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Abstract
Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of
antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires
numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a
computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification
of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures.
The algorithm is based on sparse updates of antenna sensitivities involving various methods that include
the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent
acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various
numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas
delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference
algorithm. Experimental validation is also provided.
Keywords: antenna design, design closure, EM-driven optimization, gradient search, sensitivity update.
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1. Introduction

Design of antenna structures is a multi-stage process. One of its steps is the development
of antenna topology, normally dictated by a combination of performance specifications imposed
upon the system (e.g., wideband [1], multi-band [2]), particular functionalities to be implemented
(e.g., circular polarization [3], band notches [4], MIMO [5], etc.), and constraints (e.g., maximum
allowed footprint area [6]). The last stage is a design closure, i.e., adjustment of antenna parame-
ters, aimed at improving its performance figures. The role of this stage has been increasing over
the years because traditional design methods (e.g., involving the low-level antenna theory [7]) are
not applicable to majority of contemporary structures due to their geometrical complexity. A good
example are compact antennas, reliable evaluation of which require full-wave electromagnetic
(EM) analysis to account for the coupling effects between tightly arranged components [8, 9].
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S. Kozieł, A. Pietrenko-Dąbrowska: REDUCED-COST DESIGN CLOSURE OF ANTENNAS BY MEANS . . .

Conventional design closure approaches, mostly experience-driven parameter sweeping, are
still widely used in antenna community; however, their relevance has been declining for several
reasons. These include the need for handling highly-dimensional parameter spaces, multiple
performance figures and constraints [10]. Neither can be effectively controlled by varying one or
two parameters at a time. Rigorous numerical optimization is a much more reliable approach [11,
12], yet it is challenging primarily due to its high cost, especially when global search is required
[13, 14]. Among various methods developed to address this issue, making use of adjoined
sensitivities [15] (local optimization), machine learning techniques [16] (global optimization),
and surrogate-assisted methods [17], seems to be the most promising. The last group of techniques
has been attracting much attention recently which is due to an impressive computational speedup
that can be achieved when the algorithm is properly tailored to the design problem at hand.
The primary acceleration factor here is a surrogate model, a fast representation of the structure
under design, which can be constructed as a data-driven (approximation) model (e.g., kriging
[18], Gaussian process regression [19]) or physics-based one (space mapping [20], adaptive
response scaling [21], manifold mapping [22], feature-based optimization [23]) or a combination
of them [24]. It should be noted that – due to the lack of alternatives – physics-based models
of antennas are normally developed from coarse-mesh EM simulations [17]. As a consequence,
reducing the number of EM analyses during the surrogate model optimization is just as important
as for direct optimization.

In this paper, a novel variation of the trust-region gradient search algorithm is proposed
that aims at expediting the (local) optimization process of antennas. The procedure can be used
for direct optimization of high-fidelity EM models or within the surrogate-assisted procedures
involving variable-fidelity simulations. The proposed approach is based on sparse updates of
antenna sensitivities involving several mechanisms that include the rank-one Broyden formula
applied to selected columns of the Jacobian matrix, as well as adaptive schemes that con-
trol the balance between the various sensitivity updating means. These are dependent on both
the algorithm convergence status (to achieve additional speedup when close to algorithm ter-
mination), and search space dimensionality (to facilitate adjustment of the algorithm control
parameters for antenna structures described by various numbers of parameters). The presented
methodology is demonstrated using a benchmark set of three antennas. The obtained com-
putational savings are up to sixty percent as compared with the reference algorithm. More
importantly, the algorithm performance is consistent with respect to the initial design as indi-
cated through statistical analysis. Experimental validation of selected optimized designs is also
provided.

2. Benchmark antennas and design-closure task

The optimization algorithm proposed in this paper will be validated using several wideband
antenna structures shown in Fig. 1. All antennas are implemented on RO4350 substrate (εr = 3.48,
h = 0.762 mm). Antenna I ([25], Fig. 1a) is a uniplanar dual-band dipole fed by a coplanar
waveguide (CPW). The variables are: x = [l1 l2 l3 w1 w2 w3]T , whereas l0 = 30, w0 = 3,
s0 = 0.18 and o = 5 are fixed (all dimensions in mm). Antenna II ([26], Fig. 1b) is a wideband
structure described by x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]T . Finally, Antenna III (Fig. 1c),
based on the structure of [27], involves 13 design variables x = [L0 L1 L2 L dL Lg w1 w2 w dw
Lswsc]T . The computational models are implemented in CST Microwave Studio and evaluated
using its transient solver. For all antennas, the models incorporate the SMA connectors. The
structures have been selected to analyse the algorithm performance in search spaces of various
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dimensionalities. Antenna I is supposed to operate at the centre frequencies of 3 GHz and
5.5 GHz with 8-percent fractional bandwidth. Antennas II and III operate in UWB frequency
range (3.1 GHz to 10.6 GHz).

a)

b)

c)

Fig. 1. Antenna structures used for benchmark purposes: a) Antenna I [25]; b) Antenna II [26]; c) Antenna III [27].
Ground plane is marked with light grey shade.

