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Invariant properties of positive linear electrical circuits
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Abstract: The invariant properties of the stability, reachability, observability and transfer
matrices of positive linear electrical circuits with integer and fractional orders are investi-
gated. It is shown that the stability, reachability, observability and transfer matrix of positive
linear systems are invariant under their integer and fractional orders.
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1. Introduction

An electrical circuit system is called fractional if it is described by a fractional order differential
equation. The fundamentals of fractional calculus and fractional systems have been given in [23,
26–32]. The stability of fractional linear systems have been analyzed in [3−5].

In positive electrical circuits the inputs, state variables and outputs take only nonnegative
values. Examples of positive systems are electrical circuits, industrial processes involving chem-
ical reactors, heat exchangers and distillation columns, storage systems, compartmental systems,
water and atmospheric pollution models. A variety of models having positive linear behaviour can
be found in engineering, management science, economics, social sciences, biology and medicine,
etc. An overview of state of the art in theory of positive systems is given in the monographs
[2, 6, 13].

The determination of the matrices A, B, C, D of the state equations of linear systems for
given transfer matrices is called the realization problem. The realization problem has been
investigated in [12, 24, 25, 27]. A tutorial on the positive realization problem has been given in
the paper [1] and in the books [6, 13]. The positive realization problem for linear systems with
delays has been analyzed in [7, 8, 14, 20, 21, 27], for cone systems in [10] and positive stable
realizations in [9, 15–17]. The existence and determination of the set of Metzler matrices for
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given stable polynomials have been considered in [11]. The realization problem for positive 2D
hybrid systems has been addressed in [19]. For fractional linear systems the realization problem
has been considered in [18, 26].

In this paper the invariant properties of the stability, reachability, observability and transfer
matrices of positive linear systems and electrical circuits with integer and fractional orders will
be investigated.

The paper is organized as follows. In section 2 the invariance of stability of the positive
linear electrical circuits with integer and fractional orders is investigared. The invariance of the
reachability of the positive linear systems is analyzed in section 3 and of the observability in
section 4. The invariance of transfer matrices of positive linear systems is considered in section 5.
The realization problem for positive asymptotically stable electrical circuits is addressed in
section 6. Concluding remarks are given in section 7.

The following notation will be used: ℜ – the set of real numbers, ℜn×m – the set of n × m
real matrices, ℜn×m

+ – the set of n × m real matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,
Mn – the set of n × n Metzler matrices (real matrices with nonnegative off-diagonal entries),
In – the n × n identity matrix.

2. Stability invariance of positive linear electrical circuits

Consider the autonomous linear electrical circuit described by the differential equation:

ẋ(t) = Ax(t), (2.1)

where x(t) ∈ ℜn is the state vector and A ∈ ℜn×n.
As the state variables (components of the state vector) the voltages on the capacitors and the

currents in the coils are usually chosen.
The electrical circuit described by (2.1) is called (internally) positive if x(t) ∈ ℜn, t ≥ 0 for

any initial conditions x(0) ∈ ℜn
+.

A matrix A = [ai j] ∈ ℜn×n is called the Metzler matrix if ai j ≥ 0 for i , j.
Theorem 2.1. [2, 6, 13] The electrical circuit (2.1) is positive if and only if A is a Metzler

matrix.
The positive electrical circuit (2.1) is called asymptotically stable (the matrix A Hurwitz) if

lim
t→∞

x(t) = 0 for all x(0) ∈ ℜn
+. (2.2)

The positive electrical circuit (2.1) is asymptotically stable if and only if all real parts of
eigenvalues sk of the matrix A are negative, i.e.ℜsk < 0 for k = 1, . . . , n.

Theorem 2.2. [13] For the positive electrical circuit (2.1) the following conditions are equiv-
alent:

1. The positive electrical circuit (2.1) is asymptotically stable (the Metzler matrix A is Hur-
witz).

2. All coefficients of the characteristic polynomial

det [Ins − A] = sn + an−1sn−1 + . . . + a1s + a0 (2.3)

are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.
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3. All principal minors Mi , i = 1, . . . , n of the matrix −A are positive, i.e.

