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Abstract. The paper concerns the engineering design of guide vane and runner blades of hydraulic turbines using the inverse problem on the 
basis of the definition of a velocity hodograph, which is based on Wu’s theory [1, 2]. The design concerns the low-head double-regulated axial 
Kaplan turbine model characterized by a very high specific speed. The three-dimensional surfaces of turbine blades are based on meridional 
geometry that is determined in advance and, additionally, the distribution of streamlines must also be defined. The principles of the method 
applied for the hydraulic turbine and related to its conservation equations are also presented. The conservation equations are written in a cur-
vilinear coordinate system, which adjusts to streamlines by means of the Christoffel symbols. This leads to significant simplification of the 
computations and generates fast results of three-dimensional blade surfaces. Then, the solution can be found using the method of characteristics. 
To assess usefulness of the design and robustness of the method, numerical and experimental investigations in a wide range of operations were 
carried out. Afterwards, the so-called shell characteristics were determined by means of experiments, which allowed to evaluate the method for 
application to the low-head (1.5 m) Kaplan hydraulic turbine model with the kinematic specific speed (»260). The numerical and experimental 
results show the successful usage of the method and it can be concluded that it will be useful in designing other types of Kaplan and Francis 
turbine blades with different specific speeds.
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such cases, CFD is a very powerful tool to evaluate off-design 
machine operation. Additionally, it helps eliminate significant 
mistakes in the design process.

Over the years, a number of activities in the application of the 
inverse problem to turbomachinery have been performed, caused 
inter alia by the significant development of computers. A vast 
amount of research regarding the issue of the design process for 
turbomachines with incompressible and compressible flows was 
published in the past 4 decades. The improvements proposed 
through the years for turbomachinery (gas turbines, compres-
sors, pumps) by as part of inverse design introduced extensive 
development and progress of its performance [3–8]. Relating to 
hydraulic machines, in many papers researchers presented the 
advantages of two-dimensional and a three-dimensional inverse 
problem applications to pumps and hydraulic turbines and their 
operational optimization [9–14]. An approach to the optimization 
of losses and cavitation number in the axial flow turbine runner 
can also be found in papers [15, 16]. The common availability 
of the CFD commercial codes provided for the possibility of an 
interactive aided inverse design process of hydraulic machines. 
It still remains faster and less time-consuming than designing by 
means of analyzing with the use of the CFD alone. For instance, 
interaction with the CFD allows for eliminating/reducing the 
secondary flows [17, 18] or reducing the area of pressure below 
the vapor pressure, which means decreasing intensity of the cav-
itation phenomenon [19] and/or estimating the hydrodynamic 
and suction performance [20]. Generally, mutual interaction of 
the inverse problem and CFD calculations leads to improving 
operational parameters, especially the efficiency of hydraulic 
machines and anti-cavitation performance. However, in some 
cases in which a fast technical design is required, particularly 
in the case of small low-cost low-head hydraulic turbines, CFD 

1.	 Introduction

The design of rotating machines including hydraulic turbines 
and pumps is difficult and requires a comprehensive approach 
in order to achieve high efficiency and avoid the cavitation 
phenomenon. This is due to the phenomena occurring in flow 
passage, which are described by non-linear equations that have 
to be solved to obtain the flow field. The use of iterative way 
of designing by means of CFD methods now significantly 
improves this process and allows for peer numerical analysis 
of phenomena such as: secondary flows, cavitation prediction, 
etc. However, on the other hand, the use of CFD is often related 
to the time-consuming process of determining blade geometry 
(often, the design of such geometry must be relatively quick 
for a customer) because direct design (problem) introduces the 
difficulty of determining the direction of changes leading to 
the improvement of the blade design due to the complicated 
three-dimensional nature of the flow through the machine. 
Then, as an alternative, the inverse problem blade design (deter-
mination of the skeleton blade surface) may be helpful, which 
is significantly faster than the blade design using the direct 
problem. Obviously, it constitutes good practice to use CFD 
analysis because the inverse problem design provides the blade 
geometry at one point of operation, which is supposed to be 
the best efficiency point (BEP). In fact, it may happen that it 
works well at this point but the efficiency may rapidly decrease 
in its vicinity (i.e. by changing the flow rate or/and head). In 
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cannot be used because of too long time required. In such cases 
design by means of an inverse problem is indispensable.

Generally, inverse problems in hydrodynamics are based on 
potential flow models [21–24] or the flow models using Euler’s 
equation [7, 25], in which slip condition is imposed at the walls. 
Models containing viscosity (non-slip condition), i.e. using the 
Navier-Stokes equation [8, 26], can already be encountered.

The goal of the current work is to design a blade cascade 
(double-adjustable turbine) by means of the inverse problem 
method using hodograph theory. The principles of theory are 
derived from the fundamental works of Wu [1, 2], which are 
based on the concept of two surfaces called S1 (streamline sur-
faces) and S2 (blade surfaces). Generally, this inverse method 
is suitable for a wide range of subtypes of turbomachines. The 
basics of this method in application to the design of the Kaplan 
hydraulic turbine guide vane and runner blades with the very 
high kinematic specific speed nsq = »260 are presented. This 
quantity is extremely important for the engineering design pro-
cess of hydraulic turbines because it determines their meridio-
nal shape and is defined as follows (note: this is not a non-di-
mensional quantity):
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 𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑛𝑛 𝑄𝑄0.5

𝐻𝐻0.75  (1) 

where n is the rotational speed [rpm], Q is the volumetric 
flow rate [m3/s], and H is the head [m]. 

 

2. Theoretical background 

2.1. The principles.  The flow through the rotating 
machine is fully three-dimensional due to the phenomena 
occurring in the flow (secondary flows, blade vortices, 
pressure pulsations on the blades and in the draft tube). 
However, with well-posed boundary conditions, in the case 
of hydraulic machinery such as hydraulic turbines 
(particularly low-head), fast engineering methods 
containing significant simplifications may be considered to 
be sufficient for engineering purposes to achieve good 
results of the design. 

In order to significantly simplify the solution to the 
inverse problem, it is convenient to write the set of 
conservations equations in a curvilinear system by 
introducing curvilinear coordinates 𝑥𝑥(1),  𝑥𝑥(2),  𝑥𝑥(3). First of 
them is constant along each streamline [-] and it varies (in 
a spanwise direction) within the range of 0 (at hub) to 1 (at 
shroud). Second one is the angular coordinate [rad] and 
third one is the axial coordinate [m] – Figure 1. 
 

 
Fig. 1. Schematic of the curvilinear coordinate system. 

 
Transformation to the new coordinate system requires 

assuming the transition rules between the Cartesian (x, y, z) 
and the newly introduced curvilinear system. If a 
cylindrical transition is assumed, then using definition of a 
hodograph 𝒓⃗𝒓 , the following relationship can be written: 

 𝐫𝐫 = 𝑥𝑥 𝐢𝐢 + 𝑦𝑦 𝐣𝐣 + 𝑧𝑧 𝐤𝐤 =  

 = |𝑟𝑟| cos(𝑥𝑥(2))𝐢𝐢 + |𝑟𝑟| sin(𝑥𝑥(2))𝐣𝐣 + 𝑥𝑥(3)𝐤𝐤  (2) 

where 𝒊𝒊,⃗⃗ 𝒋𝒋,⃗⃗ 𝒌𝒌 ⃗⃗  ⃗ are the unit vectors of the Cartesian coordinate 
system. 

The hodograph must be dependent on the coordinates 
operating in a meridional plane, i.e. 𝑥𝑥(1),  𝑥𝑥(3). Since the 
flow is considered to act on the streamlines, so it is related 
to streamline function, denoted as f, which has to be 
specified in advance. In such a case the hodograph, which 
is the radius can be written as follows: 

 |𝑟𝑟| = 𝑟𝑟 (𝑥𝑥(1), 𝑥𝑥(3)) ≡  𝑓𝑓 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑓𝑓 (3) 

In the new coordinate system, the hodograph will be 
written as follows: 

 𝐫𝐫 = 𝑥𝑥(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑥𝑥(1) 𝐞⃗𝐞 𝟏𝟏 + 𝑥𝑥(2) 𝐞⃗𝐞 𝟐𝟐 + 𝑥𝑥(3) 𝐞⃗𝐞 𝟑𝟑 (4) 

The quantity 𝒆⃗𝒆 𝒊𝒊 is contravariant vector of the new 
coordinate system as follows: 

 𝐞⃗𝐞 𝐢𝐢 = 𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑖𝑖)   where i = 1, 2, 3 (5) 

Using this, covariant basis of the new coordinate system 
can also be defined as follows: 

 𝐞⃗𝐞 𝐢𝐢 = 𝐞⃗𝐞 𝐣𝐣×𝐞⃗𝐞 𝐤𝐤
𝐞⃗𝐞 𝟏𝟏∘(𝐞⃗𝐞 𝟐𝟐×𝐞⃗𝐞 𝟑𝟑)   where i, j, k = 1, 2, 3 (6) 

The contravariant metric tensor of three-dimensional 
space 𝑔̃𝑔𝑖𝑖𝑖𝑖 is given: 
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guide vane and runner blades with the very high kinematic 
specific speed nsq = ~260 are presented. This quantity in 
engineering design process of hydraulic turbines is 
extremely important, because it determines their 
meridional shape and is defined as follows (note: this is not 
a non-dimensional quantity): 

 𝑛𝑛𝑠𝑠𝑠𝑠 = 𝑛𝑛 𝑄𝑄0.5

𝐻𝐻0.75  (1) 

where n is the rotational speed [rpm], Q is the volumetric 
flow rate [m3/s], and H is the head [m]. 

 

2. Theoretical background 

2.1. The principles.  The flow through the rotating 
machine is fully three-dimensional due to the phenomena 
occurring in the flow (secondary flows, blade vortices, 
pressure pulsations on the blades and in the draft tube). 
However, with well-posed boundary conditions, in the case 
of hydraulic machinery such as hydraulic turbines 
(particularly low-head), fast engineering methods 
containing significant simplifications may be considered to 
be sufficient for engineering purposes to achieve good 
results of the design. 

In order to significantly simplify the solution to the 
inverse problem, it is convenient to write the set of 
conservations equations in a curvilinear system by 
introducing curvilinear coordinates 𝑥𝑥(1),  𝑥𝑥(2),  𝑥𝑥(3). First of 
them is constant along each streamline [-] and it varies (in 
a spanwise direction) within the range of 0 (at hub) to 1 (at 
shroud). Second one is the angular coordinate [rad] and 
third one is the axial coordinate [m] – Figure 1. 
 

 
Fig. 1. Schematic of the curvilinear coordinate system. 

