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Generalized PI observer design for descriptor
linear system

XIN-TAO WANG and HAI-HUA YU

A kind of generalized proportional-integral(GPI) observer for descriptor linear systems is
introduced. We first propose two complete parametric solutions to generalized Sylvester matrix
equation corresponding to the left eigenvector matrices in the case of Jordan form. Then a
parametric design approach for the observer is presented. The proposed method provides all
parametric expression of the gain matrices and the corresponding finite left eigenvector matrix
and guarantees the regularity and impulse-freeness of the expanded error system. Two numerical
examples are given to explain the design procedure and illustrate the effectiveness of the proposed
method.

Key words: generalized proportional-integral observer, Sylvester matrix equation, regular-
ity, impulse-freeness

1. Introduction

In many control systems and applications, the system states aren’t always
able to measure on account of the measured error and the infeasibility of mea-
sured approach. For this situation, the observer can be designed to estimate the
unmeasured state. In accordance with the control theory, the integral actions
has important effect on increasing the steady-state accuracy of control system.
In virtue of the duality of controllability and observability, the integral actions
can be injected to the observer. There are a lot of wally character for this type
of observer since it not only use the current information of system, but also
utilize the departed information of system. The observer that contains propor-

Copyright © 2019. The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 3.0 https://creativecommons.org/licenses/by-nc-
nd/3.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the
use is non-commercial, and no modifications or adaptations are made

The authors are with Department of Automation, Heilongjiang University, Po. Box 130, 150080,
Harbin, China, Hai-Hua Yu is also with Key Laboratory of Information Fusion Estimation and Detection,
Heilongjiang Province, The corresponding author is H.H. Yu, E-mail: yuhh@hlju.edu.cn

This work is partially supported by Science and Technology Innovative Research Team in Higher
Educational Institutions of Heilongjiang Province (No. 2012TD007).

Received 19.04.2019. Revised 28.10.2019.



586 X.-T. WANG, H.-H. YU

tional and integral terms is entitled as proportional-integral (PI) observer. The
first PI observer was presented by Wojciechowski [1] for SISO linear normal
systems. After that, the thought was extended to the multivariable linear sys-
tem. Since this type of observers can provide more degrees of design freedom
than the conventional proportional ones, many scholars have been appealed to
study it and the relative problems. The problem of disturbance and fault detec-
tion using PI observer was studied by Shafai et al. [2]. PI observer for atten-
uating noise was investigated by Krishna and Pousga [3]. Recent years, Duan
et al. [4] proposed a parametric design method to PI observer for conventional
continuous-time linear systems. The method proposed in [4] provided all the de-
grees of design freedom, therefore great convenience could be obtained to further
system design.

Relative to normal system observer, the descriptor system observer is widely
used in engineering application, for example, power system, electrical networks,
social economic systems, and so on. The research with regard to descriptor system
observer are relatively abundant. For instance, the descriptor system observer can
be divided into regular system observer [5] and nonregular system observer [6]
according to the system regularity; Luenberger observer [7] and descriptor ob-
server [8] on the basis of the form of observer; certain system observer [9]
and uncertain system observer [10] considering of disturbance; continuous-time
system observer [11] and discrete-time system observer [12] for the system con-
tinuity.

Similar to conventional linear system theory, the issue of designing PI ob-
server for descriptor linear system has also been studied by many researches. Wu
and Duan [13, 14] studied the PI observer for continuous-time and discrete-time
descriptor linear system. In [15, 16], the Luenberger-type normal full-order and
reduced-order PI observers are introduced for non-square descriptor linear sys-
tems with unknown inputs. The Luenberger-type full order PI state observer for
square descriptor linear systems is investigated in [17]. Moreover, some other
kinds of PI observers for descriptor linear systems are introduced by [18, 19].

