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Small time local controllability of driftless
nonholonomic systems in a task-space
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In this paper a small time local controllability, naturally defined in a configuration space,
is transferred into a task-space. It was given its analytical characterization and practical impli-
cations. A special attention was put on singular configurations. Theoretical considerations were
illustrated with two calculation examples. An extensive comparison of the proposed construction
with the controllability defined in an endogenous configuration space approach was presented
pointing out to their advantages and disadvantages.
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1. Introduction

Controllability [10] is a desired feature of any controlled system. It states
that there exist admissible controls to steer a system between any two points in
a configuration space. In this paper, being an extended version of the conference
paper [5], a sub-class of systems described by continuous ordinary differential
equations will be considered, namely driftless nonholonomic ones. Those sys-
tems appear frequently in robotics at the kinematic level and include models
of wheeled mobile robots [4], free-floating space robots [3], and also special
manipulators — nonholonomic ones [12]. For driftless nonholonomic systems, a
stronger version of controllability is defined, namely a small time local control-
lability (abbreviated as STLC). Later on this type of controllability will be called
Q-STLC as it is defined in a configuration space Q. Q-STLC is defined around
any configuration (locally), but, contrary to the global controllability, guarantees
not only a possibility to reach any configuration in its neighborhood but also to
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control a volume of the maneuver. It means that reaching a close point requires
only small displacements in space. This feature is especially important when
configurations of nonholonomic systems are constrained due to obstacles, i.e.
there exist inaccessible areas in the configuration space. It should be pointed out
that approaching towards any point is a direct consequence of ability to generate
any direction of motion with controls. Therefore a primary space to deal with is
a space of velocities (directions) rather than a positional space.

In many practical cases not all coordinates of a configuration vector are
important from the perspective of a task to be solved. For example, to plan a
motion of a wheeled mobile robot positions of its wheels are not particularly
important although the positions influence the model of the robot. Sometimes,
however, they should be known when odometry is used as a control strategy in
a robot navigation [1]. Therefore a map between a configuration space Q and
a task-space X is introduced. Frequently, a dimension of the task-space is smaller
than a dimension of the configuration space.

In this paper it will be shown how to transfer Q-STLC to the task-space (X-
STLC) based on some Lie-algebraic constructions and a generalized Campbell-
Baker-Hausdorff-Dynkin formula, gCBHD [13]. It will be explained how to
reliably select a minimal set of controls preserving X-STLC. As a side-effect of
this construction singularities due to the mapping are considered.

The paper is organized as follows: in Section 2 mathematical preliminaries
are introduced necessary to recall Q-STLC. In Section 3 Q-STLC is transferred
into the task-space and singularities of the mapping are defined and discussed.
Section 4 includes some illustrative computational examples. In Section 5 the
proposed X-STLC is compared with controllability offered by the endogenous
configuration space approach [14]. Section 6 concludes the paper.

2. Q-STLC preliminaries

Driftless nonholonomic systems are described by the equation

g=G(qu= ) gi@u, (1)

i=1

where q is a configuration, dim Q = n, u are controls (at kinematic level having
an interpretation of velocities), dimu = m < n; g;(q) are C* vector fields
called generators of system (1). Algebraically Q-STLC is described by Chow’s
theorem [2]

Vg €Q rank(LAG(@))) = n, )

which states that the Lie algebra LA spanned by generators, i.e. columns of the
matrix G(q), is of the full rank at any configuration. The Lie algebra is constructed
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by an iterative application of the Lie bracket operation. The Lie bracket produces
a new vector field from two vector fields according to the formula

[A,B] = %A - %B. 3)
dqg  dq
The iterative procedure is initialized with generators and follows with previously
generated vector fields. To each vector field generated with this procedure a degree
can be assigned and equal to the number of generators appearing in a symbolic
description of the vector field (alternatively and equivalently: a number of Lie
bracket operations used to generate a given vector field plus one). Vector fields
sharing the same i-th degree are grouped into the i-th layer of vector fields. Not
all vector fields generated with this procedure are independent as for any A, B, C
the Lie bracket satisfies the following properties

1) the anti-symmetry [B, A] = —[A, B],
2) the Jacobi identity [A, [B,C]] + [C, [A, B]] + [B, [C,A]] = 0.

