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Synchronization of neuronal bursting using
backstepping control with recursive feedback

SURESH RASAPPAN

J.L. Hindmarsh, R.M. Rose introduced the concept of neuronal burst. In this paper, syn-
chronization is investigated for the construction of a model of neuronal burst using backstepping
control with recursive feedback. Synchronization for a model of neuronal bursting system is es-
tablished using Lyapunov stability theory. The backstepping scheme is a recursive procedure that
links the choice of a Lyapunov function with the design of a controller. The backstepping control
method is effective and convenient to synchronize identical systems. Numerical simulations are
furnished to illustrate and validate the synchronization result derived in this paper.
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1. Introduction

Chaotic systems are highly sensitive depending on their initial conditions.
The synchronization of two or more systems is not easy to achieve [1–3], as
the sensitive initial conditions and time delay are the factors that affect the
synchronization [4–6].

The most striking aspect of a chaos synchronization is that it can share a
common dynamical behaviour under the background. Synchronization has po-
tential application in various fields such as secure communication [7,8], physical
systems [9], chemical reaction [10], ecological systems [11], information sci-
ence [12], energy resource systems [13], ghost burster neurons [14], bi-axial mag-
net models [15], neuronal models [16, 17], IR epidemic models with impulsive
vaccination [18], predicting the influence of solar wind to celestial bodies [19],
etc., [20–38].

Recently, chaos theory has been applied in the field of biomedicine to explain
the cardiac and neural tissue to pacing stimuli, therapeutic intervention, neuronal
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systems, etc., [39–42]. Due to the fact that the brain acts as the intricate part of
the human body, chaos theory and dynamical equations provide a good base for
studying it. In the model of electrical signals of nerves in the brain, chaos theory
can help in the field of neurological diseases and also to the achievement of the
invention of artificial intelligence [43–46].

In recent years, a backstepping method has been developed for designing
controllers to control the chaotic systems [47]. A generally followed concept of the
method is the design of a globally stable control chaotic system. The backstepping
method is based on the mathematical model of the examined system, wherein new
variables are introduced in a form depending on the state variables, controlling
parameters and stabilizing functions. The difficult task of stabilizing a chaotic
system is to remove nonlinearities from the system that influence the stability
of its operation. The use of backstepping method comes in handy to create an
additional non-linearity and eliminates the undesirable nonlinearities from the
system.

The purpose of this paper is to propose a backstepping control design with
novel feedback input approach. Our concept is a systematic design approach
that guarantees global stability of the chaotic systems. Based on the Lyapunov
function, the backstepping control is determined to tune the controller gain based
on the precalculated feedback control inputs.

This paper is organized as follows. Section 2, present the methodology of
chaos synchronization by backstepping control method. Section 3, provide a
description of the chaotic systems discussed in this paper. Section 4 is devoted to
the demonstration of the synchronization of identical neuronal bursting system
[48, 49]. The results of the study are summarized in Section 5.

2. The problem statement and methodology

In general, two coupled dynamic systems in a synchronization scheme are
called the master and slave systems, respectively. A well designed controller will
make the trajectory of the slave system to track the trajectory of the master system,
that is, the two systems will be synchronous.

Consider the chaotic system described by the dynamics

ẋ1 = F1(x1, x2, . . . , xn),

ẋ2 = F2(x1, x2, . . . , xn),

ẋ3 = F3(x1, x2, . . . , xn),

...
...

...

ẋn = Fn(x1, x2, . . . , xn),

(1)
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where x(t) ∈ Rn is a state of the system. The system (1) is considered as master
system. Also the chaotic system described by the dynamics with the controller u as

ẏ1 = G1(y1, y2, . . . , yn) + u1(t),

ẏ2 = G2(y1, y2, . . . , yn) + u2(t),

ẏ3 = G3(y1, y2, . . . , yn) + u3(t),

...
...

...

ẏn = Gn(y1, y2, . . . , yn) + un(t)

(2)

is considered the slave system, where y(t) ∈ Rn is a state of the system and Fi, Gi

(i = 1, 2, 3, . . . , n) are linear and nonlinear functions with inputs from systems
(1) and (2). If Fi equals to Gi , then the systems states are identical otherwise that
systems states are non identical. The chaotic systems (1) and (2) depend not only
on state variables but also on time t.