In this paper, we design a generalized proportional-integral(GPI) observer
for descriptor linear system taking advantage of the parametric design method
[20–22]. We firstly get the corresponding generalized Sylvester matrix equation
for the expanded error system. Then the equation is solved by taking Smith
form reduction or the right coprime decomposition for the matrices. Finally,
we solve gain matrices of the observer based on the above solution and some
parameters which represent the degrees of freedom and satisfy certain constrains.
This approach not only guarantees the regularity of the expanded error system, but
also eliminates its impulsive responses. Furthermore, it provides all the degrees
of freedom in the problem and which can be utilized to achieve various desired
system specifications and performances.
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2. Problem formulation

Consider the following time-invariant descriptor linear system
{

Eẋ = Ax + Bu,

y = C1 ẋ + C0x,
(1)

where x ∈ Rn, u ∈ Rr and y ∈ Rm are, respectively, state vector, input vector, and
output vector, E, A ∈ Rn×n, B ∈ Rn×r , C0, C1 ∈ Rm×n are known real matrices
and satisfy the following assumptions,

Assumption A1: rank
[
C0 C1

]
= m ¬ n.

Assumption A2: rank

[
sE − A

sC1 + C0

]
= n.

For system (1), we introduce an observer in the following form:


E ˙̂x = Ax̂ + Bu + L

(

y − C1 ˙̂x − C0 x̂
)

+ Fw,

ẇ = K
(

y − C1 ˙̂x − C0 x̂
)

,
(2)

where x̂ ∈ Rn is the estimated state vector, w ∈ Rp is a vector representing
the integral of the weighted output estimation error, and L ∈ Rn×m, F ∈ Rn×p,
K ∈ Rp×m are the observer gains.

Definition 1 The system (2) is called a GPI observer for system (1) if, for any
admissible initial conditions x(0), x̂(0) andw(0) and any input u(t), the following
relations hold:

lim
t→∞

(x(t) − x̂(t)) = 0, lim
t→∞

w(t) = 0.

Let e(t) = x(t)− x̂(t), then combining (1) and (2) gives the following expanded
error system:

E0

[
ė

ẇ

]
= A0

[
e

w

]
(3)

with

E0 =

[
E + LC1 0

−KC1 Ip

]
, A0 =

[
A − LC0 −F

KC0 0

]
. (4)

Thus, system (2) is a GPI observer for system (1) if the matrix pair in (4)

is Hurwitz stable. Furthermore, let n0 = rank

[
E
C1

]
, we demand that the matrix

pair (E0, A0) has
(

p + n0
)

finite eigenvalues, which ensures the elimination of
impulse for system (3) with rank(E + LC1) = n0. Based on the above discussion,
we state the GPI observer design problem for descriptor linear system (1) as
follows.
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Problem 1 (GPIO) Given matrices E, A ∈ Rn×n, B ∈ Rn×r , C0, C1 ∈ Rm×n

satisfying Assumptions A1 and A2, find the complete parametric expression for
the matrices L, F, K , such that the matrix pair (E0, A0) in (4) satisfies the
following conditions:

1. It is Hurwitz stable;

2. It is regular;

3. It is impulse-free, that is, it possesses
(

p + n0
)

finite eigenvalues and
rank(E + LC1) = n0.

3. Solution to Problem GPI

3.1. Basic relations

Suppose matrix pair (E0, A0) has the following Jordan form:

Λ = diag
(

J1, J2, ..., Jq

)

∈ C(n0+p)×(n0+p), (5)

Ji =



si 1

si
. . .

. . . 1
si


,

where si, i = 1, 2, . . . , q, are not necessarily distinct. Obviously, si, i = 1, 2, . . . , q,
are the finite eigenvalues of (E0, A0). Thus, in order to ensure (E0, A0) is Hurwitz
stable, the following constraint must be satisfied.
Constraint C1 si, i = 1, 2, . . . , q, are self-conjugate and Re(si) < 0, i = 1, 2,
. . . , q.

Denote the left eigenvector chain of (E0, A0) associated with finite eigenvalue
si by ui j ∈ Cn+p, j = 1, 2, . . . , pi, i = 1, 2, . . . , q. Constructing the left eigenvector
matrix as 

U =
[

U1 U2 · · · Uq

]
∈ C(n+p)×(n0+p),

Ui =

[
ui1 ui2 · · · uipi

]
∈ C(n+p)×pi,

then by definition we demand that rankU = n0 + p, and

UT A0 = ΛUTE0 . (6)

Partitioning U into the following form:

U =

[
T

V

]
, T ∈ Cn×(n0+p), V ∈ Cp×(n0+p) . (7)
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Substituting (7) and (4) into the (6), we have

TT(A − LC0) + VTKC0 = ΛTT(E + LC1) − ΛVTKC1 (8)

and
−FTT = VΛT. (9)