 
Transformation to the new coordinate system requires 

assuming the transition rules between the Cartesian (x, y, z) 
and the newly introduced curvilinear system. If a 
cylindrical transition is assumed, then using definition of a 
hodograph 𝒓⃗𝒓 , the following relationship can be written: 

 𝐫𝐫 = 𝑥𝑥 𝐢𝐢 + 𝑦𝑦 𝐣𝐣 + 𝑧𝑧 𝐤𝐤 =  

 = |𝑟𝑟| cos(𝑥𝑥(2))𝐢𝐢 + |𝑟𝑟| sin(𝑥𝑥(2))𝐣𝐣 + 𝑥𝑥(3)𝐤𝐤  (2) 

where 𝒊𝒊,⃗⃗ 𝒋𝒋,⃗⃗ 𝒌𝒌 ⃗⃗  ⃗ are the unit vectors of the Cartesian coordinate 
system. 

The hodograph must be dependent on the coordinates 
operating in a meridional plane, i.e. 𝑥𝑥(1),  𝑥𝑥(3). Since the 
flow is considered to act on the streamlines, so it is related 
to streamline function, denoted as f, which has to be 
specified in advance. In such a case the hodograph, which 
is the radius can be written as follows: 

 |𝑟𝑟| = 𝑟𝑟 (𝑥𝑥(1), 𝑥𝑥(3)) ≡  𝑓𝑓 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑓𝑓 (3) 

In the new coordinate system, the hodograph will be 
written as follows: 

 𝐫𝐫 = 𝑥𝑥(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑥𝑥(1) 𝐞⃗𝐞 𝟏𝟏 + 𝑥𝑥(2) 𝐞⃗𝐞 𝟐𝟐 + 𝑥𝑥(3) 𝐞⃗𝐞 𝟑𝟑 (4) 

The quantity 𝒆⃗𝒆 𝒊𝒊 is contravariant vector of the new 
coordinate system as follows: 

 𝐞⃗𝐞 𝐢𝐢 = 𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑖𝑖)   where i = 1, 2, 3 (5) 

Using this, covariant basis of the new coordinate system 
can also be defined as follows: 

 𝐞⃗𝐞 𝐢𝐢 = 𝐞⃗𝐞 𝐣𝐣×𝐞⃗𝐞 𝐤𝐤
𝐞⃗𝐞 𝟏𝟏∘(𝐞⃗𝐞 𝟐𝟐×𝐞⃗𝐞 𝟑𝟑)   where i, j, k = 1, 2, 3 (6) 

The contravariant metric tensor of three-dimensional 
space 𝑔̃𝑔𝑖𝑖𝑖𝑖 is given: 

  where i, j, k = 1, 2, 3.� (6)

The contravariant metric tensor of three-dimensional space 
g̃ij is given by the following:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 
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 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (7)

and, similarly, the covariant metric tensor of three-dimensional 
space g̃ ij is given as:

Fig. 1. Schematic of the curvilinear coordinate system

Surface x(1) = const

Plane x(3) = constx(2) x(1)

x(3)

Plane x(2) = constAxis

Meridional 
viev



1135

Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method

Bull.  Pol.  Ac.:  Tech.  67(6)  2019

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.
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The velocity field may be written in the following form:
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 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (9)

where U (i) are the contravariant components of the velocity 
vector, U(i) are the covariant components of the velocity vector 
and Ux(i) are the physical components of the velocity vector 
related to physical base l

→
i.

In the further part of the paper, only the contravariant and 
physical components of the velocity vector will be used. The 
relationship between the contravariant and physical bases is 
as follows:
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 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (10)

Therefore, the velocity components will be, respectively:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (11)

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (12)

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (13)

The U (1) component (and, respectively, Ux(1) as well) is iden-
tically equal to zero because it is related to the x(1) coordinate 
(the velocity vector is tangent to a streamline). The other veloc-
ities mean the following: U (2) is the angular velocity, Ux(2) is 
the tangential velocity, U (3) is the axial velocity and Ux(3) is 
the meridional velocity (resultant velocity of axial and radial 
velocities).

Let us introduce the so-called Christoffel symbols of the 
second kind [27, 28], denoted as Γi, jk , that allow for transform-
ing the conservation equations from the Cartesian to the new 
coordinate system. They can be obtained after carrying out the 
following scalar multiplication:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.

� (14)

The individual values of the Christoffel symbols form 
a three-dimensional matrix with 27 components (3£3£3 = 27) 
and take the form shown in the Appendix.

The formula for the differentiation of velocity related to 
contravariant coordinates is:
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 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (15)

If i = k, then the formula for the divergence of velocity is 
obtained:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (16)

Hence, in the presented case, it can be written as follows:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (17)

The gradient of any scalar function S in a curvilinear system 
is as follows:
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 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (18)

in which:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

� (19)

and in which:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

.� (20)

The substantial derivative of velocity will be:

	

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) 

3 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 = ||
( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
0 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

0 𝑓𝑓2 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 1 + ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2
|| (7) 

and similarly, the covariant metric tensor of three-
dimensional space 𝑔̃𝑔𝑖𝑖𝑖𝑖  is given: 

 𝑔̃𝑔𝑖𝑖𝑖𝑖 = |
𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟏𝟏 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟐𝟐 ∘ 𝐞⃗𝐞 𝟑𝟑
𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟏𝟏 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟐𝟐 𝐞⃗𝐞 𝟑𝟑 ∘ 𝐞⃗𝐞 𝟑𝟑

| =  

 =
|

|
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
)
2

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

)
2 0 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
𝑓𝑓2 0

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

0 1
|

|
 (8) 

The velocity field may be written in the following form: 

 𝐔⃗⃗𝐔 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈(𝑖𝑖)𝐞⃗𝐞 𝐢𝐢 = 𝑈𝑈𝑥𝑥(𝑖𝑖)𝐥𝐥 𝐢𝐢 (9) 

where 𝑈𝑈(𝑖𝑖) are the contravariant components of velocity 
vector, 𝑈𝑈(𝑖𝑖) are the covariant components of velocity 
vector, and 𝑈𝑈𝑥𝑥(𝑖𝑖) are the physical components of velocity 
vector related to physical base 𝒍𝒍 𝒊𝒊. 

In further part of the paper, only the contravariant and 
physical components of velocity vector will be used. The 
relationship between the contravariant and physical bases 
is as follows: 

 𝑈𝑈𝑥𝑥(𝑖𝑖) = 𝑈𝑈(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖 (10) 

Therefore, the velocity components will be, 
respectively: 

 𝑈𝑈𝑥𝑥(1) = 𝑈𝑈(1)√𝑔̃𝑔11 = 𝑈𝑈(1) |
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)| ≡ 0 (11) 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈(2)√𝑔̃𝑔22 = 𝑈𝑈(2)|𝑓𝑓| = 𝑈𝑈(2)𝑓𝑓 ≠ 0 (12) 

 𝑈𝑈𝑥𝑥(3) = 𝑈𝑈(3)√𝑔̃𝑔33 = 𝑈𝑈(3)√1 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
≠ 0 (13) 

The 𝑈𝑈(1) component (and respectively 𝑈𝑈𝑥𝑥(1) as well) is 
identically equal to zero because it is related to the 𝑥𝑥(1) 
coordinate (the velocity vector is tangent to a streamline). 

The other velocities mean: 𝑈𝑈(2) is the angular velocity, 
𝑈𝑈𝑥𝑥(2) is the tangential velocity, 𝑈𝑈(3) is the axial velocity, 
and 𝑈𝑈𝑥𝑥(3) is the meridional velocity (resultant velocity of 
axial and radial velocities). 

Let us introduce the so-called Christoffel symbols of 
the Second Kind [27, 28], denoted as 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘 , that allow 
transforming the conservation equations from the Cartesian 
to the new coordinate system. They can be obtained after 
carrying out the following scalar multiplication: 

 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑𝐞⃗𝐞 𝐣𝐣 = 𝐞⃗𝐞 𝐤𝐤 ∘ 𝑑𝑑 (
𝜕𝜕𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)) = 𝐞⃗𝐞 

𝐤𝐤 ∘ 𝜕𝜕2𝐫𝐫 
𝜕𝜕𝑥𝑥(𝑗𝑗)𝜕𝜕𝑥𝑥(𝑖𝑖)⏟        
𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =  

 = 𝛤𝛤𝑖𝑖,𝑗𝑗𝑘𝑘  𝑑𝑑𝑥𝑥(𝑖𝑖) (14) 

The individual values of the Christoffel symbols form a 
three-dimensional matrix with 27 components 
(3 x 3 x 3 = 27) and take the form shown in Appendix.  

The formula for the differentiation of velocity related to 
contravariant coordinates is: 

 (𝑑𝑑𝑑𝑑)
𝑘𝑘

𝑑𝑑𝑥𝑥(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗) = 𝛻𝛻𝑖𝑖𝑈𝑈(𝑘𝑘)   where 𝛻𝛻𝑖𝑖 =

𝜕𝜕
𝜕𝜕𝑥𝑥(𝑖𝑖) (15) 

If i = k, then the formula for the divergence of velocity 
is obtained: 

 𝛻𝛻𝑖𝑖𝑈𝑈(𝑖𝑖) =
𝜕𝜕𝑈𝑈(𝑖𝑖)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑖𝑖 𝑈𝑈(𝑗𝑗) (16) 

Hence, in the presented case, it can be written: 

  𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝛤𝛤1,3
1 𝑈𝑈(3) + 𝛤𝛤2,32 𝑈𝑈(3) (17) 

The gradient of any scalar function S in a curvilinear 
system is as follows: 

 𝐬𝐬 = 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑆𝑆 = 𝛁𝛁𝐢𝐢 𝐞⃗𝐞 𝐢𝐢 𝑆𝑆 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 = 𝑠𝑠(𝑖𝑖) 𝐞⃗𝐞 𝐢𝐢 (18) 

in which: 

 𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑗𝑗) 𝑔̃𝑔𝑗𝑗𝑗𝑗 (19) 

and in which: 

 𝑠𝑠(𝑗𝑗) =
𝜕𝜕

𝜕𝜕𝑥𝑥(𝑗𝑗) 𝑆𝑆 (20) 

The substantial derivative of velocity will be: 

 𝑑𝑑𝐔⃗⃗𝐔
 

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝐔⃗⃗𝐔 
𝜕𝜕𝜕𝜕 + 𝐔⃗⃗𝐔 ∘ 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐔⃗⃗𝐔 =

𝜕𝜕𝑈𝑈(𝑘𝑘)

𝜕𝜕𝜕𝜕 𝐞⃗𝐞 𝐤𝐤 + 𝑈𝑈(𝑖𝑖) 𝛻𝛻𝑖𝑖  𝑈𝑈(𝑘𝑘) 𝐞⃗𝐞 𝐤𝐤 =  

 = 𝑈𝑈(𝑖𝑖) (𝜕𝜕𝑈𝑈
(𝑘𝑘)

𝜕𝜕𝑥𝑥(𝑖𝑖) + 𝛤𝛤𝑖𝑖,𝑗𝑗
𝑘𝑘𝑈𝑈(𝑗𝑗)) 𝐞⃗𝐞 𝐤𝐤 (21) .

