(

α
k

)
x(n+1−k)− (n+1−α)(−α)

Γ(1−α)
x(0)

= x(n+1)+
n

∑
k=0

(−1)n−k+1
(

α
n− k+1

)
x(k)

− (n+1−α)(−α)

Γ(1−α)
x(0).

Using (4),

(−1)n+1
(

α −1
n+1

)
=

(
n+1−α

n+1

)

=
Γ(n+2−α)

Γ(n+2)Γ(1−α)
=

(n+1−α)(−α)

Γ(1−α)
,

and (16) follows. Similarly one can show that (16) implies (15),
and (15) implies (10).

(b) In order to prove (17), we recall the following identity
from [7, Theorem 4.10]. Let a ∈ R, α ∈ (0,1), f : Na → R.
Then

(∆−α
a−α+1 R-L∆α

a f )(b)

= f (b)− (−1)b−a
(

−α
b−a

)
f (a) (b ∈ Na \{a}).

For n ∈ N, a = 0, b = n+1 and x : N→ R, we get

(∆−α
−α+1 R-L∆α x)(n+1−α)

= x(n+1)− (−1)n+1
(

−α
n+1

)
x(0) (n ∈ N)

and by (14) with f (n) = A(n)x(n), we may show that

(∆−α f )(n+α)

=
n

∑
k=0

(−1)n−k
(
−α

n− k

)
A(k)x(k) (n ∈ N).

Combining the last two equalities and the fact that x is a solution
of (10) with the Riemann-Liouville operator, we get (17). In the
same way as we proved (16), but using (12) instead of (13), we
may show (18).

The following theorem is a special case of [19, Proposition 1].

Theorem 2. (Variation of constants formula for Volterra differ-
ence equations) Let A,B : N→ Rd×d and g : N→ Rd . Then, if
R : N→ Rd×d satisfies the equation

R(n+1) = A(n)R(n)+
n

∑
k=0

B(n− k)R(k) (n ∈ N)

with the initial condition R(0) = I, then the unique solution
x : N→ Rd of the equation

x(n+1) = A(n)x(n)+
n

∑
k=0

B(n− k)x(k)+g(n) (n ∈ N)

with the initial condition x(0) = x0 ∈ Rd , is given by

x(n) = R(n)x0 +
n−1

∑
k=0

R(n− k−1)g(k) (n ∈ N).

Combining Theorem 2 with the Volterra representations (16)
and (18) of Theorem 1 in the one-dimensional and time-invariant
case, we obtain the following lemma.
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Then

x(t) =
m−1

∑
k=0

(t −a)(k)

k!
∆kx(a)

+
1

Γ(α)

t−α

∑
s=a+m−α

(t − s−1)(α−1)(C∆α
a x)(s)

(t ∈ Na+m).

(19)

Using (19) for a = 0 and α ∈ (0,1), we have

x(t) = x(0)

+
1

Γ(α)

t−α

∑
s=1−α

(t−s−1)(α−1)(C∆α x)(s) (t ∈ N\{0}).

For n ∈N and t := n+1, the substitution s = k+(1−α) yields

x(n+1) = x(0)

+
1

Γ(α)

n

∑
k=0

(n−k+α−1)(α−1)(C∆α x)(k+1−α) (n ∈ N).

From the definition (3) of falling factorial power,

1
Γ(α)

(n− k+α −1)(α−1) =
Γ(n− k+α)

Γ(α)Γ(n− k+1)

=

(
n−k+α−1

n−k

)
=

(
α+(n−k)−1

n−k

)
(k ∈ {0, . . . ,n}).

Using (4),

1
Γ(α)

(n−k+α−1)(α−1) = (−1)n−k
(
−α
n−k

)
(k ∈ {0, . . . ,n})

and therefore

x(n+1)=x(0)+
n

∑
k=0

(−1)n−k
(
−α
n−k

)
(C∆α x)(k+1−α) (n ∈ N).

With (10) for the Caputo forward difference operator

(C∆α x)(k+1−α) = A(k)x(k) (k ∈ N),

we receive equation (15). In order to prove (16), use (10) and
apply (13) to x(·+1−α) : N1−α → R to get

A(n)x(n) = (C∆α x)(n+1−α)

=
n+1

∑
k=0

(−1)k
(

α
k

)
x(n+1−k)− (n+1−α)(−α)

Γ(1−α)
x(0)

= x(n+1)+
n+1

∑
k=1

(−1)k
(

α
k

)
x(n+1−k)− (n+1−α)(−α)

Γ(1−α)
x(0)

= x(n+1)+
n

∑
k=0

(−1)n−k+1
(

α
n− k+1

)
x(k)

− (n+1−α)(−α)

Γ(1−α)
x(0).

