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Abstract

Hybrid MSV-MGARCH models, in particular the MSF-SBEKK
specification, proved useful in multivariate modelling of returns on financial
and commodity markets. The initial MSF-MGARCH structure, called LN-
MSF-MGARCH here, is obtained by multiplying the MGARCH conditional
covariance matrix H; by a scalar random variable g; such that {Ing;, t € Z} isa
Gaussian AR(1) latent process with auto-regression parameter ¢. Here we also
consider an IG-MSF-MGARCH specification, which is a hybrid generalisation
of conditionally Student ¢t MGARCH models, since the latent process {g;} is no
longer marginally log-normal (LN), but for ¢ = 0 it leads to an inverted gamma
(IG) distribution for g+ and to the t--MGARCH case. If ¢ # 0, the latent
variables g; are dependent, so (in comparison to the --MGARCH specification)
we get an additional source of dependence and one more parameter. Due
to the existence of latent processes, the Bayesian approach, equipped with
MCMC simulation techniques, is a natural and feasible statistical tool to deal
with MSF-MGARCH models. In this paper we show how the distributional
assumptions for the latent process together with the specification of the
prior density for its parameters affect posterior results, in particular the
ones related to adequacy of the t-MGARCH model. Our empirical findings
demonstrate sensitivity of inference on the latent process and its parameters,
but, fortunately, neither on volatility of the returns nor on their conditional
correlation. The new IG-MSF-MGARCH specification is based on a more
volatile latent process than the older LN-MSF-MGARCH structure, so the
new one may lead to lower values of ¢ — even so low that they can justify the
popular t--MGARCH model.
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1 Introduction

In modelling of financial time series, hybrid MSV-MGARCH models were introduced
in order to use relatively simple model structures that exploit advantages of both
model classes: flexibility of the Multivariate Stochastic Volatility (MSV) class, where
volatility is modelled by latent stochastic processes, and relative simplicity of the
Multivariate GARCH (MGARCH) class; see Osiewalski and Pajor (2007, 2009) and
Osiewalski and Osiewalski (2016). In their first attempt, Osiewalski and Pajor (2007)
used one latent process and the Dynamic Conditional Correlation (DCC) covariance
structure proposed by Engle (2002). However, Osiewalski (2009) and Osiewalski and
Pajor (2009) suggested an even simpler model, also based on one latent process,
but with the scalar BEKK (Baba, Engle, Kraft, Kroner, 1989) covariance structure.
The parsimonious hybrid Multiplicative Stochastic Factor — Scalar BEKK (MSF-
SBEKK) specification has been recognized in the literature (see Terdsvirta, 2012;
Amado and Terésvirta, 2013; Carriero, Clark and Marcellino, 2016) and proved useful
in multivariate modelling of returns on financial and commodity markets (see Pajor,
2010, 2014; Osiewalski and Pajor, 2010; Pajor and Osiewalski, 2012; Osiewalski and
Osiewalski, 2013, 2016; Pajor and Wréblewska, 2017; Wréblewska and Pajor, 2019).
Initially proposed MSF-MGARCH models were built using a conditionally normal
MGARCH process and multiplying its conditional covariance matrix H; by g; such
that Ing; follows a Gaussian AR(1) process with auto-regression parameter . If
@ = 0, then such MSF-MGARCH case reduces to the MGARCH process with
the conditional distribution being a continuous mixture of multivariate normal
distributions with covariance matrices g;H; and g¢; log-normally (LN) distributed.
In their conference paper, Osiewalski and Pajor (2018) proposed a natural hybrid
extension of popular MGARCH models with the Student ¢ conditional distribution.
The new model is obtained by multiplying H; by random variable g; coming from
such latent process (with auto-regression parameter ¢) that, for ¢ = 0, ¢g; has an
inverted gamma (IG) distribution and leads to the --MGARCH specification, where
the conditional distribution can be represented as a continuous mixture of multivariate
normal distributions with covariance matrices ¢g; H; and an IG distribution of g;. If
© # 0, the latent variables g; are dependent, so (in comparison to the - MGARCH
model) in the new model of the observed time series we get an additional source of
dependence and one more parameter. In fact, we could construct as many MSF-
MGARCH specifications as there are distributions of latent g, under ¢ = 0. In
order to distinguish between the alternative MSF structures, we now apply notation
LN-MSF for the one based on the log-normal distribution, and IG-MSF for the new
one, based on inverted gamma innovations. Osiewalski and Pajor (2018) used the
scalar BEKK (SBEKK) specification as the MGARCH structure and showed how
to estimate the IG-MSF-SBEKK model using the Bayesian approach, equipped with
Markov Chain Monte Carlo (MCMC) simulation tools. Two empirical examples were
also presented in order to illustrate the hybrid extension of the t-SBEKK model and
to compare its posterior results to the ones obtained in the LN-MSF-SBEKK case.
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However, in Osiewalski and Pajor (2018) some arbitrarily chosen prior structures
for the parameters of the latent process in each model were adopted. In this paper
we present an empirical example, which shows the impact of both the distributional
assumptions for the latent process and the specification of the prior density for its
parameters on posterior results. Our empirical findings demonstrate sensitivity of
posterior inference on the parameters of the latent process, much less sensitivity of
the posterior for the latent process itself, and robustness of posterior inference on
volatility and conditional correlation.