M1 = |−a11 | > 0, M2 =

������
−a11 −a12

−a21 −a22

������ > 0, . . . , Mn = det[−A] > 0. (2.4)

4. There exists strictly positive vector λ =
[
λ1 · · · λn

]
, λk > 0, k = 1, . . . , n such that

Aλ < 0. (2.5)

Remark 2.1. From (2.5) it follows that the positive electrical circuit (2.1) is asymptotically
stable only if all diagonal entries of A are negative.

Consider the autonomous fractional linear electrical circuit described by the equation:

dαx(t)
dtα

= Ax(t), 0 < α < 1, (2.6)

where x(t) ∈ ℜn is the state vector and A ∈ ℜn×n, and

dαx(t)
dtα

=
1

Γ(1 − α)

t∫
0

ẋ(τ)
(t − τ)α

dτ, Γ(x) =

∞∫
0

e−t tx−1 dt, (2.7)

is the Caputo definition of α order of x(t).
The electrical circuit (2.6) is called positive if x(t) ∈ ℜn

+, t ≥ 0 for any initial conditions
x(0) ∈ ℜn

+.
Theorem 2.3. [23] The fractional electrical circuit is positive if and only if A is a Metzler

matrix.
The positive electrical circuit (2.6) is called asymptotically stable (the matrix A Hurwitz) if

lim
t→∞

x(t) = 0 for all x(0) ∈ ℜn
+. (2.8)

The positive fractional electrical circuit (2.6) is asymptotically stable if and only if the real
parts of all eigenvalues sk of the matrix A are negative, i.e.ℜ sk < 0 for k = 1, . . . , n [23].

Theorem 2.4. For the positive fractional electrical circuit (2.6) the following conditions are
equivalent:

1. The positive electrical circuit (2.6) is asymptotically stable (the Metzler matrix A is Hur-
witz).

2. All coefficients of the characteristic polynomial

det[Ins − A] = sn + an−1sn−1 + . . . + a1s + a0 (2.9)

are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.
3. All principal minors Mi , i = 1, . . . , n of the matrix −A are positive, i.e.

M1 = |−a11 | > 0, M2 =

������−a11 −a12

−a21 −a22

������ > 0, . . . , Mn = det[−A] > 0. (2.10)



878 T. Kaczorek Arch. Elect. Eng.

4. There exists strictly positive vector λ =
[
λ1 · · · λn

]
, λk > 0, k = 1, . . . , n such that

Aλ < 0. (2.11)

Remark 2.2. From (2.11) it follows that the positive fractional electrical circuit (2.6) is
asymptotically stable only if all diagonal entries of A are negative.

From comparison of Theorems 2.1 and 2.2 with Theorems 2.3 and 2.4 we have the following
important collorary respectively.

Collorary 2.1. The stability of positive linear electrical circuits is invariant under their (integer
and fractional) orders.

These considerations can be extended to positive linear electrical circuits with delays in state
vectors.

3. Reachability invariance of the positive linear electrical circuits

Consider the standard linear electrical circuit described by the equation:

ẋ(t) = Ax(t) + Bu(t), (3.1)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state and input vectors and A ∈ ℜn×n, B ∈ ℜn×m.
Definition 3.1. [13, 23] The linear electrical circuit (3.1) is called (internally) positive if

x(t) ∈ ℜn
+ and all u(t) ∈ ℜm

+ , t ≥ 0.
Theorem 3.1. [13, 23] The linear electrical circuit (3.1) is positive if and only if

A ∈ Mn, B ∈ ℜn×m
+ . (3.2)

Definition 3.2. [13, 23] The positive electrical circuit (3.1) is called reachable in the time
[0, t f ], t f > 0, if there exists the input u(t) ∈ ℜm

+ for t ∈ [0, t f ] which steers the state of electrical
circuit from x(0) = 0 to the given final state x f ∈ ℜn

+, i.e. x(t f ) = x f .
Theorem 3.2. [13, 23] The linear positive electrical circuit (3.1) is reachable in the time [0, t f ]

if and only if the reachability matrix

R(t f ) =

t f∫
0

eAτBBT eAT τ (τ) dτ ∈ ℜn×n
+ (3.3)

is a monomial matrix.
The input u(t) ∈ ℜm

+ , t ∈ [0, t f ] which steers the state of system from x(0) = 0 to the given
final state x f ∈ ℜn