Using (4),

(−1)n+1
(

α −1
n+1

)
=

(
n+1−α

n+1

)

=
Γ(n+2−α)

Γ(n+2)Γ(1−α)
=

(n+1−α)(−α)

Γ(1−α)
,

and (16) follows. Similarly one can show that (16) implies (15),
and (15) implies (10).

(b) In order to prove (17), we recall the following identity
from [7, Theorem 4.10]. Let a ∈ R, α ∈ (0,1), f : Na → R.
Then

(∆−α
a−α+1 R-L∆α

a f )(b)

= f (b)− (−1)b−a
(

−α
b−a

)
f (a) (b ∈ Na \{a}).

For n ∈ N, a = 0, b = n+1 and x : N→ R, we get

(∆−α
−α+1 R-L∆α x)(n+1−α)

= x(n+1)− (−1)n+1
(

−α
n+1

)
x(0) (n ∈ N)

and by (14) with f (n) = A(n)x(n), we may show that

(∆−α f )(n+α)

=
n

∑
k=0

(−1)n−k
(
−α

n− k

)
A(k)x(k) (n ∈ N).

Combining the last two equalities and the fact that x is a solution
of (10) with the Riemann-Liouville operator, we get (17). In the
same way as we proved (16), but using (12) instead of (13), we
may show (18).

The following theorem is a special case of [19, Proposition 1].

Theorem 2. (Variation of constants formula for Volterra differ-
ence equations) Let A,B : N→ Rd×d and g : N→ Rd . Then, if
R : N→ Rd×d satisfies the equation

R(n+1) = A(n)R(n)+
n

∑
k=0

B(n− k)R(k) (n ∈ N)

with the initial condition R(0) = I, then the unique solution
x : N→ Rd of the equation

x(n+1) = A(n)x(n)+
n

∑
k=0

B(n− k)x(k)+g(n) (n ∈ N)

with the initial condition x(0) = x0 ∈ Rd , is given by

x(n) = R(n)x0 +
n−1

∑
k=0

R(n− k−1)g(k) (n ∈ N).

Combining Theorem 2 with the Volterra representations (16)
and (18) of Theorem 1 in the one-dimensional and time-invariant
case, we obtain the following lemma.
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Lemma 3. Suppose that r : N→ R is the solution of the scalar
Riemann-Liouville equation

r(n+1) = λ r(n)+
n

∑
k=0

(−1)n−k
(

α
n− k+1

)
r(k) (n ∈ N)

with initial condition r(0) = 1, then the solution x : N→ R of
the Caputo equation

x(n+1) = λx(n)+
n

∑
k=0

(−1)n−k
(

α
n− k+1

)
x(k)

+(−1)n+1
(

α −1
n+1

)
x(0) (n ∈ N)

with initial condition x(0) = x0, is given by the convolution
x = r ∗g, i.e.

x(n) = (r ∗g)(n) (n ∈ N)

of r with g : N→ R, defined by

g(n) = (−1)n+1
(

α −1
n+1

)
x0 (n ∈ N).

In the autonomous case, we have the following formula for
the solution of (10).

Theorem 3. Let A∈Rd×d , x0∈Rd . Then the solution x : N→Rd

of the autonomous Caputo forward difference equation (10)

(C∆α x)(n+1−α) = Ax(n) (n ∈ N),

with initial condition x(0) = x0, is given by

ϕC(n,x0) =
n

∑
i=0

(n+ i(α −1))(iα)

Γ(iα +1)
Aix0 (n ∈ N). (20)

Proof. Let A ∈Rd×d , x0 ∈Rd . For n = 0, (20) obviously holds.
To prove (20) by induction over n ∈ N, note that by (15),

ϕC(n+1,x0) = x0+
n

∑
k=0

u−α(n− k)AϕC(k,x0) (n ∈ N), (21)

with u−α(n) = (−1)n
(−α

n

)
defined in (7). Using (21), the induc-

tion hypothesis (20) for a fixed n ∈ N, and formula (8),

ϕC(n+1,x0) = x0 +
n

∑
k=0

u−α(n− k)A
k

∑
i=0

u−iα−1(k− i)Aix0

= x0 +
n

∑
i=0

n

∑
k=i

u−α(n− k)u−iα−1(k− i)Ai+1x0

= x0 +
n

∑
i=0

u−(i+1)α−1(n− i)Ai+1x0

=
n+1

∑
i=0

u−iα−1(n+1− i)Aix0,

proving (20) for n+1, and the induction step is complete.

3. Asymptotic behavior of scalar
autonomous equations

Consider the one-dimensional and time-invariant equation (10)

(∆α x)(n+1−α) = λx(n) (n ∈ N), (22)

with λ ∈ R and Caputo or Riemann-Liouville forward differ-
ence operator, respectively. It has been shown in [13, Corollary
4.1] that the Caputo equation is asymptotically stable if and
only if −2α < λ < 0 and that the Riemann-Liouville equation
is asymptotically stable if and only if −2α < λ ≤ 0. In [13, The-
orem 1.4 and Corollary 4.2] the following decay rates have been
shown

ϕC(n,x0) = O(n−α) asn → ∞, (23)

for −2α < λ < 0 and

lim
n→∞

ϕR-L(n,y0)n1+α =
−y0

λ 2Γ(−α)
(24)

for−2α < λ < 0. The main result of this section is the exact rep-
resentation of the asymptotic relation (23) when λ ∈ (−2α,0).