In the next section the general form of the MSV-MGARCH model as well as its special
LN-MSF-MGARCH and IG-MSF-MGARCH cases are presented. In Section [3] it is
briefly shown how to simulate the posterior distribution in the Bayesian 1G-MSF-
SBEKK model based on a more general prior structure than in Osiewalski and Pajor
(2018). In Section [4| alternative prior assumptions for the parameters of the latent
process in the LN-MSF-MGARCH and IG-MSF-MGARCH models are considered. In
Section [5| our empirical example is shown; it serves not only to illustrate the hybrid
extension of the --SBEKK specification and its validity, but mainly to compare the
posterior results obtained in the IG-MSF-MGARCH case to their counterparts in the
LN-MSF-SBEKK model and to examine sensitivity of posterior results with respect to
the prior assumptions on latent processes in both hybrid models. Concluding remarks
are stated in Section [6

2 Hybrid n-variate volatility specifications

Assume there are n assets. We denote by r; = (741 ... 1) n-variate observations on
their logarithmic return rates, and we model them using the basic VAR(1) framework:

Tt:50+’l"t_1A+€t, tzl,...,T, (1)

where dg and A are, respectively, n x 1 and n X n matrix parameters, and 7" is the
length of the observed time series. The hybrid MSV-MGARCH model class for the
disturbance term ¢; is defined by the following equality:

e =G HPGY?, (2)

where:  {(;} is a strict n-variate white noise with unit covariance matrix,
{¢} ~#D™)(0, I,); Hy and Gy are square matrices of order n, symmetric and positive
definite for each t; H; is a non-constant function of the past of &; and corresponds
to the conditional covariance matrix of some MGARCH specification; G; is a non-
constant function of a (scalar or vector) stochastic latent process {g:}, which is
non-trivial (i.e., constituted of variables g; dependent over time); see Osiewalski and
Osiewalski (2016). Under and (2), the conditional distribution of 7, (given the
past of r; and the current latent variable g;) is determined by the distribution of (;;

it has mean vector pu; = §g + r:—1A and covariance matrix ¥; = Gi/z’HtGi/Q, which

175 J. Osiewalski and A. Pajor
CEJEME 11: 173-197 (2019)



www.czasopisma.pan.pl P N www.journals.pan.pl
TN

Jacek Osiewalski and Anna Pajor

depends on both g; and the past of ;.
Building upon an idea presented by Osiewalski and Osiewalski (2016), we consider
a useful subclass of the MSV-MGARCH class. This subclass corresponds to the
Gaussian white noise {(;} and positive-valued scalar latent processes {g:} such that
Gt = gtIn and

Ing; = plngy_1 +1In~y, (3)