The design closure problem is formulated as a minimization task of the form:

x∗ = arg min
x

U (R(x)), (1)

where U is an objective function, and R(x) represents the EM-simulated antenna response.
Clearly, a particular definition of the objective function depends on the selected performance

figures of interest but also on the imposed design constraints. Here, two types of problems are
considered. The first one (for Antennas I through III) is the minimization of the maximum in-band
reflection |S11(x, f )|( f stands for frequency). Consequently, we have:

U (R(x)) = max
f ∈F
|S11(x, f ) |, (2)

in which F is the frequency range of interest. Note that the problem (1), (2) is formulated in a
minimax sense.

The second type of problem is the maximization of the average in-band gain G(x) while
maintaining S(x) ≤ −10 dB, where S(x) is the maximum in-band reflection. For this problem
(considered for Antenna I), the following objective is used:

U (R(x)) = −G(x) + γmax
{
(S(x) + 10)/10, 0

}2. (3)

Here, the primary objective is the negative average gain, whereas the second part of (3) is
a penalty term enforcing satisfaction of the reflection constraint; γ = 10 is a penalty coefficient
with the value selected to ensure noticeable contribution of a penalty term if a violation of the
constraint exceeds a fraction of dB. In the case of multiple objectives, a common practice is to
select a primary objective and cast others into constraints that can be handled implicitly with
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the use of penalty functions. The choice of a penalty coefficient value is of certain importance.
Adopting too small a value of γ would lead to yielding an infeasible design (from the point of
view of the reflection constraint). If γ value is too high, the steepness of the objective function
in the vicinity of the feasible region boundary would lead to problems related to the numerical
noise inherent to EM simulation results, thus often resulting in premature algorithm termination
(e.g., due to the reduction of the trust region size).

3. Optimization routine: local gradient search with restricted sensitivity updates

In this section, we outline the reference trust-region (TR) algorithm, as well as present the
concept and implementation of the proposed procedure based on sparse updates of antenna
sensitivities. The conventional TR embedded gradient-search algorithm [28] is a suitable method
for solving (1) with the objective function described either by (2) or (3) and evaluated through
EM analysis with a certain level of numerical noise incorporated. In each iteration of the TR
algorithm, an approximation x(i) , i = 0, 1, . . . , to the optimum design x∗ is obtained by solving:

x(i+1) = arg min
x; −d(i)≤x−x(i)≤d(i)

U (L(i) (x)), (4)

where a linear approximation L(i) (x) = R(x(i)) + JR(x(i)) · (x − x(i)) of R at x(i) is adopted. The
TR region size vector is denoted by d(i) , and its components are proportional to the parameter
ranges. This is to address the issue of significantly different ranges of parameters, a situation
commonly occurring in antenna design. In fact, the transmission line component widths and
spaces between the lines are typically fractions of millimetres, whereas the transmission line
lengths or the dimensions of the substrate/ground planes reach up to tens of millimetres [15].
Thus, a hypercube-like search region, defined as −d(i) ≤ x − x(i) ≤ d(i) with the inequalities
understood component-wise, is used, instead of an Euclidean ball ∥x − x(i) ∥ ≤ d (i) usually
employed by the TR algorithms. Establishing the initial size vector proportional to the design
space sizes enables to treat in a similar way the variables of considerably different ranges. This
makes possible avoiding variable scaling, otherwise necessary to ensure that the parameters are
of comparable magnitude, which is required for the trust-region algorithm to converge [28]. The
TR region size is adjusted complying with the standard rules.