Theorem 4. (Decay rate of asymptotically stable solutions; the
Caputo case) Let λ ∈ (−2α,0), x0 ∈ R. Then

lim
n→∞

ϕC(n,x0)nα =
−x0

λΓ(1−α)
. (25)

In order to show Theorem 4, we prove the following prepara-
tory lemmas.

Lemma 4. Let λ ∈ (−2α ,0), r0 ∈ R. Then the series
∞

∑
n=0

ϕR-L(n,r0) is absolutely convergent and

∞

∑
n=0

ϕR-L(n,r0) =
−r0

λ
. (26)

Proof. Let λ ∈ (−2α ,0), r0 ∈ R. Using equation (18) of The-
orem 1(b), (22) with the Riemann-Liouville operator is equiva-
lent to

r(n+1) =
n

∑
i=0

a(n− i)r(i), r(0) = r0, (27)

where ϕR-L(n,r0) = r(n), n ∈ N, and

a(n) =





λ +α for n = 0,

(−1)n
(

α
n+1

)
for n ∈ N\{0}.

Using the fact that for λ ∈ (−2α ,0) equation (27) is uniformly
asymptotically stable, [21, Theorem 2] implies that the series

S :=
∞

∑
n=0

r(n) is absolutely convergent. By (27), we get

S− r(0) =
∞

∑
n=0

n

∑
i=0

a(n− i)r(i). (28)

Since the series
∞

∑
i=0

a(i) and
∞

∑
i=0

r(i) are absolutely convergent,

Mertens’s theorem [29] implies that their Cauchy product

∞

∑
n=0

n

∑
i=0

a(n− i)r(i)

is also convergent and

∞

∑
n=0

n

∑
i=0

a(n− i)r(i) =
∞

∑
n=0

a(n)
∞

∑
n=0

r(n).

Using the fact that for α > 0 and x ∈ [−1,1] the series

∞

∑
k=0

(
α
k

)
xk = (1+ x)α

converges absolutely, we get by setting x =−1,

∞

∑
n=0

a(n) = 1+λ .

By (28), we have S− r0 = (1+λ )S and finally

∞

∑
n=0

r(n) =− r0

λ
,

proving (26).

Lemma 5. Let α ∈ (0,1). Then

lim
m→∞

lim
n→∞

n−m

∑
i=m+1

(n− i)−1−α i−α

n−α = 0.

Proof. Let m,n ∈ N\{0}, m < 2n, and denote

I(n,m) :=
n−m

∑
i=m+1

(n− i)−1−α i−α

n−α

=
[ n

2 ]−m

∑
i=m+1

(n− i)−1−α i−α

n−α +
n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α i−α

n−α .

For
m+1 ≤ i ≤

[n
2

]
−m

we have
(n− i)−1−α ≤

([n
2

]
+m

)−1−α

and therefore

I(n,m)≤

([n
2

]
+m

)−1−α

n−α

[ n
2 ]−m

∑
i=m+1

i−α

+

([n
2

]
−m+1

)−α

n−α

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α .

(29)

Observe that for α ∈ (0,1) we have

lim
k→∞

1
k

k

∑
i=1

i−α = 0. (30)

This follows from the inequality

k

∑
i=1

i−α ≤
k+1∫

1

x−α dx =
(k+1)−α+1

−α +1
− 1

−α +1
.

Using (30), the limit of the first term in (29) for n → ∞ satisfies

lim
n→∞

([n
2

]
+m

)−1−α

n−α

[ n
2 ]−m

∑
i=m+1

i−α =

= lim
n→∞

([n
2

]
+m

)−α

n−α
1[n

2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α

= lim
n→∞

([n
2

]
+m

)−α

n−α lim
n→∞

1[n
2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α

=

(
1
2

)−α
lim
n→∞

1[n
2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α = 0.

(31)

Estimating the limit superior of the second term in (29), we get

limsup
n→∞

([n
2

]
−m+1

)−α

n−α

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α

≤ lim
n→∞

([n
2

]
−m+1

)−α

n−α

· limsup
n→∞

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α

≤
(

1
2

)−α ∞

∑
i=m

i−1−α .

(32)

From (31), (32) and the fact that

lim
m→∞

∞

∑
i=m

i−1−α = 0,

we get the claim.