where G Lvy, for all t,s € {1,...,T}, 0 < |¢| < 1 and {v} is a sequence of
independent positive random variables with the same distribution belonging to
a specific parametric family. The simplest MSV structure, called Multiplicative
Stochastic Factor (MSF) by Osiewalski and Pajor (2009), is based on the assumption
that {Inv;} is a Gaussian white noise with unknown variance o2. Since 7; is log-
normal, such model structure is now called LN-MSF-MGARCH. In such model,
represents a two-parameter family of stationary and causal Gaussian AR(1) processes
and the marginal distribution of g; is log-normal, so the distribution of r; given its
past is the scale mixture of N(u;, g:H;) distributions with log-normal g;. The mixing
distribution depends on ¢, and remains log-normal for ¢ = 0, the value leading to the
MGARCH model with a specific ellipsoidal conditional distribution — the log-normal
scale mixture of normal distributions. Osiewalski and Pajor (2018) extend this basic
case and consider other latent processes , corresponding to different parametric
distribution classes of ;. In particular, the inverted gamma -~ in leads to the
IG-MSF-MGARCH hybrid model, where {In~;} need not have zero mean, so {ln g}
need not be a white noise process. Assume that v, lis gamma distributed with mean
1 and variance 2/v, i.e. {y} ~ itIG(v/2, v/2), where v > 2. For u; = In~; we have
E(ut) =In(v/2) — ¢o(v/2) and Var(us) = ¢1(v/2), where 1)o(.) and ¢1(.) denote the
digamma and trigamma function, respectively.

In the LN-MSF-MGARCH and IG-MSF-MGARCH cases, the conditional distribution
of r; (given its past and g¢;) is Normal with mean p; and covariance matrix ¥, = g, H;.
In the IG-MSF-MGARCH model class we are not able to derive the marginal
distribution of g;, which obviously depends on ¢. However, for ¢ = 0 (the value
excluded in the definition of the hybrid models under consideration) g; = 74, so the
distribution of g; is known by assumption. In this case g; in is, given its past, an
IG mixture of n-variate N (0, g;H;) distributions — i.e., it has the n-variate Student ¢
distribution with v degrees of freedom, zero non-centrality vector and precision matrix
H;. Thus, ¢ = 0 corresponds to the --MGARCH model, and the IG-MSF-MGARCH
structure as a natural hybrid extension of the popular MGARCH specification with
the conditional Student ¢ distribution. We focus on a particular, simple form of the
MGARCH covariance matrix H, namely on the SBEKK form.

J. Osiewalski and A. Pajor 176
CEJEME 11: 173-197 (2019)



www.czasopisma.pan.pl P N www.journals.pan.pl
TN

On Sensitivity of Inference ...

3 Bayesian 1G-MSF-SBEKK model and MCMC
simulation of its posterior

Assume that &; in is conditionally Normal (given parameters and latent variables),
with mean vector 0 and covariance matrix g H;. The SBEKK form of H; is:

Hy = (1—B1— B2)A+ B1 (ef_181-1) + BaHi—1, (4)

where 1 and Py are positive scalar parameters such that 8 + 62 < 1, and A is a
free symmetric positive definite matrix of order n. The univariate latent process {g:}
fulfils with {v:} ~#iIG(v/2, v/2), where v > 2.

In order to efficiently estimate the IG-MSF-SBEKK model, which is based on as
many latent variables as the number of observations, we use the Bayesian approach
equipped with MCMC simulation techniques. The Bayesian statistical model amounts
to specifying the joint distribution of all observations, latent variables and “classical”
parameters. The assumptions presented so far determine the conditional distribution
of the observations and latent variables given the parameters. Thus, it remains
to formulate the marginal distribution of the parameters (the prior or a priori
distribution). We assume independence among groups of parameters and use the
same prior distributions as Osiewalski and Pajor (2009) for the same parameters.
The n(n + 1) elements of § = (dg(vecA)’) are assumed a priori independent of other
parameters, with the N(0, I,,(,41)) prior. Matrix A has an inverted Wishart prior
distribution such that A~! has the Wishart prior distribution with mean I,,; the
elements of 8 = (f1,82) are jointly uniformly distributed over the unit simplex.
As regards initial conditions for H;, we take Hy = hol, and treat hy > 0 as an
additional parameter, a priori exponentially distributed with mean 1; ¢ has the
uniform distribution over (-1, 1), and for v we assume the gamma distribution with
mean \,/)\,, truncated to (2, +00). The hyper-parameters A\, and A, serve to check
sensitivity of posterior results to prior assumptions on v, the crucial parameter of the
latent process in the IG-MSF-MGARCH model.