In order to avoid the redundancy in vector fields, and not to lose any desired
properties, instead of using the Lie algebra LA in Eq. (2), it is advised to exploit
its basis. There are at least three such bases due to Lyndon, Chibrikov, and Ph.
Hall. The last one will be used in this paper [7]. Processing the basis simplifies
also analytical and numerical computations of ranks of some matrices as the
matrices become smaller in their sizes.

It should be noted that vector fields have got an interpretation of velocities
(when scaled with controls) as they impact the velocity g thus show possible
directions of motion. Therefore the Q-STLC can be re-read as a possibility to
move the configuration in any direction at any configuration.

The considered systems are nonholonomic ones. For the systems, this prop-
erty is decided by a construction of a small flag of distribution D¢ spanned by
generators of system (1). Next distributions are generated iteratively according to
the rule

Di.1=D;®[DyD;], i=0,1,..., (@)

where the Lie bracket of distributions should be interpreted as a set of Lie brackets
composed from any pair of vector fields, when the first/second one belongs to the
first/second distribution. At a given configuration g, to each distribution its rank
can be assigned

dimD;(g) = f2(g), i=01,... (5)
which is algebraically checked as a rank of the matrix with columns formed with
vector fields spanning a given distribution and evaluated at a given configuration.

A vector composed of fl.Q (q@),i = 1,...iscalled a growth vector at the configura-
tion g. When the vector does not depend on configuration (is constant), it is just
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a growth vector. The minimal s for which f SQ (@) = n is a nonholonomy degree
at g, and when s does depend on g — a nonholonomy degree. With these notations
introduced, we are in a position to define nonholonomic system as a system for
which degree of a certain distribution reaches the dimension of the configuration
space

VgeQ Is  dimD,(9) = f(g) =n. (6)
When the condition (6) is not satisfied, a system is holonomic and can be steered
within a lower dimensional sub-space of the configuration space. It can be noticed
that the distribution D; is composed of vector fields with degrees up to the (i + 1)-
st, inclusively.

A practical procedure to calculate a rank of a distribution at a given configu-
ration is to generate appropriate vector fields, check whether the generated vector
field is linearly dependent on previously considered. If so, it is excluded imme-
diately, otherwise it is added to the set generated. After each addition, the rank
condition (2) is checked. The rank may either grow by one or remain the same. In
the second case, the just added vector field (an appropriate example will be given
later on) can not be expressed as a linear combination of its predecessors but as
a vector (vector field evaluated at a given configuration) becomes dependent on
vectors obtained from the previously generated vector fields. Almost the same
procedure applies while checking Q-STLC:

Step 1 The initial matrix used to check Q-STLC (it is referred to as a Q-matrix)
is composed of columns of the matrix G(q) from Eq. (1), i.e. degree one
vector fields which belong to layer i = 1.

Step 2 A layer number is increased i < i + 1 and using the Lie bracket new
vector fields are generated that belong to the i-th layer and to the Ph. Hall
basis as well.

Step 3 If the new vector field does not depend on previously generated, it is
added to the Q-matrix as its new column.

Step 4 The rank condition of the Q-matrix is determined.

Step 5 The procedure is completed when either the rank of the Q-matrix attains
the dimension of the configuration space or it is known that it can not be
reached (when none of vector fields from the i-th layer has not been added
to the Q-matrix).

A sub-matrix of the Q-matrix composed of vector fields up to the i-th degree is

denoted as FiQ (g) and its rank at a given configuration q is equal to fiQ (q). For
example, the very first elements of the Ph. Hall basis for the system (1) spanned
by two generators g1, g» are the following

H={g1. 82 [81.82] 81, [81.82]]. [82. [g1.82]], .- .}.
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After evaluation at g, to compute the rank f IQ (9), it is necessary to take first two
elements, to determine fZQ (q) — three, and f3Q (q) — five elements, etc.