Usually, the Jacobian JR is estimated through finite differentiation (FD), hence additional
n EM analyses per algorithm iteration are performed (n stands for the number of the design
parameters). Applying the Broyden formula, which does not require performing any additional
EM analyses, permits to avoid this cost. The proposed algorithm adopts a sparse scheme of
Jacobian updates based on the rank-one Broyden formula (BF) [29]:

J(i+1)
R = J(i)

R +

(
f (i+1) − J(i)

R · h
(i+1)

)
· h(i+1)T

h(i+1)T h(i+1)
, (5)

where f (i+1) = R(x(i+1)) −R(x(i)), and h(i+1) = x(i+1) − x(i) describes design relocation between
subsequent iterations. The alignment between the design relocation direction h(i+1) and the
coordinate system axes are used to select the Jacobian columns that are to be updated with BF
(cf. 5). Here, the alignment threshold value is associated both with the dimensionality of the
design space, as well as with the algorithm convergence status measured by the TR region size.
The details of the adopted procedure are described below.
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In the first iteration, the initial estimate of the Jacobian JR is obtained entirely with FD. In
the next iterations, however, for each parameter k = 1, . . . , n, the choice between FD and BF
is made depending on a binary selection vector r(i) = [r (i)

1 . . . r (i)
n ]T . The FD is performed if

r (i)
k
= 1, while r (i)

k
= 0 indicates the use of BF. The Jacobian matrix JR incorporates columns Jk

calculated either with FD or BF, where Jk = ∂R/∂xk denotes the antenna response sensitivities
with respect to the k-th parameter.

In each iteration, a candidate design xtmp is obtained by solving (4) and ρ = (U (R(xtmp) −
U (R(x(i))/(L(i) (xtmp) − L(i) (x(i))) i.e., the gain ratio, is calculated. The selection vector r(i+1)

for the next iteration is subsequently altered. In the case of a successful iteration (ρ > 0), the
candidate design xtmp is accepted. Let us denote as e(k) = [0 . . . 0 1 0 . . . 0]T (with 1 on the
k-th position) the standard basis vectors. The following alignment factors are defined:

φ(i+1)
k
=
���h(i+1)T e(k) ��� / 


h(i+1)


 . (6)

The entries of the selection vector r(i+1) are inferred from the factors as follows: r (i+1)
k

= 0, if
φ(i+1)
k

is above a user-specified threshold value 0 ≤ φmin ≤ 1, otherwise r (i+1)
k

= 1. The alignment
threshold is a control parameter of the algorithm and regulates the use of BF: the greater its value,
the more frequently FD is performed. At the same time, a design of a better quality might be
obtained. On the other hand, lowering the value of φmin enables to achieve higher computational
savings. It is noteworthy, that the alignment factor φ(i+1)

k
is equal to 1 if the design relocation

vector h(i+1) and e(k) are co-linear, whereas φ(i+1)
k
= 0 if they are orthogonal.

As the algorithm converges, the alignment acceptance threshold is adaptively reduced, making
possible more frequent replacement of FD by BF. In consequence, a further decrease of the
number of EM simulations required to obtain the optimum design is achieved. In the course of
the optimization process, the algorithm convergence is described by diminishing TR region size
δ(i+1) = ∥d(i+1) ∥. If it becomes smaller than a user-defined value δ0, φ starts to decrease according
to the following formula:

φ = φmin
((

log
(


δ(i+1)


 /ε)) / (

log (∥δ0∥ /ε)
))
, (7)

where ε stands for the termination threshold for convergence in argument (∥x(i+1)−x(i) ∥<ε). Re-
duction of φ leads to a less stringent condition for using BF and encourages higher computational
savings. A remark should be made that the particular form of (7) ensures that as the TR region
size approaches ε, φ approaches 0. Hence, it enables even more frequent use of the BF close to
the algorithm termination.

The case of a rejected iteration should also be discussed. If it was unsuccessful, i.e., ρ < 0,
the candidate design xtmp is discarded, however, prior to the rejection, it is used to guide the
optimization process by enhancing the Jacobian JR [29]. First, the temporary estimate of the
Jacobian JR(xtmp) is obtained solely using BF. Then, temporary decision factors φ(i)

k
are calculated

for each antenna parameter: if a given factor φk > φmin, the respective column of temporary
Jacobian Jk (xtmp) is substituted for the corresponding column of Jk (x(i−1)) from the previous
iteration.