We can write the full Bayesian model as

p (Tla Ty 915 -4 9T, 67 A7 67 @, v, ho) =
T
= p(8)p(A)p(ho)p(B)p()p(v) [ f3 (relue, grHy) x
t=1

T (v v/2 v/2
I (3971 (1) P ot

=Ty \e

Throughout the paper we use f} (+|a, B) to denote the density function of the n-variate
normal distribution with mean vector a and covariance matrix B, and frg(-|c,d)
to denote the density function of the IG(c,d) distribution. The posterior density
function, proportional to , is highly dimensional and non-standard. Thus Bayesian
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analysis is performed on the basis of a MCMC sample from the posterior distribution,
which is obtained using Gibbs algorithm, i.e. the sequential sampling from the
conditional distributions obtained from :

=

p((5|7"1, <o TTy 915 - 7gT7Aaﬂa§0a’Uah0) X p((s) f]T\Lf (Tt|Mtagth)a

H
Il

1

o=

p<A|’I"]_, ey Ty g1 - - 7gTa6767@7/U’ hO) O(p(A) f]T\L/' (T't‘:utagth) 3

~
I
—

p(ﬁlvﬁQahO‘Tla sy Ty g1 7gTa65Aa§0?’U) O(p(ﬁ)p(ho) Hf]?f (Tt|Mtagth)a
=1

-+

p(80|r17"'771T7.gla'"1gT757A757’U7h0) X
T T
x 6@U/2Zt:11ngt71 « e V2 thl g;'p_l/gtl(—l,l)(@)a

v v

Tv/24Xe—1 -T
p(’l}|’l"1,...,TT791,...,gT7(5,A,B7§0,h0)O((§> F(a) (& KU?

where k = =2 327 In 91 41 ST SN
- 2 t=1 gt 2 t=1 g, v

p(gt|rla"'7TTa.gla"'7gt—1;gt+1a"'agT757Aa/87S07’th0) X

n v 1 _ v _
x fra (9t|2 + 5(1 - ), §(Tt — ) Hy (e = ) + 29f—1) em (/290 901,
t=1,....,T —1;
p(gT|T17~-~>rTagl7~-~7gT7176>AaBa(p7Uah0) X
n v 1 _ v
x fia <9T|2 +5 =) 5lrr — pr)Hy (re — pr) + 29§_1) :

Excluding the full conditional posterior of v, drawing from each conditional
distribution above is done through Metropolis-Hastings steps. The full conditional
posterior of v is not standard, but the acceptance-rejection method proposed by
Geweke (1992) is applied. As regards initial conditions for {lng;}, we assume
Ingg = 0.

4 Alternative prior distributions for the latent
processes

In Table we show the properties of the prior distributions of the parameters o2, v and

the marginal variances of latent processes in the LN-MSF-MGARCH and IG-MSF-
MGARCH models. Let {Ing;} be the process given by Ing; = ¢lng;—1 + us, where
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{u;} is a sequence of independent random variables with finite mean and variance.
Since In g; can be expressed as In g; = ¢! In gg +Z;_é ©/ut_j, then (for In go constant)

E(lng;) = ¢'E(lngo) + Zﬁ;(l) ¢ E(ut—j) and Var(Ing,) = Zﬁ;(l) ©*Var(us—j). Note
that now in our notation we omit obvious conditioning on the parameters of the
process. If uy =Invy, and {v} ~ 4ilG(v/2,v/2), we obtain for |p| < I:

> Lol [0 (2] g I8 =0 (5)
E(lngt)wa(hagoH1_@[ha2 ¢0<2>} = s
t—1
j 1_4102t v t oowl(g)
Var (Ingy) = ;@271/@7‘ (ug—j) = T <§> >t il ;2 Ve

If uy = n; and 1, ~ N(0,0?), then E(lng;) = p'E(In go) oo 0; also, for |p| < 1,

Var(Ing) = (1 —9*)o?/(1 - ?) 757 02/(1 = ?) = Vy.