Let
ZT
= V TK − TTL , (10)

then (8) can be equivalently written as

ΛTTE − TT A = ΛZTC1 + ZTC0 , (11)

3.2. Solution to the matrices T and Z

Taking transpose to (11) gives

ETTΛT − ATT = CT
1 ZΛT

+ CT
0 Z . (12)

Theorem 1 Given the descriptor linear system (1) satisfying Assumptions A1
and A2, and Λ defined by (5), then all the solution to matrix equation (12) are
given by [

ti j

zi j

]
= Q(si)

[
gi j

P(si)(ETti( j+1) − CT
1 Zi( j+1) )

]
ti(pi+1) = 0, zi(pi+1) = 0, j = 1, 2, . . . , pi, i = 1, 2 . . . , q,

(13)

where gi j ∈ Cm, j = 1, 2 . . . , pi, i = 1, 2, . . . , q, is a set of parametric vectors,

unimodular matrices P(s) ∈ Rn×n[s] and Q(s) ∈ R(n+m)×(n+m)[s] satisfy the
following Smith form reduction:

P(s)
[

AT − sET sCT
1 + CT

0

]
Q(s) =

[
0 I

]
. (14)

Proof. The matrices T and Z can be divided as follows, according to the con-
struction of Jordan matrix Λ

T =
[
T1 T2 · · · Tq

]
, Z =

[
Z1 Z2 · · · Zq

]
,

Ti =

[
ti1 ti2 · · · tipi

]
, Zi =

[
zi1 zi2 · · · zipi

]
.

(15)

Equation (12) can be equivalently written into the following vector form:

[
AT − siE

T siC
T
1 + CT

0

] [ ti j

zi j

]
=

[
ET −CT

1

] [ ti( j+1)

zi( j+1)

]
,

j = 1, 2, . . . , pi, ti(pi+1) = 0, i = 1, 2, . . . , q.

(16)
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Thus, we need to prove that the set of vectors given by (13) are all the solution
of the matrix equation of (16). First of all, we show that vectors given by (13)
satisfy (16).

Using (13) and (14), we have

[
AT−siE

T siC
T
1 +CT

0

] [ ti j

zi j

]

=

[
AT−siE

T siC
T
1 +CT

0

]
Q(si)


gi j

P(si)
(

ETti( j+1) − CT
1 Zi( j+1)

)


= P−1(si)

[
0 I

] [ gi j

P(si)(ETti( j+1) − CT
1 Zi( j+1) )

]

= ETti( j+1) − CT
1 Zi( j+1)

j = 1, 2, . . . , pi, i = 1, 2, . . . , q.

Therefore the vectors given by (13) satisfy (16).
Then, we need to show that all the solution of the equation (16) can be

expressed by (13).
Post-multiplying by P(si) on both sides of equation (16), we get

P(si)
[

AT − siE
T siC

T
1 + CT

0

] [ ti j

zi j

]
= P(si)

[
ET −CT

1

] [ ti( j+1)

zi( j+1)

]
. (17)

Let [
gi j

li j

]
= Q−1

[
ti j

zi j

]
(18)

according to (14) and (17), we get

[
0 I

] [ gi j

li j

]
= P(si)

[
ET −CT

1

] [ ti( j+1)

zi( j+1)

]
,

j = 1, 2, . . . , pi, i = 1, 2, . . . , q

from which we derive

li j = P(si)
(

ETti( j+1) − CT
1 zi( j+1)

)

j = 1, 2, . . . , pi, i = 1, 2, . . . , q.
(19)

Substituting (19) into (18), and left multiplying Q(si) on both sides of ob-
tained equation, yields (13). Therefore, (13) represents all the solution of matrix
equation (12). �
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Corollary 3 Given the descriptor linear system(1) satisfying Assumptions A1

and A2, and Λ = diag
(

s1, s2, . . . , sn0+p

)

∈ C(n0+p)×(n0+p) , then all the solution to

matrix equation (12) are given by[
ti

zi

]
= Q(si)

[
gi

0

]
, i = 1, 2, . . . , n0 + p,

where gi ∈ Cm, i = 1, 2, . . . , n0 + p, is set of parametric vectors, unimodular
matrix Q(s) ∈ R(n+m)×(n+m)[s] satisfying the Smith form reduction (14).