Lemma 6. Let g,r : N0 → R satisfy the conditions

lim
n→∞

g(n)
n−α = d (33)

as n



755

Asymptotic properties of discrete linear fractional equations

Bull.  Pol.  Ac.:  Tech.  67(4)  2019

Since the series
∞

∑
i=0

a(i) and
∞

∑
i=0

r(i) are absolutely convergent,

Mertens’s theorem [29] implies that their Cauchy product

∞

∑
n=0

n

∑
i=0

a(n− i)r(i)

is also convergent and

∞

∑
n=0

n

∑
i=0

a(n− i)r(i) =
∞

∑
n=0

a(n)
∞

∑
n=0

r(n).

Using the fact that for α > 0 and x ∈ [−1,1] the series

∞

∑
k=0

(
α
k

)
xk = (1+ x)α

converges absolutely, we get by setting x =−1,

∞

∑
n=0

a(n) = 1+λ .

By (28), we have S− r0 = (1+λ )S and finally

∞

∑
n=0

r(n) =− r0

λ
,

proving (26).

Lemma 5. Let α ∈ (0,1). Then

lim
m→∞

lim
n→∞

n−m

∑
i=m+1

(n− i)−1−α i−α

n−α = 0.

Proof. Let m,n ∈ N\{0}, m < 2n, and denote

I(n,m) :=
n−m

∑
i=m+1

(n− i)−1−α i−α

n−α

=
[ n

2 ]−m

∑
i=m+1

(n− i)−1−α i−α

n−α +
n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α i−α

n−α .

For
m+1 ≤ i ≤

[n
2

]
−m

we have
(n− i)−1−α ≤

([n
2

]
+m

)−1−α

and therefore

I(n,m)≤

([n
2

]
+m

)−1−α

n−α

[ n
2 ]−m

∑
i=m+1

i−α

+

([n
2

]
−m+1

)−α

n−α

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α .

(29)

Observe that for α ∈ (0,1) we have

lim
k→∞

1
k

k

∑
i=1

i−α = 0. (30)

This follows from the inequality

k

∑
i=1

i−α ≤
k+1∫

1

x−α dx =
(k+1)−α+1

−α +1
− 1

−α +1
.

Using (30), the limit of the first term in (29) for n → ∞ satisfies

lim
n→∞

([n
2

]
+m

)−1−α

n−α

[ n
2 ]−m

∑
i=m+1

i−α =

= lim
n→∞

([n
2

]
+m

)−α

n−α
1[n

2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α

= lim
n→∞

([n
2

]
+m

)−α

n−α lim
n→∞

1[n
2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α

=

(
1
2

)−α
lim
n→∞

1[n
2

]
+m

[ n
2 ]−m

∑
i=m+1

i−α = 0.

(31)

Estimating the limit superior of the second term in (29), we get

limsup
n→∞

([n
2

]
−m+1

)−α

n−α

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α

≤ lim
n→∞

([n
2

]
−m+1

)−α

n−α

· limsup
n→∞

n−m

∑
i=[ n

2 ]−m+1

(n− i)−1−α

≤
(

1
2

)−α ∞

∑
i=m

i−1−α .

(32)

From (31), (32) and the fact that

lim
m→∞

∞

∑
i=m

i−1−α = 0,

we get the claim.

Lemma 6. Let g,r : N0 → R satisfy the conditions

lim
n→∞

g(n)
n−α = d (33)
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and there exists a constant c ∈ R and n0 ∈ N such that

∣∣∣∣
r(n)

n−α−1

∣∣∣∣< c (34)

for all n > n0. Then

lim
n→∞

(r ∗g)(n)
n−α = d

∞

∑
i=0

r(i).

Proof. Let m ∈ N. For n > 2m, we have

(r ∗g)(n)
n−α = E(n)+F(n)+G(n),

where

E(n) =
m

∑
i=0

r(n− i)g(i)
n−α ,

F(n) =
n−m

∑
i=m+1

(n− i)−1−α i−α

n−α
r(n− i)

(n− i)−1−α
g(i)
i−α ,

G(n) =
m−1

∑
j=0

r(m−1− j)g(n−m+ j+1)
n−α .

Condition (34) implies that

lim
n→∞

r(n− k)
n−α = 0

for each k ∈ N and therefore

lim
n→∞

E(n) = 0. (35)

From condition (33) we have

lim
n→∞

g(n− k)
n−α = d

for each k ∈ N, and therefore

lim
n→∞

G(n) = d
m−1

∑
i=0

r(i). (36)

Conditions (34) and (33) imply that θ < ∞, where

θ = sup
j∈N\{0}

r( j)
j−1−α sup

j∈N\{0}

g( j)
j−α ,

and therefore

|F(n)| ≤ θ
n−m

∑
i=m+1

(n− i)−1−α i−α

n−α . (37)

Using (35), (36) and (37), we obtain

limsup
n→∞

∣∣∣∣∣
1

n−α

n

∑
i=0

r(n− i)g(i)−d
∞

∑
i=0

r(i)

∣∣∣∣∣

= limsup
n→∞

∣∣∣∣∣E(n)+F(n)+G(n)−d
∞

∑
i=0

r(i)

∣∣∣∣∣

≤ limsup
n→∞

|E(n)|+ limsup
n→∞

∣∣∣∣∣F(n)−d
∞

∑
i=m

r(i)

∣∣∣∣∣

+ limsup
n→∞

∣∣∣∣∣G(n)−d
m−1

∑
i=0

r(i)

∣∣∣∣∣

≤ θ limsup
n→∞

n−m

∑
i=m+1

(n− i)−1−α i−α

n−α +d
∞

∑
i=m

|r(i)|.