3. X-STLC

Now we are in a position to extend the concepts introduced in the Q-space to
a task-space. The model (1) described by differential equations is supplemented
with a static output function

x=k(g), dimX)=r<n, (7)

mapping a configuration into a point within the task-space X. Vector fields col-
lected in the matrix G(q), cf. Eq. (1), interpreted as velocities, are transferred
into the tasks-space via Jacobian J = dk/dq matrix of the output function

x:au@

3q q=J(q)q =J(q)G(q)u. 8)

Analogously to presented constructions in the configuration space, Q, matrices
F ZX (@) and their ranks fl.X at configuration g are defined in the task-space as
follow

FX(q)=J(q) - F%(q). f*(@) =rank(FX(g)), i=1,.... 9)

Now, it is easy to define that the system (1), (7) is X-STLC at the configuration g
if only

Ap(@ eN:  fi@=r (10)

and to formulate an analogon of the Chow’s theorem in the task-space: the system
given by Eqns. (1), (7) is X-STLC if only it is X-STLC at any configuration
q € Q. Obviously, the natural number p, if only exists, should be minimal and
may depend on g. Its maximal/minimal value is called maximal/minimal X-layer

Pmax = maXﬁ(q), Pmin = minﬁ(‘l)- (11)
q<Q q<Q

In a typical case

Pmax — Pmin = 1.
From a theoretical standpoint, an interesting question can be posed whether there
exist degenerated systems with the difference higher than one. If pnax = Pmin = P,
then p is called a nonholonomy degree in the task-space by analogy to the
term defined in the configuration space (this name is slightly unfortunate as
the nonholonomy is originally defined in Q-space and is tightly related with
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differential equations but in the X-space it is only mirrored from the Q-space via
Jacobian matrix J(q) in Eq. (8)) into the X-space.

It is worth of noticing that for any (controllability) property defined in the
task-space, the evaluation of vector fields is still performed at a given g in the
configuration space and then the velocity is moved into the point x = k(q)
via Jacobian of the output mapping. Theoretically, there exist two possibilities
to release dependence of properties in the X-space from the Q-space. The first
(weak) one requires to find any configuration g* where the property is satisfied
at x* € X and k(g*) = x*. The second (strong) one rely on finding a sub-space
{q : k(g) = x*} = Q C Q and a given property has to be satisfied at any
configuration in the sub-space. None of the two approaches is universal and the
second one is particularly difficult to check.

3.1. Singular configurations

Let us start with recalling some terms and definitions valid for stationary
manipulators. A manipulator is described by its forward kinematics and the
Jacobian matrix

x=k(q), J(g) =0k/dq, (12)
with dim X = r. At singular configurations of manipulators, a motion at some
directions is impossible. Algebraically, it means that a rank of the Jacobian matrix
J(q) of forward kinematics is smaller than the maximal attainable (equal to the
dimension of the task-space) [15]. Equivalently, a rank of the manipulability
matrix [11]

M(q) = I (@) (13)

is smaller than r. For nonholonomic systems, this interpretation of singulari-
ties in the Lie-algebraic setting can not be applied directly as there are only m
generators-directions of motion so without maneuvering the system can move
within the space spanr{gi,...,8&mn} which is clearly only a sub-space of n di-
mensional space. Consequently, according to the definition of singularities valid
for manipulators, any configuration would be singular. A motion in directions
outside the sub-space is realized as a net-motion composed of some elementary
sub-motions. Therefore, for nonholonomic systems a new definition of singular
configurations is required which covers not only those directions directly re-
alizable but also those produced as a net motion. Consequently, at a singular
configuration g (corresponding to the output function (7)), the rank of matrix in
definition (9) is not maximal possible

M) <r, i=12.... (14)

It is known from the matrix analysis [9] that

rank(J(g) - F2(¢)) < min (rank(J(g)). rank(FZ(g))) . (15)
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By definition, the considered system (1) is nonholonomic one thus, for some p*,
the matrix Ml% (q) is of the full rank and

rank(J(q) - F[% (q)) = rank(J(q)). (16)

There are two consequences of (16):

1) nonholonomic systems (1) do not introduce singular configurations, thus
all singular configurations are due to singularity of mapping (7),

2) the system (1), (7) not always is X-STLC, even when the system (1) is
Q-STLC. However, it is X-STLC in all non-singular configurations of map-

ping (7).