Theorem 2 Suppose the descriptor linear system (1) satisfying Assumptions A1
and A2, and Λ defined by (5), then all the solution to matrix equation (12) are
given by[

ti j

zi j

]
=

pi− j
∑

k=0

1

k!

[
N (si)

D(si)

]
gi( j+k), j = 1, 2, . . . , pi, i = 1, 2, . . . , q, (20)

where N (s) ∈ Rn×m[s] and D(s) ∈ Rm×m[s] are right coprime polynomial
matrices satisfying

(

sET − AT
)−1 (

sCT
1 + CT

0

)

= N (s)D−1(s) (21)

and gi j ∈ Cm, j = 1, 2, . . . , pi, i = 1, 2, . . . , q, are arbitrarily chosen parametric
vectors.

Proof. Noting that the number of free parameters contained in (13) and (20) are
equal, we need only to prove that vectors given by (20) satisfy (16).

Converting (21) into the following form:
(

AT − sET
)

N (s) +
(

sCT
1 + CT

0

)

D(s) = 0

and taking k-th differential in both sides of the above equation, we obtain

(

AT − sET
) d k

d sk
N (s) +

(

sCT
1 + CT

0

) d k

d sk
D(s) =

= kET d k−1

d sk−1
N (s) − kCT

1

d k−1

d sk−1
D(s).

(22)

Substituting s by si and post-multiplying by vector (1/k!)gi( j+k) on both sides of
(22), gives

(

AT − siE
T
) 1

k!

d k

d sk
N (si)gi( j+k) +

(

siC
T
1 + CT

0

) 1

k!

d k

d sk
D(si)gi( j+k)

= ET 1

(k − 1)!

d k−1

d sk−1
N (si)gi( j+k) − CT

1

1

(k − 1)!

d k−1

d sk−1
D(si)gi( j+k) ,

k = 0, 1, 2, . . . , pi − j, j = 1, 2, . . . , pi, i = 1, 2, . . . , q.

(23)
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Summing up all the equations in (23) for k = 0, 1, 2, . . . , pi − j, and using (20),
we obtain (16). �

Corollary 4 Given the descriptor linear system (1) satisfying Assumptions A1

and A2, and Λ = diag
(

s1, s2, . . . , sn0+p

)

∈ C(n0+p)×(n0+p) , then all the solution of

matrix equation (12) are given by[
ti

zi

]
=

[
N (si)

D(si)

]
gi, i = 1, 2, . . . , n0 + p,

where gi j ∈ Cm, i = 1, 2, . . . , n0 + p, are arbitrarily chosen parametric vectors,
right coprime polynomial matrices N (s) ∈ Rn×m[s] and D(s) ∈ Rm×m[s] satisfy
equation (21).

3.3. Solution to the matrices V and F

Owing to Constraint C1, it follows from (9) that the matrix V can be ex-
pressed as

V = −FTTΛ−1, (24)

where F can be regarded as a parametric matrix. Further, the general parametric
form for the left eigenvector matrix U can be obtained according to (7) using (15)
and (24).

Since U is the left eigenvector matrix, the following constraint on the para-
metric matrix F as well as the other design parameters si, gi j, j = 1, 2, . . . , pi,
i = 1, 2, . . . , q, must be satisfied.

Constraint C2: rank U = n0 + p.

3.4. Solution to the matrices K and L

Equation (10) can be written as

ZT
=

[
−TT VT

] [ L

K

]
. (25)

To ensure the existence of solution to the above equation, the following condition
must be met:

rank
[

TT VT
]
= rank

[
TT V T ZT

]
= n0 + p.

Applying singular value decomposition for matrix
[
−TT VT

]
, we get two

unitary matrices P1 ∈ C(n0+p)×(n0+p),Q1 ∈ C(n+p)×(n+p) satisfying

P1

[
−TT VT

]
Q1 =

[
Σ 0

]
.
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Thus, (25) can be written as

ZT
=

[
PT

1 Σ 0
]

QT
1

[
L

K

]
.

From the above relation, a solution for the matrices L and K is easily obtained as

[
L

K

]
= Q1

[
Σ
−1P1ZT

K ′

]
, (26)

where K ′ ∈ Rp×m is an arbitrary real parametric matrix. To ensure that matrices
L and K are both real, the following constraint must be met.