The synchronization error is defined as ei = yi − xi; i = 1, 2, 3, . . . , n, then the
synchronization error dynamics is obtained as

ė1 = G1(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn) + u1(t),

ė2 = G2(y1, y2, . . . , yn) − F2(x1, x2, . . . , xn) + u2(t),

ė3 = G3(y1, y2, . . . , yn) − F3(x1, x2, . . . , xn) + u3(t),

...
...

...

ėn = Gn(y1, y2, . . . , yn) − F4(x1, x2, . . . , xn) + un(t).

(3)

The synchronization error system controls a controlled chaotic system with con-
trol input ui, i = 1, 2, 3, . . . , n as a function of the error states e1, e2, e3, . . . , en.
That means the systematic feedbacks so as to stabilize the error dynamics (3), e1,
e2, e3, . . . , en converge to zero as time t → ∞. This implies that the controllers
ui, i = 1, 2, 3, . . . , n should be designed so that the two chaotic systems can be
synchronized. In mathematical,

lim
t→∞
‖e(t)‖ = 0.

Backstepping design is recursive and guarantees global stabilities perfor-
mance of strict-feedback chaotic systems. By using the backstepping design, at
the ith step, the ith order subsystem is stabilized with respect to a Lyapunov
function Vi by the design of virtual control αi and a control input function ui.

We consider the stability of the system,

ė1 = G1(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn) + u1(t), (4)

where u1 is control input, which is the function of the error state vectors ei , and
the state variables x(t) ∈ Rn, y(t) ∈ Rn. As long as this feedback stabilizes the
system (4) converges to zero as the time t → ∞, where e2 = α1(e1) is regarded
as virtual controller.
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For the design of α1(e1) to stabilize the subsystem (4), we consider the
Lyapunov function defined by

V1(e1) = eT
1 P1e1 , (5)

where P1 is is a positive definite matrix. The derivative of V1 is

V̇1 = −eT
1 Q1e1 , (6)

where Q1 is a positivedefinite matrix, then V̇1 is a negative definite function on Rn.
Thus by Lyapunov stability theory [50] the error dynamics (4) is asymptotically
stable. The virtual control e2 = α1(e1) and the state feedback input u1 makes the
system (4) asymptotically stable. The function α1(e1) is estimative when e2 is
considered as controller.

The error between e2 and α1(e1) is

w2 = e2 − α1(e1). (7)

Considering the (e1,w2) subsystem given by

ė1 = G1(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn) + u1 ,

ẇ2 = G2(y1, y2, . . . , yn) − F2(x1, x2, . . . , xn) − α̇1(e1) + u2 .
(8)

Consider e3 as a virtual controller in system (8), assume when it is equal to
α2(e1,w2) and it makes system (8) asymptotically stable. Consider the Lyapunov
function defined by

V2(e1,w2) = V1(e1) + wT
2 P2w2 , (9)

where P2 is is a positive definite matrix. The derivative of V2 is

V̇2 = eT
1 Q1e1 , (10)

where Q1, Q2 are positive definite matrices, then V̇2 is a negative definite function
on Rn. Thus by Lyapunov stability theory the error dynamics (8) is asymptotically
stable. The virtual control e2 = α2(e1,w2) and the state feedback input u2 makes
the system (8) asymptotically stable. For the nth state of the error dynamics, define
the error variable wn as

wn = en − αn−1(e1,w2,w3, . . . ,wn). (11)

Considering the (e1,w2,w3, . . . ,wn) subsystem given by

ė1 = G1(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn) + u1 ,

ẇ2 = G2(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn) − α1(e1) + u2 ,

ẇn = Gn(y1, y2, . . . , yn) − F1(x1, x2, . . . , xn)

− αn−1(e1,w2,w3, . . . ,wn) + un .