� (21)

Therefore, the components of the velocity gradient for the 
presented model in a curvilinear system will be as follows:
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (22)
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (23)

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

.� (24)

It should be emphasized that the components of the physi-
cal base, used in the conservation equations, are then similarly 
recalculated, as presented in formula (10):

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

.� (25)
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Now, in the further part of the paper, it is already possible 
to form the conservation equations in a curvilinear coordinate 
system.

2.2. Mass conservation equation. The mass conservation equa-
tion (MassCE) using (16) and (17) will take the following form:

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (26)

where ρ is the density.
It can be proven that the expression in the internal paren-

thesis may be written as follows:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (27)

where det
£
g̃ij
¤
 is the determinant of the contravariant tensor 

given by equation (7), having the following form:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

.� (28)

Thus, after some algebraic transformations, MassCE will 
take the following form:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (29)

and after integration it will be:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) � (30)

where m(x(1)) is the mass flow at the inlet to the blade channel 
(boundary condition for the MassCE).

Finally, MassCE, including (13), will be:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (31)

where ϑ = ϑ(x(1), x(3)) is the non-dimensional blockage factor 
taking the non-zero blade thickness into account.

2.3. Momentum conservation equation. In the presented 
model, the momentum conservation equation (MomCE) is 
Euler’s equation:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (32)

where Π  is generally the body force potential (here it represents 
the gravitational force potential), and p is the pressure. For 
the sake of simplicity, equivalent values will be introduced as 
follows:

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

,� (33a)

hence, MomCE is:
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

.� (33b)

The components of substantial acceleration according to 
formulas (22–25) will be as follows:
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (34)
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 
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√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

� (35)

	

4 

Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 

 𝑠𝑠(2) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈(2)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(2) (𝛤𝛤2,3
2 𝑈𝑈(3)) +  

 𝑈𝑈(3) (𝛤𝛤3,2
2 𝑈𝑈(2)) (23) 

 𝑠𝑠(3) = 𝑈𝑈(3) 𝜕𝜕𝑈𝑈3

𝜕𝜕𝑥𝑥(3) (24) 

It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 
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√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
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𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕
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√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) 

.
� (36)

The gravitational force potential takes the following form 
in the presented case:
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Therefore, the components of velocity gradient for the 
presented model in a curvilinear system will be as follows: 

 𝑠𝑠(1) = 𝑈𝑈(2) (𝛤𝛤2,2
1  𝑈𝑈(2)) + 𝑈𝑈(3) (𝛤𝛤3,3

1  𝑈𝑈(3)) (22) 
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It should be emphasized that the components of the 
physical base, used in the conservation equations, are then 
similarly recalculated as presented in the formula (10): 

 𝑠𝑠𝑥𝑥(𝑖𝑖) = 𝑠𝑠(𝑖𝑖)√𝑔̃𝑔𝑖𝑖𝑖𝑖  (25) 

Now, in further part of the paper, it is already possible 
to form the conservation equations in a curvilinear 
coordinate system. 
 
2.2. Mass Conservation Equation.  Mass Conservation 
Equation (MassCE) using (16) and (17) will take the 
following form: 

𝜌𝜌 𝐝𝐝𝐝𝐝𝐝𝐝𝐔⃗⃗𝐔 = 𝜌𝜌(𝜕𝜕𝑈𝑈(3)

𝜕𝜕𝑥𝑥(3) + 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 )) = 0 (26) 

where 𝜌𝜌 is the density. 
It can be proven that expression in internal parenthesis 

may be written as follows: 

 𝑈𝑈(3) (
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝑓𝑓 ) ≡ 𝑈𝑈(3)

2 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]
𝜕𝜕(𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖])

𝜕𝜕𝑥𝑥(3)  (27) 

where 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] is the determinant of contravariant tensor 
given by equation (7), having the form: 

 𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] =  (𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1))

2
 (28) 

Thus, after some algebraic transformations, MassCE 
will take the following form: 

 1

√𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]

𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖]) = 0 (29) 

and after integration will be: 

 𝜌𝜌 𝑈𝑈(3) √𝑑𝑑𝑑𝑑𝑑𝑑[𝑔̃𝑔𝑖𝑖𝑖𝑖] = 𝑚𝑚(𝑥𝑥(1)) (30) 

where 𝑚𝑚(𝑥𝑥(1)) is the mass flow at the inlet to blade channel 
(boundary condition for the MassCE).  

Finally, MassCE including (13), will be: 

 
(1−𝜗𝜗) 𝜌𝜌 𝑈𝑈𝑥𝑥(3) 𝑓𝑓 | 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)|

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
= 𝑚𝑚(𝑥𝑥(1)) (31) 

where 𝜗𝜗 = 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)) is the non-dimensional blockage 
factor taking into account the non-zero blade thickness. 
 
2.3. Momentum Conservation Equation.  In the 
presented model Momentum Conservation Equation 
(MomCE) is Euler equation: 

 𝜌𝜌 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 = −𝜌𝜌 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 − 𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 (32) 

where 𝛱𝛱 is generally the body force potential (here 
represents the gravitational force potential), and p is the 
pressure. For the sake of simplicity, the equivalent values 
will be introduced as follows: 

 𝑑𝑑𝐔⃗⃗𝐔 
𝑑𝑑𝑑𝑑 ≡ 𝐚⃗𝐚 ;   𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝛱𝛱 ≡ 𝐛𝐛 ;  𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝑝𝑝 ≡ 𝐜𝐜 ,  (33a) 

hence, MomCE is: 

 𝜌𝜌 𝐚⃗𝐚 = −𝜌𝜌 𝐛𝐛 − 𝐜𝐜  (33b) 

The components of the substantial acceleration 
according to the formulas (22–25) will be as follows: 

 𝑎𝑎𝑥𝑥(1) = 𝑎𝑎(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
(−

(𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (34) 

 𝑎𝑎𝑥𝑥(2) = 𝑎𝑎(2)√𝑔̃𝑔22 =
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) (35) 

𝑎𝑎𝑥𝑥(3) = 𝑎𝑎(3)√𝑔̃𝑔33 =
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) 
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 )

 (36) 

The gravitational force potential takes, in the presented 
case, the following form: 

 𝛱𝛱 = 𝛱𝛱 (𝑥𝑥(1), 𝑥𝑥(3)) = 𝑔𝑔(𝑥𝑥(3)cos𝛼𝛼 − 𝑟𝑟 sin𝛼𝛼) (37) � (37)

where: α is the angle between rotation axis and axis of gravita-
tional force (α = –135°), r is the radius (r = f (x(1), x(3))) and 
g is the gravitational acceleration.

Then, the gradient components of this potential, using for-
mulas (19) and (20), will take the following form:
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (38)

	

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (39)
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

.
� (40)
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Similarly, the components of the pressure gradient p(x(1), x(3)) 
take the following form:

	

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (41)
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (42)
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

.
� (43)

Taking account of (32) and (33), the MomCE in three direc-
tions of the curvilinear coordinate system can be written as 
follows:
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (44)

	

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (45)
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

.

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (46)

2.4. Energy conservation equation. Transport of energy in 
a rotating machine between two points takes place by means 
of four energy components: 1) kinetic one, 2) pressure, 3) 
potential and 4) internal energy (if the lack of dissipation is 
assumed, then the internal energy change is zero). Therefore, 
the energy conservation equation (ECE) between two points 
(with the start and end times of t0 and t, respectively), takes 
the following form:
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (47)

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow writ-
ten as follows (it is the so-called Euler’s hydraulic machines 
equation):
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (48)

where Urot is the circumferential (blade) velocity, which is 
given in the following form:
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (49)

where ω is the angular velocity [rad/s], and n is the rotational 
speed [rpm]. In the case of irrotational blades (e.g. guide vanes) 
Urot = 0.

Taking account of formulas (47) and (48), equation of total 
energy at any point of the streamline can be written in the 
following form:

	

5 

where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 
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where: α is the angle between rotation axis and axis of 
gravitational force (α = -135°), 𝑟𝑟 is the radius (𝑟𝑟 =
𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3))), g is the gravitational acceleration. 

Then, the gradient components of this potential, using 
the formulas (19) and (20), will take the following form: 

 𝑏𝑏𝑥𝑥(1) = 𝑏𝑏(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (38) 

 𝑏𝑏𝑥𝑥(2) = 𝑏𝑏(2)√𝑔̃𝑔22 = 0 (39) 

 𝑏𝑏𝑥𝑥(3) = 𝑏𝑏(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (40) 

Similarly, the components of the pressure gradient 
p(𝑥𝑥(1), 𝑥𝑥(3)) take the following form: 

 𝑐𝑐𝑥𝑥(1) = 𝑐𝑐(1)√𝑔̃𝑔11 =
| 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)|

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (41) 

 𝑐𝑐𝑥𝑥(2) = 𝑐𝑐(2)√𝑔̃𝑔22 = 0 (42) 

 𝑐𝑐𝑥𝑥(3) = 𝑐𝑐(3)√𝑔̃𝑔33 = √1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))

 (43) 

Taking into account (32) and (33), the MomCE in three 
directions of the curvilinear coordinate system can be 
written as follows: 

 𝜌𝜌 (−
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) = −
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

(𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) +

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3) (𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (44) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

𝑓𝑓 √1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 𝜕𝜕
𝜕𝜕𝑥𝑥(3) (𝑓𝑓 𝑈𝑈𝑥𝑥(2)) = 0 (45) 

 𝜌𝜌
𝑈𝑈𝑥𝑥(3)

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 (

𝜕𝜕𝑈𝑈𝑥𝑥(3)
𝜕𝜕𝑥𝑥(3) −

𝑈𝑈𝑥𝑥(3) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 ) =  

 = −𝜌𝜌√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) −

√1 + ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
(−

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (46) 

 
2.4. Energy Conservation Equation.  Transport of 

energy in a rotating machine between two points takes 
place by means of four energy components: 1) kinetic, 2) 
pressure, 3) potential, and 4) internal energy (if the lack of 
dissipation is assumed, then the internal energy change is 
zero). Therefore, the Energy Conservation Equation (ECE) 
between two points (with the start and end times, 
respectively: t0, t), takes the following form: 

[1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]
𝑡𝑡

− [1
2 ((𝑈𝑈𝑥𝑥(3))2 +

(𝑈𝑈𝑥𝑥(2))2) + 𝑝𝑝
𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒]

𝑡𝑡0
= 𝑙𝑙 (47) 

where e is the specific internal energy, and l is the specific 
work added (pump) or removed (turbine) to/from the flow 
written as follows (it is the so-called Euler’s hydraulic 
machines equation): 

 𝑙𝑙 = [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡 − [𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟]𝑡𝑡0
 (48) 

where 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 is the circumferential (blade) velocity, which is 
given in the following form: 

 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) = 𝜋𝜋 𝑛𝑛 𝑓𝑓(𝑥𝑥(1),𝑥𝑥(3))
30  (49) 

where 𝜔𝜔 is the angular velocity [rad/s], and 𝑛𝑛 is the 
rotational speed [rpm]. In case of irrotational blades (e.g. 
guide vanes) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 0. 