Although the parameters of the latent processes are not comparable, the variances
Var(ln g;), which are non-linear functions of these parameters, can be compared. In
fact, the prior distributions of basic parameters in the LN-MSF-MGARCH and 1G-
MSF-MGARCH models can be treated as coherent only if they lead to similar prior
distributions of Var(In g;). The three inverted gamma priors of o2 (presented in Table
1)) are very different, and they lead to different priors of V. In terms of quantiles,
variants IIT and II yield the most concentrated and the most diffuse distribution of
Vi, respectively; the variant II prior of Vi seems also the most distant from zero,
if one looks at the quantile of order 0.01. In the case of the three gamma priors of
v, variants III and I lead to the most concentrated and the most diffuse distribution
of Vg, respectively. Note that the corresponding quantiles of prior distributions of
Vn and Vg are quite close in variant III and seem even closer in variant II, while
they are completely (qualitatively) different in variant I. When we consider posterior
results in two hybrid models, prior variants II and III guarantee that we compare
Bayesian models based on similar assumptions about dispersion of the latent process.
However, even then the tail behaviour of this process can be different. The simulated
paths of the latent processes in two hybrid specifications, plotted in Figures
illustrate qualitative differences between the two models. While the latent processes
based on log-normal and inverted gamma innovations have mostly similar realisations
for the variant II priors, the inverted gamma innovations coupled with the variant
II prior produces some paths in the far right tail. The variant III priors lead to
less concentrated paths in the inverted gamma case than in the log-normal case. As
expected, the variant I priors produce paths that are very volatile, but quite different
between the two cases, with higher volatility and asymmetry (right skewness) in the
inverted gamma case. However, note that the latent process g; only partly describes
volatility of the observed process r;, because the parameters A and § in matrix Hy
also matter and can compensate (to some extent) the tail behaviour of g;. This can
be seen in our example in the next section.
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Table 2: Posterior means (and standard deviations) of the parameters of the
LN-MSF-SBEKK and IG-MSF-SBEKK models (variant I)

LN-MSF-SBEKK IG-MSF-SBEKK

parameter o? ~ IC (1; ﬁ) v~ Exp (1_10)

o1 0.072  (0.026) 0.068  (0.026

502 0.027  (0.022)  0.026

511 0.015 (0.024)  0.010

512 0.012  (0.020)  0.010

821 0.302  (0.027) 0298

S22 -0.022  (0.025) -0.024 (0.025

a1 1136  (0.268)  0.665 (

a1z 0.162  (0.104)  0.091  (

a2 0.736  (0.188)  0.465  (

© 0.880 (0.148) 0.393 (0.273)
c2orv 0.033 (0.038) 18.389 (10.976)

81 0.021  (0.006)  0.030  (0.007)

B2 0.970  (0.007)  0.955  (0.009)
B+ B2 0991  (0.004)  0.986  (0.006)

ho 2.935  (1.027)  2.261  (0.833)

Figure 4: Histograms of the marginal posterior distributions of (02, ¢) and (v, ¢)
(variant T)

-
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5 An empirical example

We use the same bivariate data set as Osiewalski and Pajor (2009). It consists of
the daily quotations of the main index of the Warsaw Stock Exchange (WIG) and
the S&P500 index of NYSE. We model 1727 logarithmic returns from the period
8.01.1999-1.02.2006. They show moderate deviations from normality (empirical
excess kurtosis is 3.08 for WIG and 1.91 for S&P500) and weak empirical correlation
(0.174) between returns; the skewness coefficient is —0.12 for WIG and 0.09 for
S&P500. The empirical part is focused on sensitivity of posterior results with respect
to the prior specification of the latent process, so we consider the three variants of the
prior distributions, which were defined in Section[d] The results are based on the last
500,000 MCMC states (out of the total 1,530,000 states), treated as a sample from the
posterior distribution. We used our own computer codes written in GAUSS. In Table

Figure 5: Histograms of the marginal posterior distributions of 02, v, and ¢ (variant I)
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Table 3: Posterior means (and standard deviations) of the parameters of the
LN-MSF-SBEKK and IG-MSF-SBEKK models (variant II)

LN-MSF-SBEKK IG-MSF-SBEKK

parameter o2 IG (%724_5) UNG(%;%)

o1 0.072  (0.026) 0.071  (0.026

)
502 0.028 (0.023)  0.028  (0.023)
11 0.014  (0.024)  0.013  (0.024)
512 0.011  (0.021)  0.010  (0.020)
821 0.301  (0.027)  0.300  (0.027)
S22 -0.022  (0.026) -0.022  (0.026)
a1 1.080  (0.259)  0.694  (0.142)
a1z 0.155 (0.113)  0.094  (0.066)
a22 0.704  (0.198)  0.460  (0.099)

© 0.774 (0.186) 0.663 (0.253)
c2orv 0.065 (0.047) 34.473 (19.113)
B 0.024  (0.006)  0.024  (0.007)
Ba 0.967  (0.008)  0.963  (0.009)
B+ B2 0992 (0.004) 0.987  (0.005)
ho 2.530  (0.904)  2.271  (0.829)

