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State estimation of networked control systems
over limited capacity and dropout channels

QINGQUAN LIU, RUI DING and CHUNQIANG CHEN

This paper investigates state estimation of linear time-invariant systems where the sensors
and controllers are geographically separated and connected over limited capacity, additive white
Gaussian noise (AWGN) communication channels. Such channels are viewed as dropout (era-
sure) channels. In particular, we consider the case with limited data rates, present a necessary
and sufficient condition on the data rate for mean square observability over an AWGN channel.
The system is mean square observable if the data rate of the channel is larger than the lower
bound given. It is shown in our results that there exist the inherent tradeoffs among the limited
data rate, dropout probability, and observability. An illustrative example is given to demonstrate
the effectiveness of the proposed scheme.

Key words: linear time-invariant systems, limited capacity, observability, state estimation,
networked control, data rate

1. Introduction

Networked Control Systems (NCSs) are control systems where the sensors,
actuators and controllers are geographically separated and connected over com-
munication channels, which operate subject to communication limitations, such
as random delays, packet dropouts, and data rate constraints [1]. NCSs have
attracted increasing attention in recent years. Many networked control and esti-
mation strategies are designed in presence of communication limitations [2].
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A high-water mark in the study of quantized feedback using data rate limited
feedback channels is known as the data rate theorem. The intuitively appealing
result was proved in [3–5], indicating that it quantifies a fundamental relationship
between unstable physical systems and the rate at which information must be
processed in order to stably control them. This result was generalized to different
notions of stabilization and system models, and was also extended to multi-
dimensional systems [6–8]. Control under communication constraints inevitably
suffers signal transmission delay, data packet dropout and measurement quanti-
zation which might be potential sources of instability and poor performance of
control systems [9–11].

In [12], a quantized-observer based encoding-decoding scheme was designed,
which integrated the state observation with encoding-decoding. The paper [13]
addressed some of the challenging issues on moving horizon state estimation for
networked control systems in the presence of multiple packet dropouts. It was
shown in [14] that maxmin information was used to derive tight conditions for
uniformly estimating the state of a linear time-invariant system over a stationary
memoryless uncertain digital channel without channel feedback. The case with
both measurement quantization and control signal quantization was considered
in [15] and the case of LQG systems subject to both input and output quantization
was addressed in [16]. Networked control systems may be formulated as Marko-
vian jump systems [17]. The problem of stability analysis and stabilization was
investigated for discrete-time two-dimensional (2-D) switched systems in [18].

In this paper, we focus on the state estimation problem for linear time-invariant
systems, where the sensors and controllers are connected over limited capacity,
additive white Gaussian noise (AWGN) communication channels. We will exam-
ine the role that the data rate of such channels has on observability, and derive the
necessary and sufficient condition on the data rate for mean square observability.

The remainder of this paper is organized as follows: Section 2 introduces prob-
lem formulation; Section 3 deals with the state estimation problem over AWGN
communication channels; The results of numerical simulation are presented in
Section 4; Conclusions are stated in Section 5.

2. Problem formulation

In this paper, we are concerned with the following linear time-invariant system:

X (k + 1) = AX (k) + FW (k), (1)

Y (k) = CX (k), (2)

where X (k) ∈ Rn denotes the state process,Y (k) ∈ Rm denotes the measured out-
put, and W (k) ∈ Rq denotes the process disturbance. A, C, and F are known con-
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stant matrices with appropriate dimensions. Here, it is assumed that the pair (A,C)

is observable. The sequence {W (k)}k∈Z+ is independent identically distributed
(i.i.d.) with distribution W (k) ∼ N (0, θw) and the initial state X (0) ∼ N (0, θ0) is
independent of W (k).

Figure 1: Networked control systems

The sensors and controllers are connected over a limited capacity, additive
white Gaussian noise (AWGN) communication channel. Such a channel is de-
scribed by the channel input α(k), channel output β(k), and the channel noise
n(k). We define X̂ (k) and Z (k) as the state estimate and the estimation error,
respectively. Then, we have

Z (k) = X (k) − X̂ (k). (3)

Here, the plant state is encoded, and R(k) bits of the information on the plant state
are transmitted via the communication channel. Clearly, R(k) is a time-varying
variable. We define R as the mathematical expectation of R(k). The existence of
the channel noise often results in data packet dropout. Let pe denote the dropout
probability.