Constraint C3: gil = ḡ jl , l = 1, 2, . . . , pi, if si = s̄ j , i, j = 1, 2, . . . , q.
According to the above results, we get the following theorem about solution

to Problem 1.

Theorem 3 Given descriptor linear system (1) satisfying Assumptions A1, A2.
Problem 1 have solution if there exist parameters si, gi j , j = 1, 2, . . . , pi, i = 1, 2,
. . . , q, and parametric matrices F, K ′ satisfying Constraints C1–C3. On this
case, the gain matrices are given by (26).

According to the above deduction, we can list the procedures to solve Prob-
lem 1 as follows.

Algorithm 1 (For Problem 1)

Step 1. Obtain P(s) and Q(s) satisfying equation (14) by taking Smith form

reduction for
[

sET − AT sCT
1 + CT

0

]
. Partition the matrix Q(s) into blocks

as Q(s) =

[
N (s) ∗
D(s) ∗

]
, where N (s) ∈ Rn×m[s] and D(s) ∈ Rm×m[s] satisfy

right coprime factorization (21).

Step 2. Seek parameters si, i = 1, 2, . . . , q, matrix F and vectors gi j , j = 1, 2,
. . . , pi, i = 1, 2, . . . , q, satisfying Constraints C1, C2 and C3. If such
parameters do not exist, Problem 1 does not have solution.

Step 3. Calculate matrices T and Z according to formulas (15) and (20) (or (13))
on account to the parameters si, gi j , j = 1, 2, . . . , pi, i = 1, 2, . . . , q.

Step 4 Compute V by equation (24), then U is obtained by formula (7). The gain
matrices L and K can be obtained by formula (26).
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4. Examples

Example 1. Consider a descriptor linear system in the form of (1) with the
following parameters

E =



1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 1
1 0 0 0 0


, A =



0 0 1 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 1


,

C0 =

[
0 0 0 1 0
1 0 0 0 0

]
, C1 =

[
0 1 0 0 0
0 0 1 0 0

]
,

where n = 5, m = 2 and n0 = 4. It is easy to verify that Assumptions A1–A2 are
satisfied. According to the first step of Algorithm 1, we obtain

N (s) =



2s2
+ s −2s3 − s

s + 1 −s2 − 1
s 0

−2s − 1 2s2
+ 2

−2s2 − s s + s(2s2
+ 1)


, D(s) =

[
s −s2 − 1

−s − 1 2s2
+ 1

]
.

In the following, we design a GPI observer in the form of (2) with p = 1.
Moreover, we can assign five finite eigenvalues for the matrix pair (E0, A0). For
simplicity, we restrict the assigned eigenvalues si, i = 1, . . . , 5, to be negative
real numbers, thus Constrain C1 is met. In this case, the parametric vectors
gi, i = 1, . . . , 5, are also restricted to be real, so Constraint C3 is satisfied.

Denote

gi =

[
gi1

gi2

]
, i = 1, . . . , 5

F =
[

f1 f2 f3 f4 f5

]T
,

then, in view of Constraint C2, we demand,

rank U = rank

[
T

V

]
= 5,
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where

Ti =



gi1(2s2
i
+ si) + gi2(2s3

i
+ si)

gi1(si + 1) − gi2(s2
i
+ 1)

sigi1

gi2(2s2
i2 + 2) − gi1(2si + 1)

gi2(si + si(2s2
i
+ 1)) − gi1(2s2

i
+ si)


,

Vi = −s−1
i FTTi, i = 1, 2, . . . , 5.

Specially, we choose the parameters satisfying the preceding constraint as
follows:

s1 = −1, s2 = −1.7, s3 = −0.5, s4 = −0.4, s5 = −2.9

g1 =

[ −1

1

]
, g2 =

[
0

1

]
, g3 =

[
2

3

]
, g4 =

[
1

3

]
, g5 =

[
3

1

]

F =
[

0 10 20 1 1
]T
.

Based on the foregoing parameters and Theorem 2, we have

T =



2.0000 11.5260 2.2500 1.5040 93.4380
−2.0000 −3.8900 −2.7500 −2.8800 −15.1100
1.0000 0 −1.0000 −0.4000 −8.7000
3.0000 7.7800 7.5000 6.7600 33.2200
−3.0000 −13.2260 −3.7500 −2.7040 −96.3380


,

Z =

[
−1.0000 −3.8900 −4.7500 −3.8800 −18.1100
3.0000 6.7800 3.5000 3.3600 23.5200

]
.