Figure 6: Histograms of the marginal posterior distributions of (02, ¢) and (v, ¢)
(variant IT)
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Figure 7: Histograms of the marginal posterior distributions of o2, v, and ¢
(variant IT)
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[2 the posterior means and standard deviations of the LN-MSF-SBEKK and IG-MSF-
-SBEKK parameters are presented for the prior variant I. It is important to note that
the posterior distribution of ¢, the latent process auto-regression parameter, is much
further from zero in the LN-MSF-SBEKK model. It seems that the LN-MSF-SBEKK
model really needs the non-trivial Gaussian AR(1) latent process in order to describe
the data, so that the case ¢ = 0, i.e. the SBEKK specification with log-normal scale
mixture as the conditional distribution, is excluded; see also Figures [d] and [5] The
question whether the IG-MSF-SBEKK model can be reduced to the t-SBEKK case
is answered based on the results in Table The posterior probability that ¢ < 0
is 0.057 and ¢ = 0 is included in the highest posterior density (HPD) interval of
probability content 0.795. The ¢t-SBEKK model cannot be rejected in the case of
prior I, but empirical relevance of the t--SBEKK case is questionable under prior II
and even more under prior III (thus it is very sensitive to the prior specification). This
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can be seen when looking at the numbers in Tables [BH4 and at the plots in Figures 5]
and @ Also note that the marginal posterior distributions of v and particularly o2
are similar to the priors, which means that the data provide little information about
the parameters of the error term of the latent process {Ing;}.

The dependence between ¢ and v in the IG-MSF-SBEKK model, visible in the plots
of their bivariate marginal posterior distribution (Figures |§| and , is striking. The
plots reveal non-linear relations, different for each prior variant, but always positively
monotonic in the sense that higher values of one parameter correspond to higher
values of the other. Thus we easily see that the posterior distribution concentrating
at low values of v tends to indicate at ¢ closer to zero. Since the bivariate posterior
of (v, ¢) is sensitive to the prior, inference on adequacy of the t--SBEKK model is
sensitive as well. Assumptions that lead to volatile g; (like prior II or, even more,
prior I) make ¢ = 0 quite likely a posteriori. In the case of the LN-MSF-SBEKK
model we see that the joint posterior of (02, ) is also characterised by a positive
monotonic relation between precision (1/0?) and autocorrelation (¢). However, the
latent process is never so volatile as to support the case p = 0.

Table 4: Posterior means (and standard deviations) of the parameters of the
LN-MSF-SBEKK and IG-MSF-SBEKK models (variant III)

LN-MSF-SBEKK IG-MSF-SBEKK
parameter

o*~1G (3i45) v~G (it
So1 0.072  (0.026) 0.072  (0.026)
502 0.028 (0.022) 0.027  (0.022)
511 0.016  (0.024) 0.017  (0.024)
512 0.013  (0.020) 0.013  (0.020)
821 0.302  (0.027) 0.302  (0.027)
S2  —0.022 (0.026) —0.022 (0.025)
a1 1.170  (0.318)  0.807  (0.162)
a1z 0.166  (0.105) 0.116  (0.064)
a2z 0.743  (0.188) 0.527  (0.118)
o 0.920 (0.042) 0.925 (0.024)
c2orv 0.023 (0.012) 108.81 (27.793)
81 0.020 (0.004) 0.018  (0.004)
B2 0.971  (0.006) 0.971  (0.005)
B+ B2 0991 (0.003) 0.989  (0.004)
ho 2.968  (0.987) 2923  (0.979)

Sensitivity of inferences on the parameters of the latent process does not transform
into similar sensitivity of the posterior means of the process itself. In fact, the
posterior means of latent variables g (t = 1,2,...,T), characterised in Table |§|,
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Figure 8: Histograms of the marginal posterior distributions of (02, ¢) and (v, )
(variant IIT)

.
~

Table 5: Posterior probability that ¢ < 0 and probability content of minimum HPD
interval including ¢ = 0

Variant Prior distributions Pr(e < 0|r) min HPD
.42 L1
| LN-MSF-SBEKK: 0% ~ IG (1 5%5)  0.003 0.9793
IG-MSF-SBEKK: v ~ Ezp ({5) 0.055 0.7808
42 5.4
1  LN-MSF-SBEKK: 02 ~ IG (3:5%) 0.004 0.957
IG-MSF-SBEKK: v ~ G (23; &) 0.017 0.8905
.42 5.1
iy LN-MSF-SBEKK: 02 ~ IG (3 5) 0.000 1.000