+, is given by

u(τ) = BT eAT (t f −τ) R−1(t f ) x f ∈ ℜm
+ , τ ∈ [0, t f ]. (3.4)

Consider the fractional continous-time linear system:

dαx(t)
dtα

= Ax(t) + Bu(t), 0 < α < 1, (3.5)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state and input vectors and A ∈ ℜn×n, B ∈ ℜn×m and the
Caputo derivative of x(t) is defined by (2.7).
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Definition 3.3. [13, 23] The fractional positive electrical circuit (3.5) is called reachable in
the time [0, t f ], t f > 0, if there exists an input u(t) ∈ ℜm for t ∈ [0, t f ] which steers the state of
electrical circuit from x(0) = 0 to the given final state x f ∈ ℜn

+, i.e. x(t f ) = x f .
Theorem 3.3. The fractional positive electrical circuit (3.5) is reachable in the time [0, t f ] if

and only if the reachability matrix

R(t f ) =

t f∫
0

Φ(τ)BBT
Φ
T (τ) dτ ∈ ℜn×n

+ (3.6)

is a monomial matrix, where

Φ(t) =
∞∑
k=0

Akt (k+1)α−1

Γ[(k + 1)α]
.

The input u(t) which steers the state of the system from x(0) = 0 to x f = x(t f ) ∈ ℜn is
given by

u(τ) = BT
Φ
T (t f − τ)R

−1
(t f )x f ∈ ℜm

+ , τ ∈ [0, t f ]. (3.7)

Proof. It is well-known [23] that R
−1

(t f ) ∈ ℜn×n
+ if and only if the matrix (3.6) is monomial.

Substituting (3.7) into

x(t f ) =

t f∫
0

Φ(t f − τ)Bu(τ) dτ (3.8)

we obtain

x(t f ) =

t f∫
0

Φ(t f−τ)BBT
Φ
T (t f−τ)R

−1
(t f )x f dτ =

t f∫
0

Φ(τ)BBT
Φ
T (τ) dτR

−1
(t f )x f = x f . (3.9)

Therefore, the input (3.7) steers the state of the electrical circuit from x(0) = 0 to x(t f ) = x f .
Theorem 3.4. The fractional positive linear electrical circuit is reachable in the time [0, t f ] if

and only if the positive linear electrical circuit (3.1) is reachable in the same interval [0, t f ].
Proof. Note that the reachability matrices (3.3) and (3.6) of the positive electrical circuit

(3.1) and of fractional positive electrical circuit (3.5) differ only by the transition matrices eAt

for the electrical circuit and Φ(t) (defined by (3.6)) for the fractional electrical circuit. Using the
well-known Cayley–Hamilton theorem or the Lagrange–Sylvester formula [12, 23] it is possible
to write the transition matrices in the forms:

eAt =

n−1∑
k=0

ck (t)Ak (3.10)

and

Φ(t) =
n−1∑
k=0

ck (t) Ak, (3.11)

where ck (t) and ck (t) for k = 0, 1, . . . , n−1 are nonzero linearly independent functions of
time t [22].
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Therefore, the reachability matrix (3.6) is monomial if and only if the reachability matrix
(3.3) is monomial. By Theorems 3.2 and 3.3 the fractional positive electrical circuit (3.5) is
reachable in the time [0, t f ] if and only if the positive electrical circuit (3.1) is reachable in the
interval [0, t f ].

Therefore, from Theorem 3.4 we have the following important conclusion.
Conclusion 3.1. The reachability of positive linear electrical circuits is invariant under their

(integer and fractional) orders.

4. Observability invariance of the positive electrical circuits

Consider the linear electrical circuit described by the equations:

ẋ(t) = Ax(t) + Bu(t), (4.1a)

y(t) = Cx(t), (4.1b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n.

Definition 4.1. [13] The electrical circuit (4.1) is called (internally) positive if and only if
x ∈ ℜn

+, y(t) ∈ ℜp
+, t ≥ 0 for any u(t) ∈ ℜm

+ , t ≥ 0 and all initial conditions x(0) ∈ ℜn
+.