(12)



SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL
WITH RECURSIVE FEEDBACK 621

Consider the Lyapunov function defined by

Vn(e1,w2,w3, . . . ,wn) = Vn−1(e1,w2,w3, . . . ,wn−1) + wT
n Pnwn , (13)

where Pn is a positive definite matrix. The derivative of Vn is

V̇n = −eT
1 Q1e1 − wT

2 Q2w2 − . . . − wT
n Qnwn, , (14)

where Q1, Q2, Q3, . . . , Qn are positive definite matrices, then V̇n is a negative
definite function on Rn. Thus by Lyapunov stability theory the error dynamics
(12) is asymptotically stable. The virtual control en = αn−1(e1,w2,w3, . . . ,wn−1)

and the state feedback input un makes the system (12) asymptotically stable. Thus
by Lyapunov stability theory [50], the error dynamics (3) is globally exponentially
stable and satisfied for all initial conditions e(0) ∈ Rn. Hence, the states of the
master and slave systems are globally and exponentially synchronized.

3. System description

A model of nerve impulse system is based on Fitzhugh equation. The gen-
eralization of this model assumes that the rate of change of membrane potential
(x1) depends linearly on the current passing through the electrode (x2) and an
intrinsic current (x3) depending nonlinearly on membrane potential [48, 49].

The membrane potential is given by

ẋ1 = x2 − f (x1), (15)

where f (x1) is governed by the relation

f (x) = ax3
1 − bx2

1

and the rate of intrinsic current is provided by

ẋ2 = g(x1) − x2 , (16)

where g(x) is furnished by

g(x) = c − dx2
1 .

The difference between the two concerned systems is that the Hindrose equation
is parabolic in contrast to the form of straight line assumed by the Fitzhugh
equation.

To stimulate the neuronal system, an intracellular recording from a small
identified cell in the vis-ceral ganglion of the pond snail Lymnaea is introduced.
Usually Lymnaea is silent. However, when it is depolarized, it fires several times
and continues to fire after cessation of the stimulating current. Now the external
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current I is added into the membrane potential. The modified two-dimensional
Hindmarsh-Rose system is given by [48, 49].

ẋ1 = x2 − ax3
1 + bx2

1 + I,

ẋ2 = c − dx2
1 − x2 .

(17)

The difference between neuronal burst and the cell is always necessary to fire
the cell several times during the application of the current pulse for an after-
discharge to occur. During the short current pulse, the fire is produced af-
ter discharge. Inward current is slower activation kinetic in the snail Lym-
naea. Greater undershoot and rapid recovery are possible in recorded action
potentials. The cell in Lymnaea, does not fire indefinitely, but slows down
and is terminated with a slow after hyperpolarizing wave. By the introduction
of a slow current, the Lymnaea cells are gradually hyperpolarized. A slowly
increasing outward current has been reported to cause adaption in mollus-
can neurons which is generally underlies the depolarization process in mol-
luscan bursters. Let r denote the ratio of slow current and fast current in
Lymnaea.

The mathematical expression of an adaption current x3 is given by [48, 49]

ẋ3 = r (s(x1 − x0) − x3). (18)

The Hindmarsh-Rose neuronal bursting system is given [48, 49]

ẋ1 = x2 − ax3
1 + bx2

1 + I,

ẋ2 = c − dx2
1 − x2 ,

ẋ3 = r (s(x1 − x0) − x3).

(19)

where x1 describes the membrane potential, x2 describes the exchange of ions
across the neuron membrane through fast ionic channels and x3 the change of
ions through slow ionic channels.

The parameters a, b, c, d are constants determined experimentally and x0 =

−1
2 (1 +

√
5) is the equilibrium x− coordinate of system (19) for the parameters

a = 1, b = 3, c = 1, d = 5, r ¬ 1, and s = 4. (20)

It take up the question of occurrence of different types of a bursting cell. The
system of differential equations can be modeled as a bursting cell when the current
parameter I is set at a constant level.