Taking into account formulas (47) and (48), equation of 
total energy in any point at the streamline can be written in 
the following form: 

 1
2 ((𝑈𝑈𝑥𝑥(3))2 + (𝑈𝑈𝑥𝑥(2))2) − 𝑈𝑈𝑥𝑥(2)𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝

𝜌𝜌 + 𝛱𝛱 + 𝑒𝑒 =

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) (50) 

where 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥(1)) is the total energy at inlet to blade channel 
(boundary condition for ECE). 

� (50)

where etot(x(1)) is the total energy at inlet to the blade channel 
(boundary condition for ECE).

Since ECE is a quadratic equation with respect to tangential 
velocity Ux(2), it is possible that in some cases of an ill-posed 
problem there can be obtained no real solution for this equation 
due to the negative discriminant ∆:
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.� (51)

It may occur when e.g. the blockage factor or/and blade 
loading at the inlet are too high. In such a case, the boundary 
conditions must be modified. If it is difficult to find the proper 
boundary conditions, this may indicate that the meridional shape 
of blade is inappropriate for such boundary conditions. It has 
to be added here that the positive sign in equation (51) is never 
encountered in hydraulic turbines. The circumferential velocity 
Urot of the runner is always larger than tangential velocity Ux(2) 
of flow in velocity triangles.

3.	 Blade shape generation

The method of characteristics was used to solve conservation 
equations because of the hyperbolic type of the set of equa-
tions. It consists of: 1) differentiated ECE with respect to x(3), 
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2) MomCE in x(1) direction, and the total differentials for 3) 
pressure dp and 4) tangential velocity dUx(2). It has to be stressed 
that MassCE is implicitly included. Therefore, the set of equa-
tions can be written as follows:
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 
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The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

6 

Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.

� (53)

By equating this expression to zero, the following charac-
teristics can be obtained:
●	 1st family of characteristics (the family of streamlines along 

which the x(1) coordinate is constant):
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

,� (54)

●	 2nd family of characteristics (the family of orthogonal lines 
to streamlines):

	

6 

Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

,� (55)

●	 3rd family of characteristics (the line of singularity – in 
such a case, the profile turns back, which is practically not 
encountered in hydraulic machines):
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.� (56)

When solving the set of equations (52) with respect to the 
first unknown, an equation along the second family of char-
acteristics is obtained, which allows for solution of the pres-
sure field (further on, it also allows for calculating the velocity 
field) inside the blade area:
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

6 

Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

6 

Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.

� (57)

Skeleton (three-dimensional blade surface) of the guide vane 
or/and runner blade is derived using the equation of the pathline 
of a fluid element. In absolute velocity formulation, it is given 
in Cartesian and curvilinear systems, respectively, as follows:
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

� (58a)
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Since ECE is quadratic equation with respect to 
tangential velocity 𝑈𝑈𝑥𝑥(2) , it is possible that in some cases of 
ill-posed problem there can be obtained no real solution for 
this equation due to the negative discriminant Δ: 

  𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 ∓ √∆ (51) 

It may occur when e.g. the blockage factor or/and blade 
loading at inlet are too high. In such a case the boundary 
conditions must be modified. If it is difficult to find the 
proper boundary conditions, this may indicate that 
meridional shape of blade is inappropriate for such 
boundary conditions. Here, it has to be added that positive 
sign in equation (51) is never encountered in hydraulic 
turbines. The circumferential velocity 𝑈𝑈𝑟𝑟𝑜𝑜𝑜𝑜 of runner is 
always larger than tangential velocity 𝑈𝑈𝑥𝑥(2) of flow in 
velocity triangles. 
 

3. Blade shape generation 

For the solution of conservation equations the method of 
characteristics was used because of hyperbolic type of the 
set of equations. It consists of: 1) differentiated ECE with 
respect to 𝑥𝑥(3), 2) MomCE in 𝑥𝑥(1) direction, and the total 
differentials for 3) pressure dp and 4) tangential velocity 
𝑑𝑑𝑑𝑑𝑥𝑥(2). It has to be stressed that MassCE is implicitly 
included. Therefore, the set of equations can be written as 
follows: 

[
 
 
 
 
 0 1 0 𝜌𝜌(𝑈𝑈𝑥𝑥(2) − 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟)

−
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 0 0

𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) 0 0
0 0 𝑑𝑑𝑥𝑥(1) 𝑑𝑑𝑥𝑥(3) ]

 
 
 
 
 

[
 
 
 
 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝑈𝑈𝑥𝑥(2)
𝜕𝜕𝑥𝑥(3) ]

 
 
 
 
 
 

= 

[
 
 
 
 
 
 
 𝜌𝜌 (−𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑈𝑈𝑥𝑥(3)

𝜕𝜕𝑥𝑥(3) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) + 𝑈𝑈𝑥𝑥(2)

𝜕𝜕𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
𝜕𝜕𝑥𝑥(3))

𝜌𝜌 (− (𝑈𝑈𝑥𝑥(2))
2

𝑓𝑓 +
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 +
1+( 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3))
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈𝑥𝑥(2) ]

 
 
 
 
 
 
 

 (52) 

The main determinant takes the following form: 

𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌 𝑑𝑑𝑑𝑑(1)  ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3) 𝑑𝑑𝑑𝑑(1) +

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝑑𝑑𝑑𝑑(3)) (𝑈𝑈𝑥𝑥(2) −

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟) (53) 

By equating this expression to zero the following 
characteristics can be obtained: 

 1st family of characteristics (the family of 
streamlines along which 𝑥𝑥(1) coordinate is 
constant): 

 𝑑𝑑𝑑𝑑(1) = 0 → 𝑥𝑥(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (54) 

 2nd family of characteristics (the family of 
orthogonal lines to streamlines): 

 𝑑𝑑𝑑𝑑(3)

𝑑𝑑𝑑𝑑(1) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(1)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (55) 

 3rd characteristics (the line of a singularity – in such 
a case the profile turns back what is practically not 
encountered in hydraulic machines): 

 𝑈𝑈𝑥𝑥(2) = 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  (56) 

Solving the set of equations (52) with respect to the first 
unknown, equation along the second family of 
characteristics is obtained, which allows for solution of the 
pressure field (further it allows calculating the velocity 
field) inside the blade area: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥(1) =

𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 (
(𝑈𝑈𝑥𝑥(2))

2

𝑓𝑓 −
(𝑈𝑈𝑥𝑥(3))

2 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2 −

1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1) + 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)) (57) 

Skeleton (three-dimensional blade surface) of the guide 
vane or/and runner blade is derived using Equation of the 
Pathline of a Fluid Element. In absolute velocity 
formulation it is given in Cartesian and curvilinear systems 
respectively as follows: 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈(2)−𝜔𝜔 = 𝑑𝑑𝑥𝑥(3)

𝑈𝑈(3)  (58a) 

 𝑑𝑑𝑥𝑥(2)

𝑈𝑈𝑥𝑥(2)−𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟
=

√1+( 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(3))

2
 

𝑓𝑓     𝑑𝑑𝑥𝑥(3)

𝑈𝑈𝑥𝑥(3)
 (58b) 

In case of irrotational blades ω = 0. 

 

4. Application of the method and boundary 
conditions 

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-

.� (58b)

In the case of irrotational blades ω = 0.

4.	 Application of the method  
and boundary conditions

The presented model was applied to design the guide vane 
and runner blades for the low-head (H = 1.5 m) two-adjust-
able Kaplan turbine model characterized by a fairly high 
specific speed nsq (1), larger than 230, with runner diameter 
D = Ø300 mm. Figure 2 shows the meridional shape used for 
the calculations and its main dimensions. It should be empha-
sized that the meridional shape adopted for the calculations was 
not subject to prior optimization (this is not the subject of this 
paper), therefore, the results obtained should not be considered 
as optimized from the efficiency point of view.

The used method of characterization requires setting bound-
ary conditions at one of the limitations (hub or shroud line) of 
the meridional blade shape. In the case of guide vane design, 

Fig. 2. Schematic meridional view of the low-head Kaplan hydraulic 
turbine model
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some of the orthogonal characteristics to streamlines start at 
the inlet and cover a region denoted as I (limited by lines ABC) 
– Fig. 2. The other orthogonal characteristics start at one of the 
limitations (here: line CD that is the shroud). These character-
istics cover the rest of a blade region denoted as II (limited by 
lines ACDE). Similarly, in the case of runner blade design some 
of the characteristics start at the inlet and cover region I (lim-
ited by curves FGH). The other characteristics start at one of 
limitations (curve HJ), where the characteristics cover the rest 
of the blade, i.e. region II (limited by curves FHJK). However, 
if a zeroth swirl (velocity torque) condition is applied at the 
outlet ( f Ux(2) = 0 → Ux(2) = 0), then a region denoted as III can 
be obtained (limited by curves IJK). Region II is then reduced 
to the one limited by curves FHIK (the characteristics start at 
the HI curve). Figure 2 shows the orthogonal characteristics 
(dashed lines) separating the abovementioned regions.

4.1. Guide vane design. Generally, the guide vanes should 
shut off the flow, which means that they have to be tightly 
closed (this is not the case when designing a Kaplan turbine 
runner). In the case of small hydraulic turbines, the guide vane 
wheel is often the only device that shuts off the water flow. 
The boundary conditions must take account of this require-
ment. This is a constraint that significantly limits the guide vane 
design considerations using the inverse problem. Such a case 
can be achieved using homogeneous radial inflow (radially 
uniformly distributed boundary conditions and streamlines) 
for circumferentially distributed guide vanes (e.g. in a spiral 
casing of a Francis turbine). In the case of an axial turbine, 
this is practically unrealizable, so the guide vane should be 
then modified after the design process. In the presented case, 
the boundary conditions were adopted in such a way so as to 
cause (ensure) the minimum necessary interference in guide 
vane shape achieved using the inverse problem design.

In order to increase outlet velocity in the guide vane, aimed 
at increasing specific speed nsq, the maximum blade thickness 
was moved from the initial part of the guide vane towards 
its center, which was supposed to provide a significant change 
in water flow direction through the guide vanes. This caused 
significant increasing of the blade mean line camber. As it 
has been supposed, on the one hand, inflow with lower inci-
dence was achieved (generally, at the design point the inflow 
should be free of incidence). On the other hand, this provided 
a significant swirl to the water flow (at the runner inlet). As 
a result, large values of optimum opening blade angles (from its 
physical closure) were obtained (about 60° to 70°). Due to the 
above-mentioned reasons, the equation determining ϑ thickness 
was introduced in the following form [29]:
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adjustable Kaplan turbine model characterized by a fairly 
high specific speed nsq (1), larger than 230 with runner 
diameter D = Ø300 mm. Figure 2 shows the meridional 
shape used for calculations and its main dimensions. It 
should be emphasized that the meridional shape adopted 
for calculations was not subject to prior optimization (this 
is not the subject of this paper), therefore, the results 
obtained should not be considered as optimized from 
efficiency point of view. 
 