In this paper, the acceptance threshold φ value is associated with the design space dimension-
ality, which is a way of making the adjustment of the algorithm control parameters dimensionality-
independent. Instead of appointing a specific threshold value, we assign a value for which the
expected percentage of Jacobian columns would be updated using BF. In order to do so, a statis-
tical analysis is necessary for any given dimensionality n. The acceptance threshold φp for which
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the expected percentage p [%] directions will be updated using (4) is calculated as:

φp = arg min
φ

�������
p

100
− N−1

p

Np∑
j=1

n∑
k=1

⌈
β j.k − φ

⌉������� , (8)

where Np denotes the number of random observations y( j) , j = 1, . . . , Np , and factors β j.k =
|y(k)T e(k) |/∥y(k) ∥, for all j and k = 1, . . . , n. The percentage of directions, for which the alignment
coefficient is higher than φ, is minimized using the pattern search algorithm (as a finite set of
observations is used, the cost function is noisy). By employing (8), the threshold becomes related
only to the desired value of the percentage p (cf. Fig. 2). The results presented in Section 4
indicate versatility of the proposed approach for antenna structures described by various numbers
of parameters.

Fig. 2. The expected fraction of directions with Jacobian updated using BF versus the acceptance
threshold value for various parameter space dimensionalities. Note considerable differences in the

threshold values ensuring the same percentage.

4. Results

Antennas I through III have been optimized using the algorithm of Section 3. For Antenna I,
two cases were considered: the best matching design (cf. (2)) and the maximum gain design (cf.
(3)). In order to gather statistical data on the algorithm performance, ten optimization runs have
been executed using random initial designs.

The results are presented in Tables 1 and 2. Fig. 3 shows representative antenna responses. The
standard TR algorithm (4) has been used as a reference. It should be emphasized that the topic of
the paper is direct optimization, therefore comparisons with surrogate-based optimization (SBO)
techniques, e.g., [20–23], or specialized algorithms for antenna miniaturization (e.g., [24]) are of
no relevance here.

The lower and upper bounds for design variables of uniplanar dual-band dipole (Antenna I)
are the following: l = [15.0 5.0 5.0 0.2 0.5 0.5]T , and u = [50.0 20.0 30.0 0.6 5.0 5.0]T . For
Antenna II, the lower and upper bounds are: l = [4.0 0 3.0 0.1 0 0 4.0 0 2.0 0.2 0.2]T , and
u = [15.0 6.0 8.0 0.9 5.0 8.0 15.0 6.0 5.0 1.0 0.9]T , whereas for Antenna III they are: l = [5.0 0.1
0.1 5.0 0 5.0 0.1 0.1 5.0 0 0.01 0.1 0.1]T , and u = [20.0 2.0 3.0 20.0 5.0 20.0 1.0 1.0 25.0 10.0
0.2 0.9 0.3]T .
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Table 1. Optimization results for Antenna I.

Optimization for best matching Optimization for maximum gain

Method Cost1 Savings2

[%]
max |S11 |3

[dB]
∆ |S11 |4

[dB]
STD5

[dB] Cost1 Savings2

[%]
Gain6

[dB]
∆Gain7

[dB]
STD8

[dB]

Reference 72.6 − −11.6 − 0.3 80.3 − 4.0 − 0.09

Th
is

w
or

k
p

66% 49.9 31.3 −11.5 0.1 0.2 59.9 25.4 3.9 0.08 0.15

83% 42.2 41.9 −11.3 0.3 0.7 33.2 58.7 3.8 0.15 0.19

90% 37.9 47.8 −11.1 0.5 1.1 29.3 63.5 3.8 0.16 0.17

95% 34.1 53.0 −10.8 0.8 1.6 30.4 62.1 3.8 0.21 0.21

98% 36.2 50.1 −10.8 0.8 1.3 24.8 69.1 3.7 0.28 0.23

100%$ 27.2 62.5 −10.7 0.9 1.5 24.8 69.1 3.7 0.29 0.24

1 Number of EM simulations averaged over 10 algorithm runs;
2 Percentage-wise cost savings w.r.t. the reference algorithm;
3 Maximum in-band reflection S11 in dB;
4 Degradation of S11 w.r.t. the reference algorithm in dB;
5 Standard deviation of S11 in dB across 10 algorithm runs (random initial points);
6 Maximum in-band gain G in dB;
7 Degradation of gain G w.r.t. the reference algorithm in dB;
8 Standard deviation of G in dB across 10 algorithm runs (random initial points);
$ Broyden-only Jacobian updates (no FD used).

Table 2. Optimization results for Antennas II and III.