0.000 1.000

~ ©

4
IG-MSF-SBEKK: v ~ G (121;

indicate quite a bit of robustness. It is important to note the difference in average
posterior means of g; between the LN and IG cases (in the latter case they are about
15% higher). In all six Bayesian models, dispersion of individual posterior means
of g; is in the range 0.28-0.35 and they are highly correlated, which means similar
dynamics; the lowest correlation characterises the pairs (IG I, IG III; 0.685), (IG I,
LN IIT; 0.664) and (IG I, LN I; 0.702). All this is illustrated in Figure

While posterior inference on the parameters of the latent process is very sensitive,
Tables 2}[4] show robustness of inference on the remaining parameters, which enter the
SBEKK and VAR elements of our hybrid models. Only posterior results on matrix
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Figure 9: Histograms of the marginal posterior distributions of ¢2, v, and ¢
(variant IIT)
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Table 6: Basic characteristics (averages, standard deviations, correlation coefficients)
of the posterior means of the latent process g; in six Bayesian MSF-SBEKK models
(two types of latent process innovations: LN or IG, three variants of the prior)

model tvpe | average st. dev correlation coefficients

P 8¢ SL AVl INT LNII LN I IGT IG I IG III
LN 1072 0297 | 1 0969 0998 0.733 0.923 0.996
LN II 1.084 0279 0969 1 0955 0.851 0.985 0.947
LN II1 1.068  0.307 |0.998 0.955 1  0.697 0.901 0.999
IG 1 1245 0.285 |0.733 0.851 0.697 1 0.926 0.685
IG 11 1.243  0.303 |0.923 0.985 0.901 0926 1  0.892
IG 111 1210 0.350 |0.996 0.947 0.999 0.685 0.892 1
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A in the SBEKK part of the conditional covariance matrix of observed returns show
a particular pattern of sensitivity: the posterior means are similar for models of the
same type (LN or IG), and differ between the two model classes — in the LN case
they are about 40-80% higher. This effect is almost perfectly compensated by the
systematic difference in average posterior means of g; between the LN and IG cases
and leads, in all Bayesian models, to the same posterior means of the conditional
standard deviations of the two observed returns; see Tables [7] and [§]

Table 7: Averages, standard deviations and correlation coefficients of the posterior
means of the conditional standard deviation for S&P500 in six Bayesian MSF-SBEKK
models (two types of latent process innovations: LN or IG, three variants of the prior)

model type | average st. dev. correlation coefficients

LNI LNII LNIII IGI IGII IG III
LN I 1.112 0.384 1 0.997 1.000 0.974 0.992 1.000
LN II 1.112 0.385 |0.997 1 0.995 0.986 0.998 0.994
LN III 1.112 0.386 |1.000 0.995 1 0.969 0.989 1.000
IG 1 1.112 0.380 |0.974 0.986 0.969 1 0.994 0.968
IG II 1.111 0.381 [0.992 0.998 0.989 0.994 1 0.988
1G III 1.113  0.385 [1.000 0.994 1.000 0.968 0.988 1

Table 8: Averages, standard deviations and correlation coefficients of the posterior
means of the conditional standard deviation for WIG in six Bayesian MSF-SBEKK
models (two types of latent process innovations: LN or IG, three variants of the prior)

model type | average st. dev. correlation coefficients

LNI LNII LNIII IGI IGII IG III
LN I 1.232 0.367 1 0.995 1.000 0.968 0.989 0.999
LN II 1.230  0.368 [0.995 1 0.993 0.983 0.998 0.992
LN III 1.233  0.369 |1.000 0.993 1 0.962 0.985 1.000
IG1 1.223  0.365 [0.968 0.983 0.962 1 0.992 0.960
IG II 1.228  0.365 [0.989 0.998 0.985 0.992 1 0.984
1G III 1.233  0.367 [0.999 0.992 1.000 0.960 0.984 1