Let us consider r as a variable, while the value of I is fixed. With the choice
of the parameters I = 3.25, a = 1, b = 3, c = 1, d = 5, and s = 4, the model
generates a classical period doubling cascade. Fig. 1 and Fig. 2 illustrating the



SYNCHRONIZATION OF NEURONAL BURSTING USING BACKSTEPPING CONTROL
WITH RECURSIVE FEEDBACK 623

0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4
Dynamics of Lyapunov exponents

Time

L
y
a
p
u
n
o
v
 
e
x
p
o
n
e
n
t
s

a) Lyapunov exponents L1 = −0.001829,
L2 = −0.042157, L3 = −3.815855 of (19)

with parameters given in (20) and I = 3.25,
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c) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.0.0145, a period doubling cascade is
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f) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.017, a period doubling cascade is observed

Figure 1: Phase portraits of bursting bifurcation phenomena
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a) Lyapunov exponents L1 = −0.002382,
L2 = −0.059071, L3 = −10.738918 of (19)
with parameters given in (20) and I = 3.25,

r = 0.008
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c) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.0.03, a period doubling cascade is observed
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e) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.05, a period doubling cascade is observed
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L2 = −0.0065696, L3 = −10.010001 of (19) with
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Figure 2: Phase portraits of bursting bifurcation phenomena
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a) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.008, a period doubling cascade with
a period three solution is observed
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b) (x, y, z) phase portraits of the system (19)
with parameters given in (20) and with I = 3.25

for r = 0.008
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c) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.0095, a period doubling cascade with
a period three solution is observed

−2

−1

0

1

2

3 −15

−10

−5

0

5
0

1

2

3

4

x
2

x
1

x
3

d) (x, y, z) phase portraits of the system (19)
with parameters given in (20) and with I = 3.25
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e) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for

r = 0.01, a period doubling cascade with
a period three solution is observed
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Figure 3: Phase portraits of period doubling cascade starting with a period three solution
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bursting bifurcation phenomena in the HR model with parameters given in (20)
and I = 3.25. As this slow parameter increases, the period which corresponds to
the number of spikes per burst decreases. A classical period doubling cascade is
observed.

Fig. 3 illustrates the bursting bifurcation phenomena in the HR model (19)
with parameters given by (20) and I = 3.25. We observe a period doubling
cascade starting with a solution of period three.

Fig. 4 illustrates the bursting bifurcation phenomena in the HR model (19)
with parameters given by (20) and I = 3.25. According to the chosen parameter r ,
the neuron behaviour changes from tonic to spiking to bursting.
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a) Time series portraits of the system (19) with
parameters given in (20) and with I = 3.25 for
r = 0.011, a period doubling case cade with

a period three solution is observed
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r = 0.002, the neuron behavior changes from tonic
spiking to bursting is observed
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for r = 0.002

Figure 4: Phase portraits of the neuron behavior changes from tonic spiking to bursting
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Fig. 4 and Fig. 5 illustrate the model (19) with parameters given by (20) for
the choosen values of parameters I. Moreover, for each value of I, there is the
same number of spikes within burst in time series and same number of laps in
the phase portraits.
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a) Time series portraits of the system (19) with
parameters given in (20) with I = 1.5 for r = 0.001,

a period doubling cascade with a period three
solution is observed
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b) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 1.5 for r = 0.001
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c) Time series portraits of the system (19) with
parameters given in (20) with I = 2 for r = 0.001,
the neuron behaviour changes from tonic spiking

to bursting is observed
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d) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 2 for r = 0.001

Figure 5: Phase portraits illustrating show a periodic behavior of system (19) for the
chosen values of parameter I and spikes and laps

With the choice of parameters as I = 0.4, a = 1, b = 3, c = 1, d = 5,
r = 0.005, and s = 4, the model generates an isolated burst followed by an
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after hyperpolarizing wave. Fig. 6 illustrate an isolated burst followed by an after
hyperpolarizing wave.
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a) Time series portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001,

a period doubling cascade with a period three
solution is observed
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b) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001
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c) Time series portraits of the system (19) with
parameters given in (20) with I = 3.25 for

r = 0.001, the neuron behaviour changes from
tonic spiking to bursting is observed
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Figure 6: Phase portraits illustrating show a periodic behavior of system (19) for the
chosen values of parameter I and spikes and laps

When I = 2, a = 1, b = 3, c = 1, d = 5, r = 0.005, and s = 4, the model
has a long burst initially in response to the current step and terminates to give the
periodic burst pattern. Fig. 7 illustrates the periodic burst pattern.