Theorem 4.1. [13] The electrical circuit (4.1) is positive if and only if

A ∈ Mn, B ∈ ℜn×m
+ , C ∈ ℜp×n

+ . (4.2)

Definition 4.2. The positive electrical circuit (4.1) is called (strongly) observable in the
interval of [0, t f ] if by knowing the input u(t) and output y(t) for [0, t f ] it is possible to find the
unique x(0) ∈ ℜn

+ of the electrical circuit.
Theorem 4.2. The positive electrical circuit (4.1) is observable in the interval [0, t f ] if and

only if the matrix

W f =

t f∫
0

eAT tCTCeAt dt (4.3)

is monomial.
Proof. Assuming B = 0 and premultiplying the equation

y(t) = CeAt x(0) (4.4)

by eAtCT we obtain
eAT tCTCeAt x(0) = eAT tCT y(t). (4.5)

Integrating (4.5) on the interval [0, t f ] we obtain

t f∫
0

eAT tCTCeAt dt x(0) =

t f∫
0

eAT tCT y(t) dt (4.6)
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and

x(0) = W−1
f

t f∫
0

eAT tCT y(t) dt ∈ ℜn
+, (4.7)

if and only if the matrix (4.3) is monomial.
Consider the fractional linear electrical circuit

dαx(t)
dtα

= Ax(t) + Bu(t), 0 < α < 1, (4.8a)

y(t) = Cx(t), (4.8b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input and output vectors and A ∈ ℜn×n,
B ∈ ℜn×m, C ∈ ℜp×n and the Caputo derivative of x(t) is defined by (2.7).

Definition 4.3. [13, 23] The fractional electrical circuit (4.8) is called (internally) positive if
x ∈ ℜn

+, y(t) ∈ ℜp
+, t ≥ 0 for any u(t) ∈ ℜm

+ , t ≥ 0 and all initial conditions x(0) ∈ ℜn
+.

Theorem 4.3. The fractional electrical circuit (4.8) is positive if and only if

A ∈ Mn, B ∈ ℜn×m
+ , C ∈ ℜp×n

+ . (4.9)

Definition 4.4. The fractional positive electrical circuit (4.8) is called observable in the
interval [0, t f ] if by knowing the input u(t) and output y(t) for [0, t f ] it is possible to find the
unique x(0) ∈ ℜn

+ of the electrical circuit.
Theorem 4.4. The solution of Equation (4.8a) has the form:

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ) dτ, (4.10a)

where

Φ0(t) =
∞∑
i=0

Aitiα

Γ(iα + 1)
, Φ(t) =

∞∑
i=0

Ait (i+1)α−1

Γ[(i + 1)α]
. (4.10b)

Theorem 4.5. The positive fractional electrical circuit (4.8) is observable in the interval [0, t f ]
if and only if the matrix

Wα =

t f∫
0

Φ
T
0 (t)CTCΦ0(t) dt (4.11)

is monomial.
Proof. Using (4.10a) for B = 0 and (4.8) and premultiplying the equation

y(t) = CΦ0x(0), (4.12)

by ΦT0 (t)CT we obtain
Φ
T
0 (t)CTCΦ0(t)x(0) = ΦT0 (t)CT y(t). (4.13)
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Integrating (4.13) on the interval [0, t f ] we obtain

t f∫
0

Φ
T
0 (t)CTCΦ0(t) dt x(0) =

t f∫
0

Φ
T
0 (t)CT y(t) dt (4.14)

and

x(0) = W−1
α

t f∫
0

Φ
T
0 (t)CT y(t) dt, (4.15)

if and only if the matrix (4.11) is monomial.
Theorem 4.6. The positive fractional electrical circuit (4.8) is observable in the interval [0, t f ]

if and only if the positive electrical circuit (4.1) is observable in the same interval [0, t f ].
Proof. Using (4.10b) we obtain

Φ0(t) =
∞∑
i=0

Aitiα

Γ(iα + 1)
∈ ℜn×n

+ for t ≥ 0 and 0 < α < 1 (4.16)

if and only if

eAt =

∞∑
i=0

Aiti

i!
∈ ℜn×n

+ , t ≥ 0. (4.17)

From (4.16) it follows that Φ0(t) ∈ ℜn×n
+ , t ≥ 0 if and only if eAt ∈ ℜn×n

+ , t ≥ 0 and this
implies that the matrix (4.11) is monomial if and only if the matrix (4.2) is monomial. Therefore,
the positive electrical circuit (4.8) is observable if and only if the positive electrical circuit (4.1)
is observable.