Taking the limit superior for m → ∞, using Lemma 5 and the

absolute convergence of the series
∞

∑
i=0

r(i), we get the conclusion

of the lemma.

Proof of Theorem 4. The proof of (25) follows now from (24)
with y0 = 1, by using Lemmas 3 and 6 and equality (26), since
for

g(n) = (−1)n+1
(

α −1
n+1

)
x0 ,

by (6), we have

lim
n→∞

g(n)
n−α =

x0

Γ(1−α)
.

4. Separation results

Exponential rates of convergence or divergence of trajectories
of dynamical systems can be described by Lyapunov exponents.
The Lyapunov exponent of a sequence of real numbers a(n) is
defined as

limsup
n→∞

1
n

ln |a(n)| . (38)

Theorem 4 shows that the Lyapunov exponent

limsup
n→∞

1
n

ln |ϕC(n,x0)|

of a non-zero solution ϕC(·,x0) of a one-dimensional Caputo
system (10) with x0 ∈R\{0} equals 0. In other words, solutions
of (10) do not decay exponentially. The next theorem shows that
this is also true for in higher dimensions. In what follows, we
establish a lower bound on the exponential separation between
two solutions of (10). As a consequence, we show that the
Lyapunov exponent of an arbitrary non-trivial solution of (10)
is always non-negative.

Theorem 5. Consider equation (10) with Caputo operator. Let
λ >

α
1−α

, x,y ∈ Rd and x �= y. Then

limsup
n→∞

nλ‖ϕC(n,x)−ϕC(n,y)‖= ∞. (39)

Consequently, for any x0 ∈ Rd \{0} we have

limsup
n→∞

1
n

ln‖ϕC(n,x0)‖ ≥ 0. (40)

Proof. Let x,y ∈ Rd with x �= y and λ >
α

1−α
. Suppose the

contrary, i.e. there exists K ∈ R such that

limsup
n→∞

nλ‖ϕC(n,x)−ϕC(n,y)‖< K,

which implies that

lim
n→∞

‖ϕC(n,x)−ϕC(n,y)‖= 0 (41)

and therefore

L := sup
n∈N

‖ϕC(n,x)−ϕC(n,y)‖< ∞. (42)

Furthermore, there exists N ∈ N such that

‖ϕC(n,x)−ϕC(n,y)‖ ≤ Kn−λ (n ≥ N). (43)

Considering the Caputo equation in the form given by (15), we
have

ϕC(n,x)−ϕC(n,y)

= x− y+
n

∑
k=0

u−α(n− k)A(k)(ϕC(k,x)−ϕC(k,y))

= x− y+
n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y)),

where
B(n,k) := u−α(n− k)A(k),

with u−α(·) given by (7). Thus,

‖x− y‖ ≤ ‖ϕC(n,x)−ϕC(n,y)‖

+

∥∥∥∥∥
n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥ .

Letting n → ∞ and using (41), we obtain that

limsup
n→∞

∥∥∥∥∥
n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥> 0. (44)

Since λ >
α

1−α
, there exists δ ∈

(α
λ
,1−α

)
. To gain a con-

tradiction to inequality (44), it is sufficient to show that

limsup
n→∞

�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y)) = 0 (45)

and

limsup
n→∞

n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y)) = 0. (46)

By definition of B(n,k) and non-negativity of the sequence
u−α(n) as in Lemma 1, we have

∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤
�nδ �−1

∑
k=0

‖B(n,k)‖‖ϕC(k,x)−ϕC(k,y)‖

≤
�nδ �−1

∑
k=0

Mu−α(n− k)‖ϕC(k,x)−ϕC(k,y)‖

≤ ML
�nδ �−1

∑
k=0

u−α(n− k),

where we used (42) to obtain the last inequality. By Lemma 1(i),
the sequence (u−α(n))n∈N is decreasing. Thus,
∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ ML�nδ �u−α(n−�nδ �).