For some special, but practical, forms of mapping (7) (known as projections,
i.e. a proper (r < n) subset of coordinates g is selected), the Jacobian matrix
J(q) is constant and of the full rank. For this sub-class of output functions,
according to (10), (16), Q-STLC implies X-STLC, and the matrix F lX (q) is

composed of selected rows of the matrix F IQ (q). Similarly to manipulators, also in
systems (1), (7) singularities can be derived via mobility matrices (corresponding
to manipulability matrix (7) but obtained for mobile robots)

MPq) =F°@F°@@)". MI@=J@M@I @. 17
3.2. Realization of vector fields with controls

The previous considerations dealt with some vector fields and ranks of ma-
trices composed of the vector fields without taking into account how they should
be produced with real controls. An appropriate tool relating controls with vector
fields is the (generalized) Campbell-Baker-Hausfdorff-Dynkin formula [13]. At
a given configuration g, the formula maps controls into a series of infinitesimal
displacements (thus velocities) in a configuration space expressed as a linear
combination of vector (vector fields evaluated at g) with control dependent coef-
ficients, cf. Fig. 1. A standard method used in the Lie algebraic motion planning

3

P—2*,U q\@ > Q LN

~~gOBHD
Ag=>", gi(q)cv;(u)

Figure 1: Spaces and transformations among them.
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in a configuration space to avoid an infinite dimensional space of controls is to
select a fixed basis (polynomials or harmonic functions are the most popular)
¢ (t) in the space of controls, and select a finite representation of controls within
this basis

pijdi(t), i=1...,m (18)
j=1

K;
u;(t) =
Coeflicients p; ; are determined based on a required direction of motion at a given
configuration. In order to reduce computational complexity of this task, values
of K; should be relatively small, but large enough not to lose controllability [6].
It is known that the higher layer is required to satisfy condition (6), the more
numerous representation of controls should be. From the gCBHD formula [7] it
follows that vector fields that belong to the same layer are qualitatively the same
as controls generating them are uniform with respect to degree of vector field
generated. In practice of motion planning with Lie algebraic methods, it means
that even a vector field is not required to a satisfy controllability condition, still it
should be taken into account while generating a desired motion, if only any other
vector field with the same degree was actively involved in checking the Q-STLC
condition. The meaning of previously defined maximal/minimal X-layer relies
on their relationship with controls required to generate a motion of system (1).
Transferring actions of controls from the configuration space into the (lower
dimensional, r < n) task-space gives a theoretical chance to decrease the number
of coeflicients to describe controls, cf. Eq. (18) comparing to the number required
to steer a system within its configuration space Q.

4. Computational examples

Let us consider two input driftless nonholonomic system (1), m = 2, with
harmonic controls represented as

u1(t) = ay + ap sin(wt) + asz cos(wt),
(19)
uy(t) = by + by sin(wt) + b3 cos(wt),

where 7' is a small time of motion and w = 2x/T represents the basis fre-
quency. The vector of coefficients parameterizing control is equal to p =
(ay, as, az, by, by, b3)T. Applying the gCBHD formula, one gets

Aq = [8182 (81.82]1(81.(81.8211 (82, [81,82]]-~-] [Cnaz @3 a4 as--~]T (20)
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and for controls (19) dominant (for small 7) coefficients @ are the following
ay = ay, s = by,
a3 = (2a2b1 = 2a1bz + azby — axb3) /(47),
4 = {+a2br(=3a1+2a3)+a3(3b1-2b3) +(4a1~a3) (a1bs—azb1)}/(167%),
s = {—azba(=3b1+2b3)—b5(3a1-2a3)+(4b1—b3) (arbs—azb1)}/(167%).

1)

From a practical point of view, an interesting question to answer is how to select
controls in the parametric form (19). It is known that their number should be
equal to n at least, and the mapping p — Agq, based on (20), (21) should be
surjective. Under those circumstances there is a possibility to generate any Ag
with appropriate values of p. Thus, the case when representation of u;(t) is
numerous (more than n coefficients) while the other control is equal to zero
should be excluded.