Therefore, from Theorem 4.6 we have the following important conclusion.
Conclusion 4.1. The observability of positive linear electrical circuits is invariant under their

(integer and fractional) orders.

5. Transfer matrix invariance of the positive linear electrical circuits

The transfer matrix of the electrical circuit (4.1) is given by

T (s) = C[Ins − A]−1B. (5.1)

The matrices (4.2) called the positive realization of the transfer matrix T (s) if they satisfy
(5.1) and it is called asymptotically stable realization if the matrix A is an asymptotically stable
Metzler matrix (Hurwitz Metzler matrix).

Theorem 5.1. [6, 13, 23] The positive realization (4.2) is asymptotically stable if and only if
all coefficients of the polynomial

pA(s) = det[Ins − A] = sn + an−1sn−1 + . . . + a1s + a0 (5.2)

are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.



Vol. 68 (2019) Invariant properties of positive linear electrical circuits 883

The positive realization problem can be stated as follows. Given the proper transfer matrix
T (s) find its positive realization (4.2).

Theorem 5.2. [27] If (4.2) is a positive realization of (5.1) then the matrices

Ā = PAP−1, B̄ = PB, C̄ = CP−1 (5.3)

are also a positive realization of (5.1) if the matrix P ∈ ℜn×n
+ is a monomial matrix.

Now let us consider the positive fractional electrical circuit (4.3)
The transfer matrix of the electrical circuit (4.3) is given by

T (λ) = C[Inλ − A]−1B, λ = sα . (5.4)

The positive realization problem for the fractional electrical circuit (4.3) can be stated in
a similar way as for the positive electrical circuit (5.1) substituting λ = sα.

Theorem 5.3. If the matrix A ∈ Mn is Hurwitz and B ∈ ℜn×m
+ , C ∈ ℜp×n

+ then all coefficients
of the transfer matrix (5.4) are positive.

Proof is given in [27].
Example 5.1. Consider the positive linear electrical circuit shown in Fig. 1 with known

resistances R1, R2, R3 inductances L1, L2 and source voltages e1 = e1(t), e2 = e2(t). The
currents i1 = i1(t), i2 = i2(t) in the inductances are chosen as the state variables.

Fig. 1. Positive electrical circuit

Using Kirchhoff’s laws we may write the equations:

e1 = R1i1 + L1
di1
dt
+ R3(i1 − i2),

e2 = R2i2 + L2
di2
dt
+ R3(i2 − i1)

(5.5a)

and we choose

y =

 R1 0
0 R2


 i1

i2

 . (5.5b)

Equations (5.5) can be written in the form:

d
dt

 i1
i2

 = A
 i1

i2

 + B
 e1

e2

 , (5.6a)



884 T. Kaczorek Arch. Elect. Eng.

y = C
 i1

i2

 , (5.6b)

where

A =


−R1 + R3

L1

R3

L1

R3

L2
−R2 + R3

L2


, B =


1
L1

0

0
1
L2


, C =


R1 0

0 R2

 . (5.6c)

The matrix A defined by (5.6c) is an asymptotically stable Metzler matrix since its character-
istic polynomial

det[I2s − A] =

�����������
s+

R1+R3

L1
−R3

L1

−R3

L2
s+

R2+R3

L2

�����������
= s2 +

(
R1+R3

L1
+

R2+R3

L2

)
s +

R1(R2+R3)+R2R3

L1L2
(5.7)

has positive coefficients.
The transfer matrix of the positive electrical circuit has the form:

T (s) = C [I2s − A]−1B =


R1 0

0 R2




s +

R1 + R3

L1
−R3

L1

−R3

L2
s +

R2 + R3

L2



−1 
1
L1

0

0
1
L2


=

=
R1(R2 + R3) + R2R3

s2 + [(R1 + R3)L1 + (R2 + R3)L2]s + R1(R2 + R3) + R2R3
.

(5.8)

Note that all coefficients of the transfer matrix (5.6b) are positive. This confirm the thesis of
Theorem 5.3.