At each k ­ 0, the encoder is defined as

α(k) = δ
(

k, Y (0), Y (1), · · · ,Y (k)
)

. (4)

At each k ­ 0, the decoder is defined as

X̂ (k) = ϕ
(

k, β(0), β(1), · · · , β(k)
)

. (5)

Notice that, the number of consecutive lost packets is unbounded in presence
of the channel noise. This implies that the estimation error is unbounded too.
Thus, we adopt a notion of mean square observability.

Definition 1 Consider the system (1). For a finite µ > 0, the system (1) is mean
square observable if there exists an encoder and a decoder such that the estimation
error of the plant state satisfies the following condition:

lim sup
k→∞

E‖Z (k)‖ ¬ µ < ∞. (6)
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The objective of this paper is to examine the role that the limited data rate
has on observability of the system (1), and to derive the necessary and sufficient
condition on the data rate for mean square observability.

3. State estimation over AWGN channels

This section deals with the state estimation problem for linear time-invariant
systems over limited capacity and AWGN channels, presents a lower bound on
the data rate above which there exists an encoder and a decoder such that the
system (1) is mean square observable.

Let γi denote the ith eigenvalue of system matrix A. Then, we assume that
there exists a nonsingular real matrix H that diagonalizes A = H′ΦH , where

Φ = diag
[

γ1, γ2, · · · , γn

]

. (7)

In order to find the minimum data rate for observability of the system (1), we
employ the transformations of coordinates. Namely, we have

X̄ (k) := H X (k), (8)

X̃ (k) := H X̂ (k), (9)

Z̄ (k) := H Z (k). (10)

Then, the system (1) can be rewritten as

X̄ (k + 1) = ΦX̄ (k) + W̄ (k), (11)

Y (k) = CH′X̄ (k), (12)

where we define
W̄ (k) := HFW (k). (13)

Then, we have the following result.

Theorem 1 Consider the system (1) over an AWGN communication channel. Let
pe denote the dropout probability and let γi denote the i-th eigenvalue of system
matrix A. Then, a necessary and sufficient condition on the data rate for mean
square observability of the system (1) is the following:

R >
∑

i∈Ω

(

pe

(1 − pe)2
+ 1

)

log2 |γi | (bits/sample), (14)

with the set Ω := i ∈ {1, 2, · · · , n} : |γi | ­ 1}.
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Proof. First, we define

X̄ (k) := [x̄1(k) x̄2(k) · · · x̄n(k)]′ , (15)

Z̄ (k) := [z̄1(k) z̄2(k) · · · z̄n(k)]′ , (16)

W̄ (k) := [w̄1(k) w̄2(k) · · · w̄n(k)]′ , (17)

X̃ (k) :=
[

x̃1(k) x̃2(k) · · · x̃n(k)
] ′
. (18)

Then, it follows that

x̄i (k + 1) = γi x̄i (k) + w̄i (k). (19)

Notice that we have

W (k) ∼ N (0, θw) , (20)

X (0) ∼ N (0, θ0) . (21)

This implies

x̄i (0) ∼ N (0, σ0) , (22)

w̄i (k) ∼ N (0, σw) , (23)

where σ0 and σw are two known constants.
At any time k, we set

x̄i (k) ∼ N (ci (k), σi(k)) , (24)

where ci (k) andσi (k) denote the mathematical expectation and variance of x̄i (k)

Then, we have

x̃i (k) = ci (k), (25)

z̄i (k) ∼ N (0, σi (k)). (26)

Let v(k) = 1 indicate that the data packet is successfully sent to the decoder
and in contrast, let v(k) = 0 indicate dropout of the data packet. Then, we define
e(k) as the number of consecutive lost packets at time k. Here, we give

e(k) =


0, when v(k) = 1,

e(k − 1) + 1, when v(k) = 0,
(27)

At time k+1, we have

x̄i (k + 1) ∼ N (ci (k + 1), σi (k + 1)) . (28)
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Furthermore, we set

x̃i (k + 1) = ci (k + 1), (29)

z̄i (k + 1) ∼ N (0, σi (k + 1)). (30)

Then, we have

σi (k + 1) =


γ

2(e(k)+1)

i

n2
i
(k)

σi (k) + σw, when |γi | ­ 1,

γ2
i
σi (k) + σw, when |γi | < 1,

(31)

where ni (k) denotes the corresponding quantitative level. It follows from (20),
(21), and (31) that

σi(k) =



k−1
∏

j=0

γ
2(e( j)+1)

i

n2
i
( j)

σ0 +

k−1
∑

d=1

k−1
∏

l=d

γ
2(e(l)+1)

i

n2
i
(l)

σw+σw, when |γi | ­ 1,

k−1
∏

j=0

γ
2(e( j)+1)

i
σ0 +

k−1
∑

d=1

k−1
∏

l=d

γ
2(e(l)+1)

i
σw+σw, when |γi | < 1.