Using Lemma 1(iv), we obtain that
∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤ ML(nδ +1)
M

(n−�nδ �)1−α ,

which, together with the fact that δ < 1−α , proves (45). To
conclude the proof we show (46). For this purpose, we use the
estimate

∥∥∥∥∥∥
n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤
n

∑
k=�nδ �

‖B(n,k)‖‖ϕC(k,x)−ϕC(k,y)‖

≤ M
n

∑
k=�nδ �

u−α(n− k)‖ϕC(k,x)−ϕC(k,y)‖.
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Theorem 5. Consider equation (10) with Caputo operator. Let
λ >

α
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nλ‖ϕC(n,x)−ϕC(n,y)‖= ∞. (39)

Consequently, for any x0 ∈ Rd \{0} we have

limsup
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1
n
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α
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. Suppose the

contrary, i.e. there exists K ∈ R such that
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which implies that

lim
n→∞
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and therefore

L := sup
n∈N

‖ϕC(n,x)−ϕC(n,y)‖< ∞. (42)

Furthermore, there exists N ∈ N such that

‖ϕC(n,x)−ϕC(n,y)‖ ≤ Kn−λ (n ≥ N). (43)

Considering the Caputo equation in the form given by (15), we
have

ϕC(n,x)−ϕC(n,y)

= x− y+
n

∑
k=0

u−α(n− k)A(k)(ϕC(k,x)−ϕC(k,y))

= x− y+
n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y)),

where
B(n,k) := u−α(n− k)A(k),

with u−α(·) given by (7). Thus,

‖x− y‖ ≤ ‖ϕC(n,x)−ϕC(n,y)‖

+
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n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥ .

Letting n → ∞ and using (41), we obtain that

limsup
n→∞

∥∥∥∥∥
n

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥> 0. (44)

Since λ >
α

1−α
, there exists δ ∈

(α
λ
,1−α

)
. To gain a con-

tradiction to inequality (44), it is sufficient to show that

limsup
n→∞

�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y)) = 0 (45)

and

limsup
n→∞

n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y)) = 0. (46)

By definition of B(n,k) and non-negativity of the sequence
u−α(n) as in Lemma 1, we have

∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤
�nδ �−1

∑
k=0

‖B(n,k)‖‖ϕC(k,x)−ϕC(k,y)‖

≤
�nδ �−1

∑
k=0

Mu−α(n− k)‖ϕC(k,x)−ϕC(k,y)‖

≤ ML
�nδ �−1

∑
k=0

u−α(n− k),

where we used (42) to obtain the last inequality. By Lemma 1(i),
the sequence (u−α(n))n∈N is decreasing. Thus,
∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ ML�nδ �u−α(n−�nδ �).

Using Lemma 1(iv), we obtain that
∥∥∥∥∥∥
�nδ �−1

∑
k=0

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤ ML(nδ +1)
M

(n−�nδ �)1−α ,

which, together with the fact that δ < 1−α , proves (45). To
conclude the proof we show (46). For this purpose, we use the
estimate

∥∥∥∥∥∥
n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥

≤
n

∑
k=�nδ �

‖B(n,k)‖‖ϕC(k,x)−ϕC(k,y)‖

≤ M
n

∑
k=�nδ �

u−α(n− k)‖ϕC(k,x)−ϕC(k,y)‖.
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Let n ∈ N satisfy that nδ ≥ N. Using (43), we obtain that
∥∥∥∥∥∥

n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ MK�nδ �−λ

n

∑
k=�nδ �

u−α(n− k)

By Lemma 1(i) and (5), we have

n

∑
k=�nδ �

u−α(n− k)≤
n

∑
k=0

u−α(n− k) = u−(α+1)(n).

Thus,
∥∥∥∥∥∥

n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ MK�nδ �−λ u−(α+1)(n).

In light of Lemma 1(iv) for α +1, we have
∥∥∥∥∥∥

n

∑
k=�nδ �

B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ MKn−δλ M

n−α .

Note that δλ > α , (46) is proved and the proof is complete.

It is still an open question whether an analog result also holds
for Riemann-Liouville equations.

Whereas the results in Section 3 show that an asymptotically
stable solution of a scalar linear Caputo differential equations
decays to zero with a polynomial rate of convergence, the next
theorem shows that under certain assumptions a solution of
Riemann-Liouville equation, which tends to infinity, grows ex-
ponentially fast.

Theorem 6. Consider the time-invariant version of the
Riemann-Liouville difference equation (10)

(R-L∆α x)(n+1−α) = Ax(n) (n ∈ N),

with A ∈ Rd×d such that

det
(
I − z−1(1− z−1)−α A

)
= 0 (47)

does not have a complex solution z satisfying |z| = 1. If there
exists an x∗ ∈ Rd such that

limsup
n→∞

‖ϕR-L(n,x∗)‖= ∞,

then for every x0 ∈ Rd there exist q > 1 and M > 0 such that

‖ϕR-L(n,x0)‖ ≥ Mqn (for infinitely manyn ∈ N).