 
 

Fig. 2. Schematic meridional view of the low-head Kaplan hydraulic 
turbine model 

 
The used method of characteristics requires setting 

boundary conditions at one of limitations (hub or shroud 
line) of the meridional blade shape. In the case of guide 
vane design some of the orthogonal characteristics to 
streamlines start at the inlet and cover a region denoted as I 
(limited by lines ABC) – Figure 2. The other orthogonal 
characteristics start at one of the limitations (here: line CD 
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mentioned reasons, the equation determining ϑ thickness 
was introduced in the following form [29]: 
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 𝑥𝑥(3)̅̅ ̅̅ ̅ (𝑥𝑥(1)) = 𝑥𝑥(3) − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
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and where t1, t2, t3, t4 are the empirical coefficients, and 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3) (𝑥𝑥(1)), 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
(3)  (𝑥𝑥(1)) are the inlet and outlet axial 

coordinates of a streamline, respectively. If we add another 
constraint that maximum thickness 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 is located at 
𝑥𝑥𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚

(3)̅̅ ̅̅ ̅̅ ̅ then some of these coefficient can be calculated in 
the following form: 

 𝑡𝑡3 = 𝑡𝑡2 ( 1
𝑥𝑥𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚

(3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 1) (61) 
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)
−𝑡𝑡2 ( 𝑡𝑡3

𝑡𝑡2+𝑡𝑡3
)

−𝑡𝑡3
 (62) 

According to these two conditions two parameters 
remain independent, namely t2, t4. Parameter t2 controls the 
thickness distribution of guide vane profile. If required, 
maximum thickness can be easy shifted in the streamwise 
direction towards the trailing edge ensuring the increase of 
flow rate and thereby the increase of specific speed nsq. 
Parameter t4 is linearly related to 𝑥𝑥(1) coordinate, thus, it 
controls the thickness change of profile along the spanwise 
direction. In the present case t2, t4, 𝑥𝑥𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

(3)̅̅ ̅̅ ̅̅ ̅, and 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 were 
equal, respectively: 4, -0.2, 0.6, and 0.1. 

� (59)

where 
–
x(3) is the non-dimensional axial coordinate x(3) <0; 1>, 

defined as follows:
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and where t1, t2, t3, t4 are the empirical coefficients, and x(3)
inl (x(1)), 

x(3)
out(x(1)) are the inlet and outlet axial coordinates of a stream-

line, respectively. If we add another constraint that maximum 
thickness ϑmax is located at 

–
x(3)
ϑmax

 then some of these coefficient 
can be calculated in the following form:
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thickness distribution of guide vane profile. If required, 
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According to these two conditions two parameters 
remain independent, namely t2, t4. Parameter t2 controls the 
thickness distribution of guide vane profile. If required, 
maximum thickness can be easy shifted in the streamwise 
direction towards the trailing edge ensuring the increase of 
flow rate and thereby the increase of specific speed nsq. 
Parameter t4 is linearly related to 𝑥𝑥(1) coordinate, thus, it 
controls the thickness change of profile along the spanwise 
direction. In the present case t2, t4, 𝑥𝑥𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

(3)̅̅ ̅̅ ̅̅ ̅, and 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 were 
equal, respectively: 4, -0.2, 0.6, and 0.1. 

.� (62)

According to these two conditions, two parameters remain 
independent, namely t2, t4. Parameter t2 controls the thickness 
distribution of the guide vane profile. If required, maximum 
thickness can be easily shifted in the streamwise direction to-
wards the trailing edge, ensuring the increase of flow rate and 
thereby increase of specific speed nsq. Parameter t4 is linear-
ly related to the x(1) coordinate, thus, it controls the thickness 
change of the profile along the spanwise direction. In the present  
case t2, t4, 

–
x(3)
τmax

, and ϑmax were equal to, respectively: 4, –0.2, 
0.6 and 0.1.

The other parameters used were as follows: volumetric flow 
rate Q = 0.235 m3/s, giving meridional velocity Ux(3) = 2.175 m/s 
(it was uniformly distributed in the spanwise direction), number 
of blades 14, no blade loading at the inlet ( f Ux(2) = 0 m2/s giving 
the mean blade angle α = 90°), and density ρ = 999.1 kg/ m3. 
The number of guide vanes was determined by preceding anal-
ysis using CFD calculations. The streamline function consisted 
of parallel lines. To start the solution on orthogonal charac-
teristics, blade loading at the shroud was assumed using the 
pressure distribution with respect to relative axial coordinate –
x(3) (Fig. 2 – line BD), as follows:
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where pinl = 100000 Pa is the pressure at the inlet (point B), 
Δp = 10000 Pa is the drop pressure along line BD, and 
n = 2.145 is the coefficient. In case of an incompressible 
flow, level of pressure at the inlet is meaningless, because 
of linear dependence of pressure in ECE (47). 

In order to shape three-dimensional blade it was 
necessary to assume the so-called stacking condition, 
which means angular coordinate distribution at the leading 
edge. Since the flow at inlet had no swirl, the lack of 
circumferential inclination seemed to be right assumption 
(𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(2)(𝑥𝑥(1)) = 0). Generally, the stacking condition can be 
assumed anywhere in the meridional plane (including the 
trailing edge). 

As a result of the inverse problem solution the guide 
vane is slightly twisted radially. Despite the uniform 

boundary conditions, a radius change implicitly influences 
the blade shape, what is contained in the momentum 
conservation equation [30]. The obtained parameters of the 
guide vane at the outlet were as follows: the mean 
tangential velocity 𝑈𝑈𝑥𝑥(2)  = 4.11 m/s, and the mean 
meridional velocity 𝑈𝑈𝑥𝑥(3) = 2.17 m/s. Figure 3 shows the 
blade of single guide vane and guide vane wheel of the 
Kaplan turbine model and Figure 4 shows the results of 
pressure, meridional and tangential velocities obtained 
using the presented model (visually stretched from axi-
radial (see Figure 2) to axial inflow direction). It should be 
highlighted that this is axisymmetric model, therefore the 
results represent the mean values in circumferential 
direction. 
 

 
Fig. 3. Views of the single guide vane blade and guide vane wheel of the 

low-head Kaplan hydraulic turbine model. 
 

 

 

Fig. 4. Contours of the pressure, meridional and tangential velocities in guide vane channel obtained using the inverse problem method  
(stretched from axi-radial to axial inflow direction). 

 

4.2. Runner blade design.  Generally, in order to increase 
the flow rate (to increase the specific speed), a meridional 
length of blade should tend to decrease what causes the 
increase of torque. The applied meridional shape (Figure 2) 
was supposed to ensure a high specific speed larger than 
nsq = 230. The calculated blade and the entire runner wheel 

are shown in Figure 5 and in Figure 6, respectively. At the 
outlet, no swirl condition was set, i.e. the tangential 
velocity was assumed to be 𝑈𝑈𝑥𝑥(2) = 0 m/s. This assumption 
theoretically ensures maximizing the efficiency, what 
results from the Euler’s hydraulic turbines equation. 

� (63)
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level of pressure at the inlet is meaningless because of the linear 
dependence of pressure in ECE (47).

In order to shape the three-dimensional blade, it was neces-
sary to assume the so-called stacking condition, which means 
angular coordinate distribution at the leading edge. Since the 
flow at inlet had no swirl, the lack of circumferential inclination 
seemed to be the right assumption (x(2)

inl (x(1)) = 0). Generally, 
the stacking condition can be assumed anywhere in the merid-
ional plane (including the trailing edge).

As a result of the inverse problem solution, the guide vane 
is slightly twisted radially. Despite the uniform boundary con-
ditions, a radius change implicitly influences the blade shape, 
which is included in the momentum conservation equation [30]. 
The obtained parameters of the guide vane at the outlet were 
as follows: mean tangential velocity Ux(2) = 4.11 m/s and mean 
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meridional velocity Ux(3) = 2.17 m/s. Figure 3 shows the blade 
of a single guide vane and guide vane wheel of the Kaplan tur-
bine model, and Fig. 4 shows the results of pressure, meridional 
and tangential velocities obtained using the model presented 
(visually stretched from axi-radial (see Fig. 2) to axial inflow 
direction). It should be highlighted that this is an axisymmetric 
model, therefore the results represent the mean values in cir-
cumferential direction.

4.2. Runner blade design. Generally, in order to increase the 
flow rate (to increase the specific speed), a meridional length 
of the blade should tend to decrease what causes the increase 
of torque. The applied meridional shape (Fig. 2) was supposed 
to ensure a high specific speed larger than nsq = 230. The cal-
culated blade and the entire runner wheel are shown in Fig. 5 
and in Fig. 6, respectively. At the outlet, no swirl condition was 

Fig. 3. Views of the single guide vane blade and guide vane wheel of 
the low-head Kaplan hydraulic turbine model

Fig. 4. Contours of the pressure, meridional and tangential velocities 
in guide vane channel obtained using the inverse problem method 

(stretched from axi-radial to axial inflow direction)

Fig. 5. View of the runner blade of the Kaplan hydraulic turbine model

Fig. 6. Views of the runner blade wheel of the Kaplan hydraulic turbine 
model
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set, i.e. tangential velocity was assumed to be Ux(2) = 0 m/s. This 
assumption theoretically ensures maximizing the efficiency, 
which results from Euler’s hydraulic turbines equation.

As a blockage factor required for the mass conservation 
equation (31) the Göttingen 428 profile thickness was used 
– half the thickness on the suction side and half the thickness 
on the pressure side was distributed. In the case of a low-head 
Kaplan turbine runner, the impact of the thickness distribution 
is relatively small so that it practically has no influence on the 
flow rate unlike the guide vane, in whose case the thickness 
distribution plays a key role. Thus, there was no need to intro-
duce a function defining the thickness distribution ϑ(x(1), x(3)).

The number of blades was determined on the basis of anal-
ysis of similar low-head Kaplan hydraulic turbine solutions and 
it was assumed to stand at 3. Such a small number of blades 
should ensure a large mass flow rate, which characterizes 
machines with a high specific speed (nsq > 230), concurrently 
achieving relatively high efficiency (>86%).

The other boundary conditions and assumptions for the cal-
culations are presented below. The streamline function was:
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Fig. 6. Views of the runner blade wheel of the Kaplan hydraulic turbine 

model. 
 