According to (26), we obtain the observer gain matrices as

L =



13.7092 −5.0673
−1.2570 −4.2050
−6.6242 −2.6464
8.8651 −4.8165
16.3012 −5.2735


, K =

[
−0.4747 −0.1147

]
.

The simulation of the expanded error system e and integral term w are showed
by Figures 1 and 2.
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Figure 1: Simulation of errors of Example 4

Figure 2: Simulation of integral term of Example 4

Example 2. Consider a descriptor linear system in the form of (1) with the
following parameters

E =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 1
1 0 0 0 0


, A =



0 0 1 0 0
1 0 0 1 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 1


,

C0 =

[
0 1 0 0 0
0 0 1 0 0

]
, C1 =

[
0 0 0 1 0
1 0 0 0 0

]
,

where n = 5, m = 2 and n0 = 5. It is easy to verify that Assumptions A1–A2 are
satisfied. According to the first step of Algorithm 1, we obtain

N (s) =



s3
+ s2
+ 1 − s2

2
+

s

2
2s 0
2s2 1
−2s s

−2s2 s2


,
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D(s) =


0 −1

s3 − s2 − 1
s2

2
+

s

2

 .
In the following, we design a GPI observer in the form of (2) with p = 1. More-

over, we assign six finite eigenvalues for the matrix pair (E0, A0). For simplicity,
we restrict the assigned eigenvalues si, i = 1, . . . , 6, to be negative real numbers,
thus Constrain C1 is met. In this case, the parametric vectors gi, i = 1, . . . , 6, are
also restricted to be real, so we need not consider Constraint C3.

Denote

gi =

[
gi1
gi2

]
, i = 1, . . . , 6,

F =
[

f1 f2 f3 f4 f5

]T
,

then based on Constraint C2, we demand

rank U = rank

[
T

V

]
= 6,

Ti =



gi1

(

s3
i
+ s2

i
+ 1

)

+ gi2
*,−

s2
i

2
+

si

2
+-

2sigi1

2gi1s2
i
+ gi2

−2sigi1 + sigi2

−2s2
i
gi1 + s2

i
gi2



,

Vi = −s−1
i FTTi, i = 1, 2, . . . , 6.

Specially, we choose a set of parameters satisfying the foregoing constraint
as follows:

s1 = −1, s2 = −2, s3 − 1.3, s4 = −1.4, s5 = −1.5, s6 = −0.6

g1 =

[
−1
1

]
, g2 =

[
0
1

]
, g3 =

[
2
3

]
,

g4 =

[
1
3

]
, g5 =

[
3
1

]
, g6 =

[
1
0

]
,

F =
[

0 10 20 1 1
]T
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Based on the preceding parameters and Theorem 2, we have

T =



−2.0000 −3.0000 −3.4990 −4.8240 −2.2500 1.1440
2.0000 0 −5.2000 −2.8000 −9.0000 −1.2000
−1.0000 1.0000 9.7600 6.9200 14.5000 0.7200
−3.0000 −2.0000 1.3000 −1.4000 7.5000 1.2000
3.0000 4.0000 −1.6900 1.9600 −11.2500 −0.7200


,

Z =

[
−1.0000 −1.0000 −3.0000 −3.0000 −1.0000 0
3.0000 1.0000 −9.1890 −4.8640 −19.5000 −1.5760

]
.

According to (26), we obtain the observer gain matrices as

L =



0.6059 1.4607
0.6050 3.6870
0.9703 4.7736
−0.3789 1.7876
0.2784 0.8946


, K =

[
0.0022 0.1268

]
.

The simulation of the expanded error system e and integral term w are showed
by Figures 3 and 4.

Figure 3: Simulation of errors of Example 4

Figure 4: Simulation of integral term of Example 4
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5. Conclusion

A type of GPI observer for descriptor linear system and a parametric method
is proposed. Based on a general solution to a type of generalized Sylvester matrix
equations, a parametric approach for the GPI observer is presented. In terms
of four groups of parameters, the parametric expressions of all observer gain
matrices are given. The proposed method offers all the degrees of design freedom
which can be utilized to achieve various system specifications. The method also
guarantees the regularity of the expanded error system and can eliminate the
impulsive responses.
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