Proof. Consider the Riemann-Liouville equation (10) in the
form given by (18). By [21, Theorem 2(i) & (iii)] there exists a
solution z0 ∈ C of the equation (47) with |z0| > 1. Using (16),

the Z -transform ϕR-L(z,x0) of the solution ϕR-L(n,x0) takes the
form

ϕR-L(z,x0) =

(
z
(

1− 1
z

)α
I −A

)−1

z
(

1− 1
z

)α−1

x0.

A zero of (47) represents a singular point of ϕR-L(·,x0). It is
known that if f (z) is the Z -transform of a sequence f : N→R,
then its radius of convergence r is given by the distance of
the origin to an outermost (non-removable) singular point (see
e.g. [20, Chapter 6]). Hence, if there is a zero z0 with |z0| > 1,
then also the radius r of convergence of at least one component
ϕ i (·,x0) of ϕ (·,x0) satisfies r > 1. Using the Cauchy-Hadamard
theorem we have

r = limsup
n→∞

n
√

|ϕi (n,x0)|> 1

and the conclusion follows.

5. Conclusions

In this paper we investigated dynamic properties of discrete
fractional Caputo and Riemann-Liouville linear equations. For
multidimensional time-varying equations we presented equiv-
alent Volterra convolution equations for the Caputo and the
Riemann Liouville case (Theorem 1). Moreover, for Caputo
time-invariant equations we provide an explicit formula for the
solution (Theorem 3). The result given by Theorem 4 describes
the exact decay rate of a scalar time-invariant Caputo equation,
namely (n−α). Although the decay rate of linear fractional equa-
tions is polynomial, the rate of divergence is exponential as it is
shown in Theorem 6. From a dynamical systems point of view
Theorem 5 is surprising as it provides a polynomial lower bound
for the norm of differences between two different solutions of a
Caputo time-varying linear equation. In particular, this theorem
implies that the classical Lyapunov exponent defined by (38) is
not an appropriate tool for stability analysis of fractional equa-
tions. An appropriate modification of the definition of Lyapunov
exponents for discrete fractional equations is an important chal-
lenge of the theory of Lyapunov exponents. Such a proposition
was presented for the continous-time case in [16]. Finally, we
conjecture that Theorem 5 is also true for Riemann-Liouville
equations.
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B(n,k)(ϕC(k,x)−ϕC(k,y))

∥∥∥∥∥∥
≤ MKn−δλ M

n−α .

Note that δλ > α , (46) is proved and the proof is complete.

It is still an open question whether an analog result also holds
for Riemann-Liouville equations.

Whereas the results in Section 3 show that an asymptotically
stable solution of a scalar linear Caputo differential equations
decays to zero with a polynomial rate of convergence, the next
theorem shows that under certain assumptions a solution of
Riemann-Liouville equation, which tends to infinity, grows ex-
ponentially fast.

Theorem 6. Consider the time-invariant version of the
Riemann-Liouville difference equation (10)

(R-L∆α x)(n+1−α) = Ax(n) (n ∈ N),

with A ∈ Rd×d such that

det
(
I − z−1(1− z−1)−α A

)
= 0 (47)

does not have a complex solution z satisfying |z| = 1. If there
exists an x∗ ∈ Rd such that

limsup
n→∞

‖ϕR-L(n,x∗)‖= ∞,

then for every x0 ∈ Rd there exist q > 1 and M > 0 such that

‖ϕR-L(n,x0)‖ ≥ Mqn (for infinitely manyn ∈ N).

Proof. Consider the Riemann-Liouville equation (10) in the
form given by (18). By [21, Theorem 2(i) & (iii)] there exists a
solution z0 ∈ C of the equation (47) with |z0| > 1. Using (16),

the Z -transform ϕR-L(z,x0) of the solution ϕR-L(n,x0) takes the
form

ϕR-L(z,x0) =

(
z
(

1− 1
z

)α
I −A

)−1

z
(

1− 1
z

)α−1

x0.

A zero of (47) represents a singular point of ϕR-L(·,x0). It is
known that if f (z) is the Z -transform of a sequence f : N→R,
then its radius of convergence r is given by the distance of
the origin to an outermost (non-removable) singular point (see
e.g. [20, Chapter 6]). Hence, if there is a zero z0 with |z0| > 1,
then also the radius r of convergence of at least one component
ϕ i (·,x0) of ϕ (·,x0) satisfies r > 1. Using the Cauchy-Hadamard
theorem we have

r = limsup
n→∞

n
√
|ϕi (n,x0)|> 1

and the conclusion follows.