The other boundary conditions and assumptions for the 
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was: 
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𝑏𝑏1)𝑥𝑥(1))𝑥𝑥(3) + (𝑐𝑐1 + (𝑐𝑐2 − 𝑐𝑐1)𝑥𝑥(1))(𝑥𝑥(3))2 (64) 

where 𝑎𝑎1 = -2.11527, 𝑎𝑎2 = 0.1505, 𝑏𝑏1 = 9.72219, 𝑏𝑏2 = 0, 
𝑐𝑐1 = -10.897, and 𝑐𝑐2 = 0. These coefficients are dependent 
on the meridional shape of blade and were obtained in the 
following way. Firstly, two streamline functions of the 
same pattern 𝑓𝑓 = 𝑓𝑓(𝑥𝑥(3)) for hub and shroud lines had to 
be found separately. In considered example, this pattern 
was a quadratic function: 𝑓𝑓(𝑥𝑥(3)) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2

. 
These streamline functions were found using the Least 
Square Method. Secondly, each coefficient (for hub: a1, b1, 

c1 and for shroud: a2, b2, c2) was linearly approximated 
across the spanwise direction with respect to 𝑥𝑥(1) 
coordinate, which changed within the range of <0;1>. Thus, 
the family of two-dimensional streamlines 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) 
was obtained. 

The other parameters were assumed as follows: the 
turbine head H = 1.5 m, the rotational speed n = 810 rpm, 
and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
(2) = 𝑎𝑎 + 𝑏𝑏 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) + 𝑐𝑐 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
2 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) +

𝑑𝑑 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
3 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) (67) 

where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 
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and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
(2) = 𝑎𝑎 + 𝑏𝑏 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
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𝑑𝑑 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
3 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) (67) 

where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 
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As a blockage factor required to the mass conservation 
equation (31) the Göttingen 428 profile thickness was used 
– half the thickness on the suction side and half the 
thickness on the pressure side was distributed. In the case 
of a low-head Kaplan turbine runner, the impact of the 
thickness distribution is relatively small so that it 
practically has no influence on the flow rate unlike the 
guide vane case, in which the thickness distribution plays a 
key role. Thus, there was no need to introduce a function 
defining the thickness distribution 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)). 

The number of blades was determined on the basis of 
analysis of similar low-head Kaplan hydraulic turbine 
solutions and it was assumed to be of 3. Such a small 
number of blades should ensures a large mass flow rate, 
which characterizes machines with a high specific speed 
(nsq > 230), concurrently achieving relatively high 
efficiency (>86%). 
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model. 
 
The other boundary conditions and assumptions for the 

calculations are presented below. The streamline function 
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was a quadratic function: 𝑓𝑓(𝑥𝑥(3)) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2

. 
These streamline functions were found using the Least 
Square Method. Secondly, each coefficient (for hub: a1, b1, 

c1 and for shroud: a2, b2, c2) was linearly approximated 
across the spanwise direction with respect to 𝑥𝑥(1) 
coordinate, which changed within the range of <0;1>. Thus, 
the family of two-dimensional streamlines 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) 
was obtained. 

The other parameters were assumed as follows: the 
turbine head H = 1.5 m, the rotational speed n = 810 rpm, 
and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 
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where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 
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where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 

� (64)

where a1 = –2.11527, a2 = 0.1505, b1 = 9.72219, b2 = 0, 
c1 = –10.897, and c2 = 0. These coefficients are dependent 
on the meridional shape of the blade and were obtained in the 
below-described manner. Firstly, two streamline functions of 
the same pattern f  =  f (x(3)) for hub and shroud lines had to 
be found separately. In the example considered, this pattern 
was a quadratic function: f (x(3)) = a + bx(3) + c(x(3))2. These 
streamline functions were found using the least squares method. 
Secondly, each coefficient (for hub: a1, b1, c1 and for shroud: 
a2, b2, c2) was linearly approximated across the spanwise direc-
tion with respect to the x(1) coordinate, which changed within 
the range of <0; 1> Thus, the family of two-dimensional 
streamlines f (x(1), x(3)) was obtained.

The other parameters were assumed as follows: the turbine 
head H = 1.5 m, the rotational speed n = 810 rpm, and the den-
sity ρ = 999.1 kg/m3. The assumed head strictly influences the 
Euler’s hydraulic machines equation presented in (48) because 
the specific work l of a turbine may be expressed as follows:
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As a blockage factor required to the mass conservation 
equation (31) the Göttingen 428 profile thickness was used 
– half the thickness on the suction side and half the 
thickness on the pressure side was distributed. In the case 
of a low-head Kaplan turbine runner, the impact of the 
thickness distribution is relatively small so that it 
practically has no influence on the flow rate unlike the 
guide vane case, in which the thickness distribution plays a 
key role. Thus, there was no need to introduce a function 
defining the thickness distribution 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)). 

The number of blades was determined on the basis of 
analysis of similar low-head Kaplan hydraulic turbine 
solutions and it was assumed to be of 3. Such a small 
number of blades should ensures a large mass flow rate, 
which characterizes machines with a high specific speed 
(nsq > 230), concurrently achieving relatively high 
efficiency (>86%). 
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same pattern 𝑓𝑓 = 𝑓𝑓(𝑥𝑥(3)) for hub and shroud lines had to 
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was a quadratic function: 𝑓𝑓(𝑥𝑥(3)) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2

. 
These streamline functions were found using the Least 
Square Method. Secondly, each coefficient (for hub: a1, b1, 

c1 and for shroud: a2, b2, c2) was linearly approximated 
across the spanwise direction with respect to 𝑥𝑥(1) 
coordinate, which changed within the range of <0;1>. Thus, 
the family of two-dimensional streamlines 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) 
was obtained. 

The other parameters were assumed as follows: the 
turbine head H = 1.5 m, the rotational speed n = 810 rpm, 
and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
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3 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) (67) 

where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 

� (65)

where ηh is the hydraulic efficiency, g is the gravitational accel-
eration, and ∆p is the static pressure difference between inlet 
(before guide vane wheel) and outlet (behind the draft tube) 
of the turbine. Thus, it is yet another constraint in ECE that is 
required to be satisfied.

To start the solution on orthogonal characteristics,  blade 
loading at hub was assumed using the swirl distribution with 

respect to axial coordinate x(3) (Fig. 2 – curve GHIJ), as fol-
lows:
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solutions and it was assumed to be of 3. Such a small 
number of blades should ensures a large mass flow rate, 
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was obtained. 
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influences the Euler’s hydraulic machines equation 
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between inlet (before guide vane wheel), and outlet (behind 
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ECE that is required to be satisfied. 
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flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
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which characterizes machines with a high specific speed 
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where 𝑎𝑎1 = -2.11527, 𝑎𝑎2 = 0.1505, 𝑏𝑏1 = 9.72219, 𝑏𝑏2 = 0, 
𝑐𝑐1 = -10.897, and 𝑐𝑐2 = 0. These coefficients are dependent 
on the meridional shape of blade and were obtained in the 
following way. Firstly, two streamline functions of the 
same pattern 𝑓𝑓 = 𝑓𝑓(𝑥𝑥(3)) for hub and shroud lines had to 
be found separately. In considered example, this pattern 
was a quadratic function: 𝑓𝑓(𝑥𝑥(3)) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2

. 
These streamline functions were found using the Least 
Square Method. Secondly, each coefficient (for hub: a1, b1, 

c1 and for shroud: a2, b2, c2) was linearly approximated 
across the spanwise direction with respect to 𝑥𝑥(1) 
coordinate, which changed within the range of <0;1>. Thus, 
the family of two-dimensional streamlines 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) 
was obtained. 

The other parameters were assumed as follows: the 
turbine head H = 1.5 m, the rotational speed n = 810 rpm, 
and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
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(3)) +

𝑑𝑑 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
3 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) (67) 

where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 
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where a = 43495, b = – 478118, c = 2099428, d = – 4602353, 
e = 5036135, and f  = – 2200210. The presented function 
allows to calculate the blade loading at hub in region II. How-
ever, it is restricted due to the constraints. In regions I and III 
the flow field is calculated using equation (57) in advance. This 
means that the swirl at points H and I is known. Therefore, 
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Fig. 7. The stacking condition at the runner inlet used to blade shape 
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The stacking condition used in skeleton calculations was 
assumed as a function of angular coordinate x(2) at the runner 
inlet with respect to radius f (the streamline function at the inlet 
– see (3)) – Fig. 7. This function was adopted as a 3-degree 
polynomial, in which the angular coordinate of the lowest and 
the highest radius is equal to 0°, and additionally in 1/3 and 2/3 
of the leading edge length it is equal to 5°:
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where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 
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blade loading at hub was assumed using the swirl 
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– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
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between inlet (before guide vane wheel), and outlet (behind 
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means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
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was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
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as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
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additionally in 1/3 and 2/3 of the leading edge length is 
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where a = – 0.23564735, b = 7.24726878, c = – 41.77212782, 
and d = 26.71933415. Such assumption requires some experi-
ence from the designer because it has no mathematical basis 
while calculating the blade using the inverse problem method. 
In such a case, the CFD calculations can be indispensable to 
evaluate influence of the stacking condition on flow parameters.

The obtained mean velocities of the runner blade at the 
inlet were as follows: tangential velocity Ux(2) = 1.69 m/s and 
meridional velocity Ux(3) = 3.55 m/s. Respectively, at the outlet 
meridional velocity was Ux(3) = 3.5 m/s.
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Figure 8 shows the results of pressure, meridional and tan-
gential velocities obtained in the runner blade channel using 
the model presented. The results indicate a tendency for flow 
separation on the hub nearby the outlet zone (as mentioned, 
the meridional shape was not subject to optimization), which 
should/could be the subject of further blade shape optimization, 
e.g. using CFD tools.

5.	 CFD investigations and results

CFD calculations were carried out for the designed flow sys-
tem, and their computational domain is shown in Fig. 9. The 
calculations were made for a wide range of changes of the 
guide vane opening, the runner opening and the rotational 
speed, in which as it had been supposed the BEP should sub-
sequently appear. Therefore, 4 settings of the runner blades: 
14°, 16°, 18°, 20° were used for the calculations, and in each 
of the mentioned settings the following 5 guide vane settings: 
55°, 60°, 65°, 70°, 75° were used, and additionally for each 

the runner and guide vane settings different rotational speeds: 
550, 610, 670, 730, 790, 850, 910 and 970 rpm were assumed 
(in total, 4£5£8 = 160 computational cases were analyzed). 
Based on this, the optimal work point has been estimated.