From a numerical point of view, the vector p should be relatively short
but long enough not to lose controllability. The procedure of selecting a vector
parameterizing controls is performed in off-line mode and it is possible to evaluate
many sets of parameters starting from those less numerous. Later on, only minimal
sets of parameters required to get X-STLC for some output functions are of
interest.

In the first example the simplest wheeled mobile robot — the unicycle, Fig. 2a,
is considered with the configuration ¢ = (g1, g2, ¢3)7 = (x, y,0)" and generators
equal to

g1 = (cos(q3), sin(g3), 0)7, g2 =1(0,0, .

The vector fields g1, 8> supplemented with [g1,g2] = (sin(g3), —cos(g3),0)T
satisfy the Q-STLC condition and nonholonomy of the system. For a trivial
output function k(q) = g3 the first layer of vector fields is enough to satisfy
X-STLC, thus p = 1. Moreover, a minimal set of controls generating motion in
any direction in the X-spaceis p = (b1)” . For the output function k(q) = (g1, )7,
more vector fields are required. In this case g1, g2, [g1, 2] satisfy X-STLC for

Figure 2: Unicycle (a) kinematic car (b) with coordinates defined.
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any q € Q, thus p = 2. Vectors of coeflicients of controls for motions in different
directions follow

p = (a1, b, b)" when a; # 0,
p = (a, b, a)” when by # 0, (22)
p = (a2, b3)" or p= (a3, b)" when by =a;=0.

Itappears (22) that there exist three minimal sets of parameters generating locally a
motion in any direction. In regions of the configuration space requiring a; ~ by ~
0, the first two sets in (22) are admissible, but amplitudes of controls are likely to be
very high and practically unrealizable. Therefore, a small redundancy is advised
in selection of parameters of controls. For the output function k(q) = (g1, ¢3)7,
vector fields g1, g2 are enough to satisfy X-STLC for ¢ # /24 kn, and inside the
region one more vector field [g1, g2] is required as pmin = 1 and pmax = 2. When
the output function is in the form k(g) = (g1 cos(g3) + g2 sin(g3), ¢3)7 (with
a non-singular Jacobian matrix everywhere), then pyin = pmax = p = 1 and a
single layer of vector fields is enough to satisfy X-STLC. From the aforementioned
examples, it can be concluded that there is no single minimal set of parameters
of controls to satisfy X-STLC at any configuration g.

The second example of system (1) is a kinematic car, Fig. 2b, with configura-
tion ¢ = (g1, g2, ¢3, q4)" = (x,y,6,¢)T and generators

g1(q) = (Lcyea, Lsscs, 51,0)7,  g2(q) = (0,0,0,1)7,

where ¢; = cos(g;), s; = sin(g;), and L denotes the distance between front and
rear axle of the car; it is assumed that L = 1. After computing necessary Lie
brackets (the first and the last column are present just to improve readability)

matrix F g (q) is obtained

[ g1 &2 [81.82] (81,181,821 (82,181, 82]]
czeq 0 384 —53 Cc3C4 X
F?(4)= s3cs 0 5354 3 53C4 y (23)
S4 0 —C4 0 S4 0
0 1 0 0 0o ¢

The determinant of the sub-matrix composed of the first four columns is constant
thus vector fields g1, g2, [g1.82], (81, [g1, &2]] satisfy the Q-STLC condition and
the vector field (g2, [g1,82]] = g1 depends on the other everywhere so it is
useless. Any triple of coordinates selected from among g as an output function
does not satisfy X-STLC, when associated with the first three vector fields (i.e.

F 2Q (q9)). Consequently, in order to satisfy X-STLC the vector field [g1, (g1, &2]]
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should be also used and the number of parameters of controls to satisfy Q-
STLC and X-STLC is exactly the same. When the output function belongs to the
family k(q) = (£(g3. g4){q1 cos(g3) + qasin(g3)}, 43, 3. g4)" with & € C! and
Vg3, qa & # 0, then p = 2 an two layers of vector fields are enough to satisfy
X-STLC but they do not satisfy Q-STLC.