5. Conclusions

In this paper we investigated dynamic properties of discrete
fractional Caputo and Riemann-Liouville linear equations. For
multidimensional time-varying equations we presented equiv-
alent Volterra convolution equations for the Caputo and the
Riemann Liouville case (Theorem 1). Moreover, for Caputo
time-invariant equations we provide an explicit formula for the
solution (Theorem 3). The result given by Theorem 4 describes
the exact decay rate of a scalar time-invariant Caputo equation,
namely (n−α). Although the decay rate of linear fractional equa-
tions is polynomial, the rate of divergence is exponential as it is
shown in Theorem 6. From a dynamical systems point of view
Theorem 5 is surprising as it provides a polynomial lower bound
for the norm of differences between two different solutions of a
Caputo time-varying linear equation. In particular, this theorem
implies that the classical Lyapunov exponent defined by (38) is
not an appropriate tool for stability analysis of fractional equa-
tions. An appropriate modification of the definition of Lyapunov
exponents for discrete fractional equations is an important chal-
lenge of the theory of Lyapunov exponents. Such a proposition
was presented for the continous-time case in [16]. Finally, we
conjecture that Theorem 5 is also true for Riemann-Liouville
equations.
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theorem shows that under certain assumptions a solution of
Riemann-Liouville equation, which tends to infinity, grows ex-
ponentially fast.

Theorem 6. Consider the time-invariant version of the
Riemann-Liouville difference equation (10)

(R-L∆α x)(n+1−α) = Ax(n) (n ∈ N),

with A ∈ Rd×d such that

det
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= 0 (47)

does not have a complex solution z satisfying |z| = 1. If there
exists an x∗ ∈ Rd such that
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‖ϕR-L(n,x∗)‖= ∞,

then for every x0 ∈ Rd there exist q > 1 and M > 0 such that

‖ϕR-L(n,x0)‖ ≥ Mqn (for infinitely manyn ∈ N).

Proof. Consider the Riemann-Liouville equation (10) in the
form given by (18). By [21, Theorem 2(i) & (iii)] there exists a
solution z0 ∈ C of the equation (47) with |z0| > 1. Using (16),

the Z -transform ϕR-L(z,x0) of the solution ϕR-L(n,x0) takes the
form
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A zero of (47) represents a singular point of ϕR-L(·,x0). It is
known that if f (z) is the Z -transform of a sequence f : N→R,
then its radius of convergence r is given by the distance of
the origin to an outermost (non-removable) singular point (see
e.g. [20, Chapter 6]). Hence, if there is a zero z0 with |z0| > 1,
then also the radius r of convergence of at least one component
ϕ i (·,x0) of ϕ (·,x0) satisfies r > 1. Using the Cauchy-Hadamard
theorem we have

r = limsup
n→∞

n
√
|ϕi (n,x0)|> 1

and the conclusion follows.

5. Conclusions

In this paper we investigated dynamic properties of discrete
fractional Caputo and Riemann-Liouville linear equations. For
multidimensional time-varying equations we presented equiv-
alent Volterra convolution equations for the Caputo and the
Riemann Liouville case (Theorem 1). Moreover, for Caputo
time-invariant equations we provide an explicit formula for the
solution (Theorem 3). The result given by Theorem 4 describes
the exact decay rate of a scalar time-invariant Caputo equation,
namely (n−α). Although the decay rate of linear fractional equa-
tions is polynomial, the rate of divergence is exponential as it is
shown in Theorem 6. From a dynamical systems point of view
Theorem 5 is surprising as it provides a polynomial lower bound
for the norm of differences between two different solutions of a
Caputo time-varying linear equation. In particular, this theorem
implies that the classical Lyapunov exponent defined by (38) is
not an appropriate tool for stability analysis of fractional equa-
tions. An appropriate modification of the definition of Lyapunov
exponents for discrete fractional equations is an important chal-
lenge of the theory of Lyapunov exponents. Such a proposition
was presented for the continous-time case in [16]. Finally, we
conjecture that Theorem 5 is also true for Riemann-Liouville
equations.
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5.	 Conclusions

In this paper we investigated dynamic properties of discrete 
fractional Caputo and Riemann-Liouville linear equations. For 
multidimensional time-varying equations we presented equiv-
alent Volterra convolution equations for the Caputo and the 
Riemann Liouville case (Theorem 1). Moreover, for Caputo 
time-invariant equations we provide an explicit formula for 
the solution (Theorem 3). The result given by Theorem 4 
describes the exact decay rate of a scalar time-invariant 
Caputo equation, namely (n–α). Although the decay rate of 
linear fractional equations is polynomial, the rate of diver-
gence is exponential as it is shown in Theorem 6. From a 
dynamical systems point of view Theorem 5 is surprising as 
it provides a polynomial lower bound for the norm of differ-
ences between two different solutions of a Caputo time-vary-
ing linear equation. In particular, this theorem implies that 
the classical Lyapunov exponent defined by (38) is not an 
appropriate tool for stability analysis of fractional equations. 
An appropriate modification of the definition of Lyapunov 
exponents for discrete fractional equations is an important 
challenge of the theory of Lyapunov exponents. Such a prop-
osition was presented for the continous-time case in [16]. 
Finally, we conjecture that Theorem 5 is also true for Rie-
mann-Liouville equations.
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