Figure 9 also shows reference cross-sections (inlet and out-
let) that were used to define efficiency of the f low system. The 
efficiency was defined as follows:
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 𝜂𝜂 = 𝑀𝑀𝑀𝑀
𝑄𝑄 ρ g H (68) 

where M is the shaft moment [Nm], ω is the rotational 
velocity [rad/s], Q is the volumetric flow rate [m3/s], ρ is 
the density [kg/m3], g is the gravitational acceleration 
[m/s2], and H is the head [m] between the reference cross-
sections defined as follows: 

 𝐻𝐻 = 𝑝𝑝1−𝑝𝑝2
𝜌𝜌 𝑔𝑔 + 𝑉𝑉1

2−𝑉𝑉2
2

2 𝑔𝑔  (69) 

where p1, p2 are the pressures at inlet and outlet reference 
cross-sections, respectively (Fig. 9), V1 is the mean velocity 
at inlet reference cross-section: V1 = Q/A1, V2 is the mean 
velocity at outlet reference cross-section: V2 = Q/A2, and 
A1, A2 are the areas of inlet and outlet reference cross-
sections, respectively. 

Computational mesh were made using two NUMECA 
programs: AutoGrid5™ and Hexpress™. The number of 
mesh nodes (entirely hexahedral) was ~20 million. The 
mesh was made according to requirements of the turbulent 
model k-ω SST used to calculations, for which the value of 
dimensionless distance from the wall Y+ has to be in range 
of 1÷3. It should be added that the runner tip gap had not 
been modelled, and as a result, the efficiency was expected 
not to contain volumetric losses. The calculations were 

� (68)
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where ∆p is the pressure difference between inlet and outlet 
reference cross-sections (Fig. 9), V1 is the mean velocity at inlet 

Fig. 8. Contours of the pressure, meridional and tangential velocities in runner blade channel obtained using the inverse problem method

Fig. 9. Views of the computational domain used to CFD calculation and the blades passage
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As a blockage factor required to the mass conservation 
equation (31) the Göttingen 428 profile thickness was used 
– half the thickness on the suction side and half the 
thickness on the pressure side was distributed. In the case 
of a low-head Kaplan turbine runner, the impact of the 
thickness distribution is relatively small so that it 
practically has no influence on the flow rate unlike the 
guide vane case, in which the thickness distribution plays a 
key role. Thus, there was no need to introduce a function 
defining the thickness distribution 𝜗𝜗(𝑥𝑥(1), 𝑥𝑥(3)). 

The number of blades was determined on the basis of 
analysis of similar low-head Kaplan hydraulic turbine 
solutions and it was assumed to be of 3. Such a small 
number of blades should ensures a large mass flow rate, 
which characterizes machines with a high specific speed 
(nsq > 230), concurrently achieving relatively high 
efficiency (>86%). 

 

 
Fig. 5. View of the runner blade of the Kaplan hydraulic turbine model. 

 

 
Fig. 6. Views of the runner blade wheel of the Kaplan hydraulic turbine 

model. 
 
The other boundary conditions and assumptions for the 

calculations are presented below. The streamline function 
was: 
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where 𝑎𝑎1 = -2.11527, 𝑎𝑎2 = 0.1505, 𝑏𝑏1 = 9.72219, 𝑏𝑏2 = 0, 
𝑐𝑐1 = -10.897, and 𝑐𝑐2 = 0. These coefficients are dependent 
on the meridional shape of blade and were obtained in the 
following way. Firstly, two streamline functions of the 
same pattern 𝑓𝑓 = 𝑓𝑓(𝑥𝑥(3)) for hub and shroud lines had to 
be found separately. In considered example, this pattern 
was a quadratic function: 𝑓𝑓(𝑥𝑥(3)) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2

. 
These streamline functions were found using the Least 
Square Method. Secondly, each coefficient (for hub: a1, b1, 

c1 and for shroud: a2, b2, c2) was linearly approximated 
across the spanwise direction with respect to 𝑥𝑥(1) 
coordinate, which changed within the range of <0;1>. Thus, 
the family of two-dimensional streamlines 𝑓𝑓(𝑥𝑥(1), 𝑥𝑥(3)) 
was obtained. 

The other parameters were assumed as follows: the 
turbine head H = 1.5 m, the rotational speed n = 810 rpm, 
and the density ρ = 999.1 kg/m3. The assumed head strictly 
influences the Euler’s hydraulic machines equation 
presented in (48) because the specific work l of a turbine 
may be expressed as follows: 

 𝑙𝑙 = 𝜂𝜂ℎ 𝑔𝑔 𝐻𝐻 = 𝜂𝜂ℎ
∆𝑝𝑝
𝜌𝜌  (65) 

where ηh is the hydraulic efficiency, g is the gravitational 
acceleration, and Δp is the static pressure difference 
between inlet (before guide vane wheel), and outlet (behind 
the draft tube) of turbine. Thus, it is another constraint in 
ECE that is required to be satisfied. 

To start the solution on orthogonal characteristics the 
blade loading at hub was assumed using the swirl 
distribution with respect to axial coordinate 𝑥𝑥(3) (Figure 2 
– curve GHIJ), as follows: 

𝑓𝑓 𝑈𝑈𝑥𝑥(2) = 𝑎𝑎 + 𝑏𝑏𝑥𝑥(3) + 𝑐𝑐(𝑥𝑥(3))2 + 𝑑𝑑(𝑥𝑥(3))3 + 𝑒𝑒(𝑥𝑥(3))4 +

𝑓𝑓(𝑥𝑥(3))5
 (66) 

where a = 43495, b = -478118, c = 2099428, d = -4602353, 
e = 5036135, and f = -2200210. Presented function allows 
calculating the blade loading at hub in region II. However, 
it is restricted due to the constraints. In regions I and III the 
flow field is calculated using equation (57) in advance. This 
means that the swirl in points H and I is known. Therefore, 
as mentioned the function is used only in region II (between 
points H and I) and its shape is strictly dependent on a 
solution obtained in regions I and III. On this basis, the 
coefficients using the Least Square Method were found. 

The stacking condition used in skeleton calculations 
was assumed as a function of angular coordinate 𝑥𝑥(2) at the 
runner inlet with respect to radius f (the streamline function 
at the inlet – see (3)) – Figure 7. This function was adopted 
as a 3-degree polynomial, in which the angular coordinate 
of the lowest and the highest radius is equal 0°, and 
additionally in 1/3 and 2/3 of the leading edge length is 
equal 5°: 

 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
(2) = 𝑎𝑎 + 𝑏𝑏 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) + 𝑐𝑐 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
2 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) +

𝑑𝑑 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖
3 (𝑥𝑥(1), 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

(3)) (67) 

where a = -0.23564735, b = 7.24726878, c = -41.77212782, 
and d = 26.71933415. Such assumption requires some 
experience from the designer because it has no 
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reference cross-section: V1 = Q/A1, V2 is the mean velocity 
at outlet reference cross-section: V2 = Q/A2, and A1, A2 are the 
areas of inlet and outlet reference cross-sections, respectively.

Computational mesh was made using two NUMECA pro-
grams: AutoGrid5™ and Hexpress™. The number of mesh 
nodes (entirely hexahedral) was »20 million. The mesh was 
made according to the requirements of the turbulent model k-ω 
SST used for calculations, for which the value of dimensionless 
distance from the wall Y+ has to be in range of 1–3. It should 
be added that the runner tip gap had not been modelled, and 
as a result, the efficiency was expected not to take account 
of volumetric losses. The calculations were performed using 
ANSYS/Fluent™ 15 (second order discretization scheme, steady 
flow). The boundary conditions applied in the calculations were 
the following (flow forced by pressure difference): total pressure 
at inlet to the computational domain: »15 500 Pa, and static 
pressure at outlet from the computational domain: 0 Pa.

As a result of calculations, the following kinematic and 
flow parameters in the BEP were obtained: the rotational speed 
n = 790 rpm, the volumetric flow rate Q = 0.194 m3/s, turbine 
efficiency η = 90.1%, the guide vane opening angle α = 61°, 
the runner opening β  = 15°, the kinematic specific speed 
nsq = »259 (dynamic: »900), the double reduced rotational 
speed nI

I  = 194 rpm (nI
I = nD/H 0.5), and the double reduced 

volumetric flow rate QI
I = 1.77 m3/s (QI

I = Q/ (D2H 0.5)). The 
double reduced quantities indicate the rotational speed and the 
flow rate of a turbine with the runner diameter of 1 m operating 
under the head of 1 m.

6.	 Experimental investigations and results

The performance investigations were carried out at the test 
stand at the Institute of Fluid-Flow Machinery (IMP PAN) in 

Gdańsk, Poland. Schematic diagrams of the test stand and of the 
Kaplan hydraulic turbine are presented in Fig. 10 and Fig. 11, 
respectively. In Fig. 11, the pressure manifolds in reference 
cross-sections used for pressure difference collection required 
for efficiency definition (68) were presented. The locations 
of the reference cross-sections were similar as those used in 
CFD calculation. The characteristic diameter of the runner was 

Fig. 10. Schematic of the test stand for hydraulic turbines investigations in IMP PAN with the low-head Kaplan turbine model installed

Fig. 11. View of the low-head Kaplan hydraulic turbine model installed 
at the test stand



1144

Z. Krzemianowski

Bull.  Pol.  Ac.:  Tech.  67(6)  2019

assumed to be D = Ø300 mm. The other dimensions of the flow 
elements were determined in accordance with this diameter. The 
straight long intake pipeline was ended with a 45° curved elbow. 
Behind it, the water flowed directly to the axial blade system of 
the stationary and adjustable guide vanes, and the runner. The 
shaft connecting the turbine (up to 5 kW) and generator (via 
torque transducer) was led upstream outside. The inlet diam-
eter before the guide vanes was Ø390 mm. Behind the runner, 
an axisymmetric draft tube with an opening angle of 12°, and 
of the length of more than 3 runner diameters (which is the 
recommended minimum) was installed. The angle mentioned 
was established on the basis of numerical experiments, which 
showed that it should ensure no flow separation at the wall. The 
correct selection of this angle may significantly improve overall 
hydro unit operation because, in the case of a low-head turbine, 
it is a crucial issue for maximizing efficiency due to the optimum 
energy recovery of static pressure (reduction of outlet loss).

The investigations were carried out at head H = 1.5 m for 
9 angular settings of the runner blades, namely: 9°, 12°, 14°, 

16°, 18°, 20°, 22°, 24° and 26°. The mentioned angular settings 
are understood as the angles of attack at the top radius. For 
each runner blade setting, the guide vanes was adjusted every 
5°. The range of variation was dependent on the runner blade 
setting. For setting 9°, the guide vanes were adjusted within the 
range of 35°–75° from their physical closure, while for 26°, the 
guide vanes were adjusted from 45° to 80°. At the given guide 
vanes and runner settings, tests were conducted by changing the 
rotational speed of the turbine from the smallest to the largest 
values every ca. 50 rpm (within the range of 400–980 rpm). 
The rotational speed of turbine was controlled by changing 
(by means of frequency converters) the rotational speed of 
circulation pumps. In total, over 800 measuring points were 
made. As a result of the experimental tests, the so-called shell 
characteristics were obtained, which is the efficiency diagram 
related to the double reduced rotational speed nI

I , and the double 
reduced volumetric flow rate QI

I.
The obtained shell characteristics are shown in Fig. 12. 

The following performance parameters were achieved in 

Fig. 12. The shell characteristics of the low-head Kaplan hydraulic turbine model
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the BEP: rotational speed n = 788 rpm, volumetric f low 
rate Q = 0.2053 m3/s, turbine efficiency η = 88.3%, guide 
vane angle α = 65°, runner opening β = 16°, kinematic spe-
cific speed nsq = »260 (1), double reduced rotational speed 
nI

I = 193 rpm and double reduced volumetric f low rate 
QI

I = 1.862 m3/s.
The efficiency obtained should be objectively regarded as 

more than good at this scale of a model machine character-
ized by such a high specific speed, for which obtaining rela-
tively high efficiency is fairly difficult due to the cavitation. It 
should be stressed that at the optimum point of work it was not 
observed. The design of the turbine with larger specific speed 
nsq is a very difficult task due to this phenomenon, which is 
dangerous for the machine life.