When I = 4, a = 1, b = 3, c = 1, d = 5, r = 0.005, and s = 4. The model
has a continuous high frequency discharge, with the frequency declining from
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a) Time series portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001,

a period doubling cascade with a period three
solution is observed
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b) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001
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c) Time series portraits of the system (19) with
parameters given in (20) with I = 3.25 for

r = 0.001, the neuron behaviour changes from
tonic spiking to bursting is observed
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d) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 3.25 for r = 0.001

Figure 7: Phase portraits illustrating show a periodic behavior of system (19) for the
chosen values of parameter I. Moreover, for each value of I, there is the same number of
spikes within burst in time series and the same number of laps in the phase portraits

the onset of the step to the steady repetitive firing. Fig. 8a and 8b illustrates the
periodic burst pattern with steady reptitive firing.

When a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4, I = 3.25, a deterministic
system producing a burst with a random structure [40, 41] is generated. Fig. 8c
and 8d illustrates periodic burst with random structure.
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a) Time series portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001,

a period doubling cascade with a period three
solution is observed
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b) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 3 for r = 0.001
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c) Time series portraits of the system (19) with
parameters given in (20) with I = 3.25 for

r = 0.001, the neuron behaviour changes from
tonic spiking to bursting is observed

−2

0

2

4

−15
−10

−5
0

5

0

1

2

3

4

x
2

x
1

x
3

d) (x, y, z) phase portraits of the system (19) with
parameters given in (20) with I = 3.25 for

r = 0.001

Figure 8: Phase portraits illustrating show a periodic behavior of system (19) for the
chosen values of parameter I and spikes and laps

4. Synchronization of neuronal model using backstepping control

with recursive feedback

The plant system dynamics [48, 49] is described as

ẋ1 = x2 − ax3
1 + bx2

1 − x3 + I,

ẋ2 = c − dx2
1 − x2 ,

ẋ3 = r[s(x1 − x0) − x3],

(21)

where x1, x2, x3 are state variables. a, b, c, d and x0 are positive parameters of
the neuronal impulsive system.
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The observer system dynamic also defined as neuronal impulsive system
[48, 49], and the system dynamics is described by

ẏ1 = y2 − ay3
1 + by2

1 − y3 + I + u1 ,

ẏ2 = c − dy2
1 − y2 + u2 , ẏ3 = r[s(y1 − y0) − y3] + u3 ,

(22)

where y1, y2, y3 are state variables.
Let the error be defined as

e1 = y1 − x1 , e2 = y2 − x2 , e3 = y3 − x3 . (23)

The error dynamics is obtained as

ė1 = e2 − a(y3
1 − x3

1) + be1(y1 + x1) − e3 + u1 ,

ė2 = −de1(y1 + x1) − e2 + e3 − y3 + x3 + u2 , ė3 = r se1 − re3 + u3 .
(24)

First consider the stability of the system

ė1 = e2 − a(y3
1 − x3

1) + be1(y1 + x1) − e3 + u1 , (25)

where e2 regarded as virtual controller.
The Lyapunov function is defined by

V1(e1) =
1

2
e2

1 , (26)

and its derivative is as follows

V̇1 = e1ė1 = e1

(

e2 − a(y3
1 − x3

1) − e3 + u1

)

. (27)

Assume the controller e2 = α1(e1). If

α1(e1) = −k1e1

and

u1 = e3 + a(y3
1 − x3

1) − be1(y1 + x1),

(28)

then
V̇1(e1) = −k1e2

1 (29)

which is a negative definite function. Hence the system (25) is globally asymp-
totically stable.