(32)

Thus, we have
lim
k→∞

σi (k) < ∞, (33)

if the data rate ri(k) corresponding to x̄i (k) satisfies the following inequality:

ri(k) > (e(k) + 1) log2 |γi | (bits/sample). (34)

This implies that
lim sup

k→∞
E‖Z (k)‖ < ∞, (35)

if the data rate R(k) corresponding to X̄ (k) satisfies the following inequality:

R(k) >
∑

i∈Ω
(e(k) + 1) log2 |γi | (bits/sample), (36)

where we define the set

Ω := i ∈ {1, 2, · · · , n} : |γi | > 1}. (37)

This gives

R >
∑

i∈Ω

(

pe

(1 − pe)2
+ 1

)

log2 |γi | (bits/sample). (38)

The proof of sufficiency is complete. Next, we give the proof of necessity.
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If we have
lim sup

k→∞
E‖Z (k)‖ < ∞, (39)

σi (k) must be bounded as k →∞. It follows from (32) that

ri (k) > (e(k) + 1) log2 |γi | (bits/sample), i ∈ Ω, (40)

where
Ω := i ∈ {1, 2, · · · , n} : |γi | > 1}. (41)

Clearly, we have

R >
∑

i∈Ω

(

pe

(1 − pe)2
+ 1

)

log2 |γi | (bits/sample). (42)

The proof of necessity is complete. �

Remark 1

1. It is shown in Theorem 1 that there exist the inherent tradeoffs among the
data rate, dropout probability, and observability.

2. If the dropout probability pe is equal to zero (namely, no packet is lost), the
condition in Theorem 1 can reduce to the existing result [1]:

R >
∑

i∈Ω
log2 |γi | (bits/sample). (43)

3. If the dropout probability pe is equal to one (namely, all packets are lost),
the data rate must satisfy the following condition:

R > ∞ (bits/sample). (44)

It means that there exist no encoder and no decoder such that the system (1) is
observable.

4. Simulation

In this section, we give a numerical example to demonstrate the effectiveness
of the proposed result. Here, we consider an unmanned air vehicle, where three
of all the states evolve in discrete-time according to

X (k + 1) =


1.2422 1.5422 −0.2543
0.2156 −2.3247 0.6345
0.7834 0.2645 1.8336

 X (k) + 5.3211W (k), (45)
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Y (k) = X (k). (46)

We set X (0) = [3.24 − 3.512.56]′, pe = 0.1, σw = 0.05, and σ0 = 1.
Here, we want to examine the role that the data rate has on observability of

the system above. Let R = 160(bits/s). The corresponding simulation is given in
Fig. 2. It is shown that the estimation error is bounded when the data rate is larger
than the lower bound given in Theorem 1.

Figure 2: The estimation error responses when R = 160 (bits/s) and pe = 01

Figure 3: The estimation error responses when R = 120 (bits/s) and pe = 01
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If let R = 120 (bits/s) be less than the lower bound given by Theorem 1, the
corresponding simulation is given in Fig. 3. It is shown that the estimation error
is unbounded when the data rate is not large enough.

If let R = 160 (bits/s) be larger than the lower bound and let pe = 0.2, the
corresponding simulation is given in Fig. 4. It is shown that the estimation error
is also unbounded when the dropout probability pe continues to increase.

Figure 4: The estimation error responses when R = 160 (bits/s) and pe = 02

Clearly, the data rate and dropout probability have important effects on ob-
servability of networked control systems.

5. Conclusions

In this paper, we considered linear time-invariant systems over limited capacity
and AWGN communication channels, examined the role that the limited data rate
has on state estimation. Here, we gave a notion of mean square observability
and derived the necessary and sufficient condition on the data rate for mean
square observability. It was shown that the data rate and dropout probability have
important effects on observability. The system is mean square observable if the
data rate of the channel is larger than the lower bound given in our results. The
simulation results have illustrated the effectiveness of our results. The study of
nonlinear system with limited data rate will be our future work.
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