In comparison to CFD calculations, the level of efficiency 
obtained is lower by about 1.8%, however the runner tip gap had 
not been modelled, as a result of which numerical efficiency is 
expectedly overestimated by including volume losses (it is com-
monly accepted that they are in the range of 1–2%). Therefore, it 
should be acknowledged that the maximum efficiency obtained 
in the numerical way was approximated in a satisfactory manner 
along with the double-reduced parameters and specific speed.

Cavitation is a very dangerous phenomenon occurring in 
hydraulic machines that can lead to destruction of flow ele-
ments (the runner is most exposed to cavitation erosion). Its 
prediction is a key design issue. Figure 13 shows the calculated 
local (in grid points) cavitation number σ in the runner (this is 
the so-called Thoma number), which was defined as follows:
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The efficiency obtained should be objectively regarded 

as more than good at this scale of a model machine 
characterized by such a high specific speed, and for which 
obtaining relatively high efficiency is fairly difficult due to 
the cavitation. It should be stressed that at the optimum 
point of work it was not observed. The design of the turbine 
with a larger specific speed nsq is a very difficult task due 
to this phenomenon, which is dangerous for the machine 
life. 

In comparison to CFD calculations, the level of 
efficiency obtained is lower by about 1.8%, however the 
runner tip gap had not been modelled, as a result of which 
the numerical efficiency is expectedly overestimated by 
volume losses (it is commonly accepted that they are in 
range of 1÷2%). Therefore, it should be acknowledged that 
the maximum efficiency obtained in the numerical way was 
approximated in a satisfactory manner, as well as the 
double-reduced parameters and the specific speed.  

Cavitation is a very dangerous phenomenon occurring 
in hydraulic machines that can lead to destruction of flow 
elements (the runner is the most exposed to cavitation 
erosion). Its prediction is a key design issue. Figure 13 
shows the calculated local (in grid points) cavitation 
number σ in the runner (this is the so-called Thoma 
number), which was defined as follows: 

 𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝑝𝑝𝑖𝑖,𝑗𝑗 + 12 𝜌𝜌 𝑐𝑐𝑖𝑖,𝑗𝑗  
2 − 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣

1
2 𝜌𝜌𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟  

2  (70) � (70)

where i, j are the indices of a local grid point in the streamline 
and spanwise directions, pi, j and ci, j are the pressure and veloc-

ity in a local grid point, respectively, pvap is the vapour pressure, 
Urot is the maximum blade velocity and ρ is the density.

Thoma number determines how the hydraulic turbine runner 
should be positioned relative to the tailwater level. Experimen-
tal investigations indicate that cavitation will not occur if the 
so-called suction height Hs does not exceed the value defined 
by inequality [31]:

	

13 

where i, j are the indexes of a local grid point in streamline 
and spanwise directions, 𝑝𝑝𝑖𝑖,𝑗𝑗 and 𝑐𝑐𝑖𝑖,𝑗𝑗 are respectively the 
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ρ is the density. 

Thoma number determines how the hydraulic turbine 
runner should be positioned relative to a tailwater level. 
Experimental investigations indicate that cavitation will 
not occur if the so-called suction height Hs does not exceed 
the value defined by inequality [31]: 

 𝐻𝐻𝑠𝑠 ≤ 13.6 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏
1000 −
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where 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 is the barometric pressure [mmHg], and H is 
the head [m]. Note that the vapour pressure 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 is 
expressed in [Pa]. For calculated mean value of σ = 1.28, 
and 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏  = 760 mmHg, 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣 = 1704 Pa, and H = 1.5 m, the 
suction head Hs is ca. 8 m. This means that runner can be 
located 8 m above the tailwater level without the 
occurrence of cavitation phenomenon (such value is very 
favourable). As it can be seen (Figure 13), the largest 
values occur in the inlet region of the blade due to high 
velocities. In the outlet region, the influence of zero swirl 
condition (boundary condition) is clearly visible. 
 

 

Fig. 13. Cavitation number distribution in the runner. 
 

7. Discussion and conclusions 

The inverse problem based on the hodograph theory for the 
low-head Kaplan hydraulic turbine model characterized by 
a high specific speed has been presented. In particular, its 
principles based on a curvilinear coordinate system have 
been shown. Such approach significantly simplifies the 
conservation equations and thus significantly simplifies the 
way of solving them. The solution of the problem, using the 
characteristics method, leads to three-dimensional 
geometry of a blade. The method is derived for a zero blade 
thickness, but concurrently the blockage factor introduced 

into the mass conservation equation is taken into account, 
so that it affects the meridional velocity related to mass 
flow rate. 

To validate the presented method, the guide vane and 
runner blade design of the Kaplan hydraulic turbine model 
was created. As a result, relatively high efficiency flow 
system was obtained (numerically and experimentally 
confirmed). Adoption of a meridional shape highly 
depends on rotational specific speed nsq (as a combination 
of rotational speed, flow rate and head), which in advance 
predetermines a shape that only can change within small 
range. This requires some experience from the designer. In 
the presented case, the meridional shape was used, which 
corresponds to a high specific speed low-head Kaplan 
turbine. The obtained very good efficiency 88.3% (no 
cavitation phenomenon was observed in the BEP) of a 
turbine during experimental research indicates correctness 
of the formulated design problem (BEP was characterized 
by a very high specific speed nsq = ~260). 

The usefulness and robustness of the method is strictly 
limited to the well-posed boundary conditions. The 
boundary conditions determining the blade loading may be 
implemented by means of swirl or pressure distribution 
along one of the meridional channel limitations (hub or 
shroud). This distribution is based on strict assumptions 
(constraints) at the inlet and outlet of a blade, resulting from 
hydraulic turbines theory. It should ensure a small margin 
of error in setting such a kind of boundary condition. Such 
condition can be optimized e.g. to maximize efficiency. 
Additionally, well-posed boundary conditions (which 
means that they exist, are unique and continuous) are a key 
to achieving the solution. If the problem is ill-posed, no real 
solution can be obtained due to the quadratic dependency 
of tangential velocity in energy conservation equation. The 
blockage factor, which accelerates the flow, has also a big 
influence on the solution obtained. Generally, the smaller 
number of blades the smaller influence of a blockage factor 
can be observed, so in the case of a runner blade (of a low-
head Kaplan turbine) it is insignificant but in the case of a 
guide vane it is of an important meaning. 

The presented method can be applied to other types of 
hydraulic machines (Francis turbines, axial and mixed flow 
pumps). Its usage allows conducting quick engineering 
blade design of a rotating machine. Because this is the 
inverse problem method, so the blade is designed for the 
optimal point of operation (BEP). Then, it seems necessary 
to check such a solution using commercial software CFD, 
in order to avoid a large mistake and additionally, to check 
the performance at off-design points of operation. 
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(such value is very favorable). As it can be seen (Fig. 13), the 
largest values occur in the inlet region of the blade due to high 
velocities. In the outlet region, influence of the zero swirl con-
dition (boundary condition) is clearly visible.
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specific speed has been presented. In particular, its principles 
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tions and thus significantly simplifies the way of solving them. 
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leads to three-dimensional geometry of a blade. The method is 
derived for zero blade thickness, but concurrently the blockage 
factor introduced into the mass conservation equation is taken 
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cific speed low-head Kaplan turbine. The very good efficiency 
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obtained for the turbine during experimental research indicates 
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conditions determining blade loading may be implemented by 
means of swirl or pressure distribution along one of the merid-
ional channel limitations (hub or shroud). This distribution is 
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of the blade, resulting from hydraulic turbines theory. It should 
ensure a small margin of error in setting such a type of bound-
ary condition. Such condition can be optimized e.g. to maxi-
mize efficiency. Additionally, well-posed boundary conditions 
(which means that they exist, are unique and continuous) are 
key for achieving the solution. If the problem is ill-posed, no 
real solution can be obtained due to the quadratic dependency 
of tangential velocity in the energy conservation equation. The 
blockage factor, which accelerates the flow, also has a large 
influence on the solution obtained. Generally, the smaller the 
number of blades, the smaller the influence of a blockage fac-
tor that can be observed, so in the case of a runner blade (of 
a low-head Kaplan turbine) it is insignificant but in the case of 
a guide vane it is of crucial meaning.

The presented method can be applied to other types of 
hydraulic machines (Francis turbines, axial and mixed flow 
pumps). Its usage allows for conducting quick engineering 
blade design of a rotating machine. Because this is the inverse 
problem method, the blade is designed for the optimum point 
of operation (BEP). Then, it seems necessary to check such 
a solution using commercial CFD software, in order to avoid 
a large mistake and, additionally, to check the performance at 
off-design points of operation.
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3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Table A1.  
The Christoffel symbols of the Second Kind used in the presented model. 

Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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Γ1,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(1)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)2
= 0 Γ1,1

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(1)2

= 0 

Γ1,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 Γ1,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ1,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(1) = 0 

Γ1,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ1,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 Γ1,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(1) = 0 

Γ2,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 Γ2,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(2) = 0 

Γ2,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= − 𝑓𝑓

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ2,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)2
= 0 Γ2,2

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(2)2

= 0 

Γ2,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 Γ2,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ2,3
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)𝜕𝜕𝑥𝑥(2) = 0 

Γ3,1
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕2𝑓𝑓

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,1
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 Γ3,1
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(1)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,2
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 Γ3,2
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥(3)

𝑓𝑓  Γ3,2
3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(2)𝜕𝜕𝑥𝑥(3) = 0 

Γ3,3
1 = 𝑒𝑒 1 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
=

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥(3)2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥(1)

 Γ3,3
2 = 𝑒𝑒 2 ∘ 𝜕𝜕2𝑟𝑟 

𝜕𝜕𝑥𝑥(3)2
= 0 Γ3,3

3 = 𝑒𝑒 3 ∘ 𝜕𝜕2𝑟𝑟 
𝜕𝜕𝑥𝑥(3)2

= 0 
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