Antenna II Antenna III

Method Cost1 Savings2

[%]
max |S11 |3

[dB]
∆ |S11 |4

[dB]
STD5

[dB] Cost1 Savings2

[%]
Gain6

[dB]
∆Gain7

[dB]
STD8

[dB]

Reference 111.2 − −14.9 − 0.6 139.7 − −17.6 − 1.5

Th
is

w
or

k
p

66% 72.7 34.6 −14.3 0.6 0.8 82.3 41.1 −15.4 2.2 2.3

83% 54.0 51.4 −13.9 1.0 0.9 69.1 50.5 −15.9 1.7 2.5

90% 47.9 56.9 −13.8 1.1 1.0 51.3 63.3 −15.1 2.5 3.3

95% 41.2 62.9 −14.2 0.7 1.1 45.5 67.4 −14.6 3.0 4.4

98% 33.0 70.3 −13.7 1.2 1.1 34.2 75.5 −14.4 3.2 4.8

100%$ 26.5 76.2 −13.5 1.4 1.2 34.3 75.4 −13.7 3.9 3.9

1 Number of EM simulations averaged over 10 algorithm runs;
2 Percentage-wise cost savings w.r.t. the reference algorithm;
3 Maximum in-band reflection S11 in dB;
4 Degradation of S11 w.r.t. the reference algorithm in dB;
5 Standard deviation of S11 in dB across 10 algorithm runs (random initial points);
$ Broyden-only Jacobian updates meaning no FD used whatsoever.

The data in Tables 1 and 2 clearly indicate computational benefits of the proposed algorithm
which are more pronounced with the increasing value of the acceptance threshold p. Note that
100% refers to the pure Broyden algorithm with no FD updates. It is only given for comparison
purposes, as the design quality obtained with the sole use of BF is poor. At the same time,
the algorithm reliability is affected by the percentage value p which can be observed through
the increasing deviation of the average objective function value with respect to the reference
algorithm as well as an increasing standard deviation of the objective function. Importantly, the
dependence of the results on p is very much consistent for all four cases and p = 90% can be
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a)

b) c)

Fig. 3. Reflection characteristics for representative algorithm runs: a) Antenna I (the realized gain characteristics are
shown in grey); b) Antenna II; c) Antenna III. Horizontal lines mark the design specifications (the intended operating

band); (- - -) initial design, (—) optimized design.

considered an optimum value for which the savings are high (58% on average) while reliability
is still acceptable as compared with the reference. This consistency, achieved for design spaces
from six to thirteen parameters, is a result of introducing a dimensionality-dependent acceptance
threshold (cf. Section 3). The standard deviation employed as a measure of the result repeatability
is the smallest for the reference algorithm and increases with p. However, it is also growing with
the parameter space dimension, which has nothing to do with the quality of the optimization
algorithm but rather with the fact that different local optima are attained in each run due to
random starting points. The number and variety of these optima clearly increase with the number
of antenna parameters and so is the standard deviation. It should be reiterated at this point that
the considered algorithm is a local one: identifying a globally optimal design is neither possible
nor sought for in this work.

Selected designs of Antennas I through III have been fabricated and measured. Fig. 4 shows
photographs of the antenna prototypes, whereas Figs. 5 through 6 illustrate comparison of simu-
lated and measured reflection responses, realized gain characteristics, as well as H-plane radiation
patterns. The agreement between simulated and measured responses is satisfactory.

a) b) c)

Fig. 4. Photographs of the fabricated prototypes of Antennas I through III optimized using the proposed algorithm:
a) Antenna I (gain optimization); b) Antenna II; c) Antenna III.
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a)

b)

c)

Fig. 5. Simulated (grey) and measured (black) reflection and (broadside) achieved gain characteristics:
a) Antenna I; b) Antenna II; c) Antenna III.
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Fig. 6. Simulated (- - -) and measured (—) H-plane radiation patterns: a) Antenna I (at 3 GHz and
5.5 GHz); b) Antenna II; c) Antenna III. The plots in (b) and (c) are, from left to right, for 4 GHz,

6 GHz, and 8 GHz, respectively.
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5. Conclusions

The paper proposes a novel TR algorithm with restricted sensitivity updates for antenna
optimization. Comprehensive validation, also performed in a statistical sense, demonstrated con-
siderable computational savings that can be obtained, with the trade-off between the speed-up
and the design quality conveniently controlled using one parameter, the acceptance threshold
for Broyden-based updates. As the latter is made dimensionality-dependent, the consistency of
results is achieved for antenna structures of various numbers of geometry parameters. Potential
applications of the algorithm include expedited direct optimization of antennas as well as solving
sub-problems within variable-fidelity surrogate-assisted frameworks.
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