Example 5.2. Consider the positive fractional electrical circuit shown in Fig. 2 with known
resistances R1, R2, R3 capacitances C1, C2 and source voltage e = e(t).

Fig. 2. Positive fractional electrical circuit
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Using Kirchhoff’s laws we may write the equations:

e′ = R1C1
dαu1

dtα
+ u1 + R3

(
C1

dαu1

dtα
+ C2

dαu2

dtα

)
,

e = R2C2
dαu2

dtα
+ u2 + R3

(
C1

dαu1

dtα
+ C2

dαu2

dtα

)
,

(5.9a)

and we choose
y = u1 + u2. (5.9b)

Equations (5.9) can be rewritten in the form:

dα

dtα

u1

u2

 = A
u1

u2

 + Be, (5.10a)

y = C
u1

u2

 , (5.10b)

where

A =


− R2 + R3

C1[R1(R2 + R3) + R2R3]
R3

C1[R1(R2 + R3) + R2R3]
R3

C2[R1(R2 + R3) + R2R3]
R1 + R3

C2[R1(R2 + R3) + R2R3]


,

B =


R2

C1[R1(R2 + R3) + R2R3]
R1

C2[R1(R2 + R3) + R2R3]


, C =

[
1 1

]
.

(5.10c)

The matrix A defined by (5.10c) is an asymptotically stable Metzler matrix since its charac-
teristic polynomial

det[I2λ − A] =

�����������
λ +

R2 + R3

C1[R1(R2 + R3) + R2R3]
− R3

C1[R1(R2 + R3) + R2R3]

− R3

C2[R1(R2 + R3) + R2R3]
λ +

R1 + R3

C2[R1(R2 + R3) + R2R3]

�����������
=

= λ2 +

(
R2 + R3

C1[R1(R2 + R3) + R2R3]
+

R1 + R3

C2[R1(R2 + R3) + R2R3]

)
λ+

+
(R1 + R3)(R2 + R3) + R2

3
C1C2[R1(R2 + R3) + R2R3]2

(5.11)

has positive coefficients.
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The transfer function of the fractional positive electrical circuit has the form:

T (s) = C[I2λ − A]−1B =

=
[
1 1

] 
λ +

R2+R3

C1[R1(R2+R3)+R2R3]
− R3

C1[R1(R2+R3)+R2R3]

− R3

C2[R1(R2+R3)+R2R3]
λ +

R1+R3

C2[R1(R2+R3)+R2R3]



−1 
R2

C1[R1(R2+R3)+R2R3]
R1

C2[R1(R2+R3)+R2R3]


=

=
[R2C2[R1(R2+R3)+R2R3]+R1C1[R1(R2+R3)+R2R3]] λ+(R2+R3)R1+(R1+R3)R2+R3R1+R3R2

C1C2[R1(R2+R3)+R2R3]2λ2+ [((R2+R3)C2+(R1+R3)) C1[R1(R2+R3)+R2R3] λ+(R2+R3)(R1+R3)−R2
3
.

(5.12)

All coefficients of the transfer matrix (5.12) are positive and this confirm the thesis of
Theorem 5.3.

Example 5.3. Consider the positive electrical circuit shown in Fig. 3 with known resistances
R1, R2, R3, R4 inductances L2, L3 capacitances C1, C4 and source voltages e1, e2, e3.

Fig. 3. Positive electrical circuit

Using Kirchhoff’s laws we may write the equations:

e1 = u j + RjCj

du j

dt
, j = 1.4,

e1 + ek = Rkik + Lk
dik
dt
, k = 2.3

(5.13a)

and we choose
y = u1 + i2 + i3 . (5.13b)

Equations (5.13) can be written in the form:

d
dt



u1

u4

i2
i3


= A



u1

u4

i2
i3


+ B


e1

e2

e3


, y = C



u1

u4

i2
i3


, (5.14a)
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where

A = diag
[
− 1

R1C1
− 1

R4C4
− R2

L2
− R3

L3

]
, B =



1
R1C1

0 0

1
R4C4

0 0

1
L2

1
L2

0

1
L3

0
1
L3



, C =
[
1 0 1 1

]
. (5.14b)