5. Comparison with the endogenous configuration space approach

An endogenous configuration space method (ECSM) [14] is applicable to
a wider class of system (1) (with an uncontrolled drift go(q) added to the right
hand side of the equation) than Lie-algebraic method (LAM). All further consid-
erations are taken on a fixed time interval [0, 7] [14]. For given (initially assumed)
controls #(-) and a given initial g, a linear approximation along the trajectory
initialized at g¢ and corresponding to controls u(-) is performed. Thus Eq. (1) is
transformed into [14]

E=AME+B(MY, n=CQH¥¢, (24)

where v(-) is a small variation of controls, i is a small displacement variation in
the output space and the time-dependent matrices are the following

0G (q(1))u(r) _ 9G(g()u() ok(q(1))

AW = 0q ou 0q

B(1) =G(g), C(t) = , (25)
where the fundamental matrix ®(z, s) is the solution of differential equation with

the identity initial condition [8]

oP(t, s)
ot

Here one can see the first but the most important difference between LAM and
ECSM as names and interpretations of spaces differ. In the former: a configuration
space is Q and the input space U while in the latter: a configuration space is U
and Q serves as a space where actions of controls are primarily observed. As a
consequence, the configuration space is finite dimensional (= n) in the former
case, and infinite dimensional in the latter one.

Controls u(-) applied on time horizon [0, 7] to system (1) initialized at gqq
attain a point g(7"). Around that point, a displacement in the Q-space due to
controls v(-) is equal to [14]

= A()D(t, 5), O(s,s)=1,. (26)

T
n(T)=C(T) fd)(T, S)B(s)v(s)ds, 27)
s=0
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and singular configurations are determined based on the mobility matrix

T
MY(T) = f ®(T, s)B(s)B! (s)®' (T, s)ds (28)
s=0
mapped into the output space

MX(T) =T MY (T)CT(T). (29)

Singular configurations (i.e. controls) appear when the rank of the matrix M (T’)
drops below the maximal available value equal to r. Now another difference is
visible: in LAM singularity is considered around go while in ECSM around g (7).
However, in both cases a singularity means a rank deficit and inability to move
along some directions. Moreover, both methods take advantage from the theory
developed for manipulators, cf. Eq. (13), (17), (28), (29). In ECSM controls-
configurations u(-) = 0 are always singular and other singular configurations can
be computed numerically only as ®(7, s) can not be computed analytically for
almost any practical system. In LAM singular configurations are given by analytic
expressions. There are also other differences between ECSM and LAM, mainly
due to implementation issues, that are collected in Table 1. From a practical
point of view, both methods, LAM and ECSM, are useful in motion planning of
driftless nonholonomic systems.

Table 1: Lie-algebraic method vs. the endogenous configuration space method — the
comparison.

Factor Methods
LAM ECSM
input space u -
configuration space
transfer space -
output space X x
time of motion 7 > 0 small any
singularities analytic numeric
range of planning local global
controls usually parameterized parameterized
continuity of controls no yes
motion controlled around q0 q(T)
computational complexity low heavy
controlling localization of a trajectory easy difficult
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6. Conclusions

In this paper some objects and terms related with a small time local con-
trollability, known from the Lie algebraic method of motion planning applied in
a configuration space, have been transferred into a task-space via output function
and its Jacobian. The output function can introduce some singularities whose na-
ture is quite different than singularities of stationary manipulators. Nevertheless,
singularities denote that an infinitesimal motion in some directions is impossible
to realize. It appears that the only source of singularities in this setting is the
output function when the rank of its Jacobian matrix is smaller than maximal
possible. A practical aspect of introducing the task space with a smaller dimen-
sion than the configuration space is the possibility to decrease the number of
parameters of controls required to satisfy small time local controllability condi-
tion. An important observation made is that there is no one universal minimal
parameter setting for controls to satisfy the condition at any point. Therefore,
while using Lie-algebraic methods of motion planning it is advised to switch
among a few parameterizations depending on a current configuration. It appears
that the presented Lie-algebraic construction has got a lot in common with the
endogenous configuration space method but interpretations of some space differ
substantially the methods.
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