Robustness of posterior inference on volatility (measured by the sampling conditional
standard deviations of n elements of r; given both ¢g; and the past of r;) and on
conditional correlation of the analysed stock returns is the most important empirical
finding. Tables [7H9] and Figures [TIHI2| demonstrate that each hybrid structure under
any variant of the prior distribution produces almost the same posterior evidence on
these unobservable characteristics (of the observed returns), which are of particular
interest in econometric analysis of financial (or commodity) markets. Even the most
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Table 9: Averages, standard deviations and correlation coefficients of the posterior
means of the conditional correlation coefficient for (S&P500, WIG) in six Bayesian
MSF-SBEKK models (two types of latent process innovations: LN or IG, three
variants of the prior)

model type | average st. dev. correlation coefficients

LNI LNII LNIII IGI IGII IG III
LN I 0.187  0.118 1 0.998 1.000 0.979 0.993 1.000
LN II 0.188  0.126 |0.998 1 0.997 0.989 0.998 0.997
LN III 0.187  0.116 |1.000 0.997 1 0.975 0.991 1.000
IG1I 0.187  0.142 |0.979 0.989 0.975 1 0.996 0.976
1G 1T 0.186  0.131 |0.993 0.998 0.991 0.996 1 0.991
1G III 0.187 0.115 |1.000 0.997 1.000 0.976 0.991 1

Figure 11: Most different results on conditional standard deviation (posterior mean
+ standard deviation) for S&P500 (upper panels) and WIG (lower panels)
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Figure 12: Conditional correlation coefficients (posterior mean + standard deviation)
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6 Concluding remarks

We have considered two MSV-MGARCH specifications, the LN-MSF-SBEKK
structure, presented by Osiewalski and Pajor (2009), and the IG-MSF-SBEKK model,
proposed by Osiewalski and Pajor (2018). Due to the presence of latent variables
they are estimated within the Bayesian approach, which numerically relies on MCMC
simulations (Gibbs sampling with Metropolis-Hastings steps). Our main task was
to study sensitivity of posterior results with respect to the form of the distribution
of innovations in the latent process (inverted gamma versus log-normal) and to the
prior assumptions about the parameters of the latent process. The empirical example
suggests that the IG-MSF-MGARCH specification (that serves to generalise the t¢-
MGARCH model) can relatively easily accommodate heavy tails — through latent
process based on inverted gamma disturbances — in comparison to the LN-MSF-
MGARCH model, based on log-normal innovations and requiring large values of the
latent process auto-regression parameter ¢. The posterior results (obtained in six
alternative Bayesian models) for the latent process parameters are very sensitive, the
posterior results for the latent process itself are much less sensitive (in fact, they
are quite robust), and the results for volatilities and conditional correlation (of the
analysed bivariate series of returns) are strikingly similar.

Note that we only explore differences and similarities of posterior inferences in our
six Bayesian models. Formal Bayesian model comparison (through Bayes factors and
posterior odds) is computationally very difficult in the hybrid framework. The crucial
issue is that of precisely calculating the numerical value (for the data at hand) of the
marginal density of observations p(ry,...,rr) in each model, which is the integral
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of the density with respect to its all other arguments (i.e., latent variables and
parameters). In order to approximate p(ri,...,ry) within MCMC sampling from
the posterior distribution, Osiewalski and Osiewalski (2013, 2016) used the harmonic
mean estimator with a specific correction. Such approach does not have so good
properties as the corrected arithmetic mean estimator (CAME) proposed by Pajor
(2017). However, the use of CAME in dynamic models with latent processes is not
numerically feasible yet, due to very high dimensions of Monte Carlo simulation
spaces. Thus, in this study we do not calculate the posterior model probabilities
for the variants of the LN-MSF-SBEKK and IG-MSF-SBEKK models. Bayesian
comparison of alternative specifications (including the t--SBEKK case) with the use of
Bayes factors is left for future research. On the other hand, in the empirical example
presented in this paper, the main posterior results on volatility and conditional
correlation of the observed returns are so similar in all six Bayesian models that formal
inference pooling would give almost the same outcome for any posterior distribution
over the models. Thus, in this particular case we can take the results from any model,
without formal comparison. Whenever both specifications considered in this paper
lead to the same posterior inference on quantities of interest, we advocate to use
the IG-MSF-MGARCH hybrid, which is a generalisation of the standard --MGARCH
model, so it makes testing this very popular MGARCH specification relatively easy.

In our empirical example we have not examined differences and similarities of posterior
inferences on risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES).
For hybrid models based on the latent process with lognormal innovations, Bayesian
analysis of VaR and ES was presented by Osiewalski and Pajor (2010) and Pajor
and Osiewalski (2012). The flexible tail behaviour of the latent process with inverted
gamma innovations makes the VaR and ES estimation (based on new hybrid models)
very promising.
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