The function α1(e1) is an estimative when e2 is regarded as virtual controller.
The error between e2 and α1(e1) is

w2 = e2 − α1(e1) = e2 + k1e1 . (30)
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Consider (e1,w2) subsystem given by

ė1 = w2 − k1e1 ,

ẇ2 = −de1 (y1 + x1) − (1 − k1)(w2 − k1e1) + e3 − y3 + x3 + u2 .
(31)

Let e3 be a virtual controller in (30).
Assume that when e3 = α2(e1,w2), the system (30) is globally exponentially

stable. Consider the Lyapunov function defined by

V2(e1,w2) = V1(e1) +
1

2
w

2
2 . (32)

The derivative of V2(e1,w2) is

V̇2(e1,w2) = V̇1 + w2ẇ2 ,

V̇2(e1,w2) = −k1e2
1 + w2(e1 − de1 (y1 + x1) − (1 − k1)(w2 − k1e1)

+ e3 − y3 + x3 + u2 .

(33)

Substituting for e3 (30) into (32)

V̇2(e1,w2) = −k1e2
1 + w2(e1 − de1 (y1 + x1) − (1 − k1)(w2 − k1e1)

+ α2(e1,w2) − y3 + x3 + u2 .
(34)

If

α2(e1,w2) = −e1 − k2w2 + (1 − k1)(w2 − k1e1)

and

u2 = de1 (y1 + x1) + y3 − x3 ,

(35)

then
V̇2(e1,w2) = −k1e2

1 − k2w2 (36)

which is a negative definite function. Hence the system (30) is globally asymp-
totically stable.

The function α2(e1,w2) is an estimative when e3 is regarded as virtual con-
troller.

The error between e3 and α2(e1,w2) is

w3 = e3 − α2(e1,w2) = e3 + e1 + (k1 + k2 − 1)w2 + (1 − k1)k1e1 . (37)

Consider (e1,w2,w3) subsystem given by

ė1 = w2 − k1e1 ,

ẇ2 = w3 − e1 − k2w2 ,

ẇ3 = r se1 − re3 + (w2 − k1e1)(1 + k1 − k2
1 )

+ (k1 + k2 − 1)(w3 − e1 − k2w2) + u3 .

(38)
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Consider the Lyapunov function

V3(e1,w2,w3) = V2(e1,w2) +
1

2
w

2
3 . (39)

The derivative of V3(e1,w2,w3) is

V̇3 = V̇2(e1,w2) + ẇ3w3 (40)

i.e.,

V̇3 = −k1e2
1 − k2w

2
2 + w3[w2 + r se1 − re3 + (w2 − k1e1)(1 + k1 − k2

1 )

+ (k1 + k2 − 1)(w3 − e1 − k2w2) + u3].
(41)

Choose the controller u3 as follows

u3 = −w2 − r se1 + re3 − (1 + k1 − k2
1 )(w2 − k1e1)

− (k1 + k2 − 1)(w3 − e1 − k2w2) − k3w3 .
(42)

Substituting for u3 form (41) into (40), which give

V̇3 = −k1e2
1 − k2w

2
2 − k3w

2
3 (43)

which is negative definite function on R3. Thus by Lyapunov stability theory [42],
the error dynamics (23) is globally exponentially stable for all initial conditions
e0 ∈ Rn.

Hence, the states of plant and observer systems are globally exponentially
synchronized.

5. Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used
to solve the system of differential equations (20) and (21) with the backstepping
controls u1, u2 and u3 given by equations (27), (34) and (41). The parameters of
the systems (20) and (21) are taken in the case as a = 1, b = 3, c = 1, d = 5,
r = 0.005, s = 4 and I = 3.25. The initial values of the plant system are chosen
as: x1 = 0.632, x2 = 0.912 and x3 = 0.125.

The initial value of the observer system are chosen as: y1 = 1.245, y2 = 0.123
and y3 = 0.001.

Fig. 9 depicts the synchronization of Hindmarsh-Rose neuronal bursting when
the injected current in the neuron I = 1, 1.5 and the ratio of time scales between
spiking(fast dynamics) and resting(slow dynamics) r = 0.001.
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a) synchronization of membrane potential when
the injected current in the neuron I = 1 and the

ratio of time scales between spiking (fast
dynamics) and resting (slow dynamics) r = 0.001
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b) synchronization of electrode (the exchange of
ions across the neuron membrane through fast

ionic channels) when the injected current in the
neuron I = 1 and the ratio of time scales between