The diagonal matrix A is asymptotically stable since its characteristic polynomial

det[I4s − A] = det
[
diag

[
s +

1
R1C1

s +
1

R4C4
s +

R2

L2
s +

R3

L3

] ]
=

= s4 +
(C1R1 + C4R4)L2L3 + (L2R3 + L3R2)C1R1C4R4

R1C1R4C4L2L3
s3+

+
L2L3 + (L2R3 + L3R2)(C1R1 + C4R4) + C1R1C4R4R2R3

R1C1R4C4L2L3
s2+

+
(C1R1 + C4R4)R2R3

R1C1R4C4L2L3
s +

R2R3

R1C1R4C4L2L3

(5.15)

has positive coefficients.
The transfer matrix of the electrical circuit has the form:

T (s) = C[I2s − A]−1B =

=
[
1 0 1 1

] {
diag

[
s +

1
R1C1

s +
1

R4C4
s +

R2

L2
s +

R3

L3

]}−1



1
R1C1

0 0

1
R4C4

0 0

1
L2

1
L2

0

1
L3

0
1
L3



=

=

[
1

sR1C1 + 1
+

1
sL2 + R2

+
1

sL3 + R3

1
sL2 + R2

1
sL2 + R2

]
.

(5.16)

All coefficients of the transfer matrix (5.16) are positive. This confirm the thesis of Theo-
rem 5.3.
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6. Realization problem for positive asymptotically stable electrical circuits

The realization problem for positive asymptotically stable linear electrical circuits can be stated
as follows. Given the transfer matrix T (s) with positive coefficients, find positive asymptotically
stable linear electrical circuit with matrices (4.2) satisfying (5.1).

Methods for computation of positive realizations of linear systems for a given transfer matrix
have been proposed in [8, 9, 15, 16, 28].

Example 6.1. Find the values of resistances R1, R2, R3 and inductances L1, L2 of the positive
electrical circuit shown in Fig. 1 with the transfer matrix

T (s) =
[

11
s2 + 13s + 11

11
s2 + 13s + 11

]
. (6.1)

The comparison of the coefficients (5.8) and (6.1) yields the equalities:

R1(R2 + R3) + R2R3 = 11,
(R1 + R3)L2 + (R2 + R3)L1 = 13.

(6.2)

It is easy to check if the equalities (5.15) are satisfied by

R1 = 1, R2 = 2, R3 = 3 and L1 = 1, L2 = 2. (6.3)

The desired positive and asymptotically stable electrical circuit shown in Fig. 1 has the
resistances and inductances given by (6.3).

The problem can be also solved by the method given in [26].
Theorem 6.1. There exists a positive asymptotically stable realization (5.2) of (6.1) only if

its coefficients are positive.
Proof is given in [26].
Similar results can be obtained for the positive fractional linear systems.
Theorem 6.2. If the matrix A ∈ Mn is Hurwitz and B ∈ ℜ+n×m, C ∈ ℜp×n

+ of the positive
fractional system then all coefficients of its transfer matrix are positive.

Theorem 6.3. [26] There exists a positive asymptotically stable realization of (6.1) only if its
coefficients are positive.

Therefore, from the above considerations we have the following important conclusion.
Conclusion 6.1. The positivity of the coefficients of the transfer matrices of the positive linear

continuous-time systems is invariant under their (integer and fractional) orders.
Note that the above considerations can be easily extended to the standard and positive when

the output equation has the form:

y(t) = Cx(t) + Du(t), (6.4)

where D ∈ ℜp×m
+ .

7. Concluding remarks

The invariant properties of the stability, reachability, observability and transfer matrices of
positive linear electrical circuits with integer and fractional orders have been investigated. It has
been shown that:
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1. The stability of positive linear circuits is invariant under their integer and fractional orders
(Theorems 2.2 and 2.4).

2. The reachability of positive linear electrical circuits is invariant under their integer and
fractional orders (Theorem 3.4 and Collorary 3.1).

3. The observability of positive linear electrical circuits is invariant under their integer and
fractional orders (Theorem 4.6).

4. The transfer matrix of positive linear systems is invariant under their integer and fractional
orders (Theorems 6.3 and Conclusion 6.1).

The considerations can be extended to positive linear discrete-time systems.
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