spiking(fast dynamics) and resting(slow
dynamics) r = 0.001
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c) synchronization of intrinsic current(the
exchange of ions through slow ionic channels)

when the injected current in the neuron I = 1 and
the ratio of time scales between spiking(fast

dynamics) and resting(slow dynamics) r = 0.001
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d) synchronization of membrane potential when
the injected current in the neuron I = 1.5 and the
ratio of time scales between spiking and resting

r = 0.001
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e) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 1.5
and the ratio of time scales between spiking and

resting r = 0.001
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f) synchronization of the exchange of ions through
slow ionic channels when the injected current in
the neuron I = 1.5 and the ratio of time scales

between spiking and resting r = 0.001

Figure 9: Phase portraits of synchronization
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a) synchronization of membrane potential when
the injected current in the neuron I = 2 and the
ratio of time scales between spiking and resting

r = 0.001
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b) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 2 and

the ratio of time scales between spiking and
resting r = 0.001
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c) synchronization of the exchange of ions through
slow ionic channels when the injected current in

the neuron I = 2 and the ratio of time scales
between spiking and resting r = 0.001
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d) synchronization of membrane potential when
the injected current in the neuron I = 3 and the
ratio of time scales between spiking and resting

r = 0.001
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e) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 3 and

the ratio of time scales between spiking and
resting r = 0.001
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f) synchronization of the exchange of ions through
slow ionic channels when the injected current in

the neuron I = 3 and the ratio of time scales
between spiking and resting r = 0.001

Figure 10: Phase portraits of synchronization
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Fig. 10 depicts the synchronization of Hindmarsh-Rose neuronal bursting
when the injected current in the neuron I = 2, 3 and the ratio of time scales
between spiking(fast dynamics) and resting(slow dynamics) r = 0.001.

Fig. 11 depicts the synchronization of Hindmarsh-Rose neuronal bursting
when the injected current in the neuron I = 3.25 and the ratio of time scales
between spiking(fast dynamics) and resting(slow dynamics) r = 0.001.

5000 5005 5010 5015
−2

−1

0

1

2

3

4

5

6

7

Time

x
1
,
 
y
1

 

 
x

1

y
1

a) synchronization of membrane potential when
the injected current in the neuron I = 3.25 and

the ratio of time scales between spiking and
resting r = 0.001
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b) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 3.25
and the ratio of time scales between spiking and

resting r = 0.001
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c) synchronization of the exchange of ions through
slow ionic channels when the injected current in
the neuron I = 3.25 and the ratio of time scales

between spiking and resting r = 0.001

Figure 11: Phase portraits of synchronization

Fig. 12 depicts the synchronization of Hindmarsh-Rose neuronal bursting
when the injected current in the neuron I = 3.25 and the ratio of time scales
between spiking(fast dynamics) and resting(slow dynamics) r = 0.0001.
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a) synchronization of membrane potential when
the injected current in the neuron I = 3.25 and the

ratio of time scales between spiking and resting
r = 0.0001
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b) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 3.25
and the ratio of time scales between spiking and

resting r = 0.0001
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c) synchronization of the exchange of ions through
slow ionic channels when the injected current in
the neuron I = 3.25 and the ratio of time scales

between spiking and resting r = 0.0001
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d) synchronization of membrane potential when
the injected current in the neuron I = 3.25 and the

ratio of time scales between spiking and resting
r = 0.0017
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e) synchronization of the exchange of ions across
the neuron membrane through fast ionic channels
when the injected current in the neuron I = 3.25
and the ratio of time scales between spiking and

resting r = 0.0017
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slow ionic channels when the injected current in
the neuron I = 3.25 and the ratio of time scales

between spiking and resting r = 0.0017

Figure 12: Phase portraits of synchronization
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6. Conclusion

In this paper, the backstepping control method has been applied to achieve
global chaos synchronization for Hindmarsh-Rose neuronal bursting systems.
Since the Lyapunov exponents are not required for these calculations, the back-
stepping control design is very effective and convenient to achieve global chaos
synchronization. Numerical simulations have been given to illustrate and validate
the effectiveness of the backstepping control based synchronization schemes of
the neuronal systems.
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