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Anomalous and traditional diffusion modelling
in SOM learning

RADEK HREBIK and JAROMÍR KUKAL

The traditional self organizing map (SOM) is learned by Kohonen learning. The main
disadvantage of this approach is in epoch based learning when the radius and rate of learning are
decreasing functions of epoch index. The aim of study is to demonstrate advantages of diffusive
learning in single epoch learning and other cases for both traditional and anomalous diffusion
models. We also discuss the differences between traditional and anomalous learning in models
and in quality of obtained SOM. The anomalous diffusion model leads to less accurate SOM
which is in accordance to biological assumptions of normal diffusive processes in living nervous
system. But the traditional Kohonen learning has been overperformed by novel diffusive learning
approaches.
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1. Introduction

The self organizing map (SOM) is a traditional tool for data analysis which
transforms the data patterns from the input space into vertices of an undirected
SOM graph with a given topology and unit length edges. The input patterns are
from metric vector space in many applications. The parameters of SOM are the
weights which are placed into vertices and are subject of learning. The Kohonen
learning [19] is the first approach which is frequently used in many applications
[4,24,27,38]. The main disadvantage of this approach is in epoch based learning
with necessity of learning parameter changes. This learning algorithm has also a
weak biological motivation but there are many alternative approaches with better
properties.
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The alternatives are strongly connected with brain physiology study about
slow signal propagation in central nervous system. Nitric oxide (NO) is well
known neurotransmitter in mammal brain due to its ability to diffuse isotropically
in aqueous and lipid environments [32]. Using NO as an intarcellular signaling
molecule in the nervous system has been confirmed by many studies [12,17]. The
way of information transmission by neurons in both vertebrates and invertebrates
have also been discussed by many authors [8,11,13,29]. The intervening cellular
or membrane structures are discussed in [23,39]. The whole surface of the neuron
is therefore potential release site for NO, in marked contrast to conventional
transmitter release, which is restricted to the synaptic zone [16, 30, 36].

A lot of physiological studies served as a background model for the realisation
of artificial self organisation systems. Lopez et. al [25, 26] developed two pure
informatics models yielding from the simplification of NO dynamic. Models
are not focused to exact physical description of diffusion process. Moreover, the
spatial effect is modelled as multi–compartment discrete system in these studies.

Our previous study [18] has been focused on modelling of traditional diffu-
sion [5, 6] and yields from primal neurophysiological studies [12, 17] to obtain
adequate learning algorithm as simplification of real nitric oxide diffusion pro-
cess. We also formulate alternative model based on the anomalous diffusion hav-
ing another properties during learning process. Our aim is to compare Kohonen
learning, diffusive learning with traditional diffusion and learning strategy based
on anomalous diffusion in the case of single and multiple epoch learning of SOM.

The second section is oriented to two pudding models of NO diffusion. They
are based on tradition or anomalous diffusion in infinite continuum where the
neurons are placed as generators of concentration pulses. The various learning
approaches of SOM are included in the third section which is focused on Ko-
honen learning, normal and anomalous diffusive learning. A list of traditional
measures of SOM quality is included in the fourth section together with their
time complexity analysis. Three case studies are presented in the fifth section
which illustrates learning quality of proposed diffusive techniques on artificial
data sample and traditional testing datasets – iris flower and wine quality tasks
including conclusions in the last section.

2. Free diffusion in Rd

Supposing the diffusion of nitric oxide is the main slow learning phenomenon
of neural systems we have to model this process in physical, chemical and mathe-
matical sense. We decided to analyse only such models of diffusion with chemical
reaction which offer analytical solution in infinite continuum of given dimension.
There are only two cases which satisfy previous condition: traditional diffusion
for exponent α = 2 and anomalous diffusion constrained to case when α = 1.
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The pudding model description begins with remembering of basic facts. Let
m, n, H ∈ N be number of patterns, pattern dimensionality and number of SOM
neurons [14]. The individual patterns are x j ∈ Rn, where j = 1, . . . ,m and form
the pattern set S = {x1, . . . , xm}. The fixed positions of individual neurons in
continuum are pi ∈ RN for i = 1, . . . ,H and reflects the topology of SOM [28]
which is subject of network design. The diffusion process in continuum can
be easily expressed using matrix D ∈ (R+0 )H×H of distances di, j = ‖pi − p j ‖2.
These mutual distances inderictly express the topology of SOM. In pudding SOM
the neuron distances are not coinstraned to integeres what enables better space
mapping. Therefore, the resulting SOM is invariant to transition and rotation of
its structure. Let ∆t > 0 be learning period and the diffusion in continuum will
be studied only in discrete time tk = k · ∆t, where k ∈ N0. The result of SOM
learning is the system of weights [3] wi ∈ Rn, where , i = 1, . . . , H of course.
We begin with random weights setting wi (0). The weights evolve during learning
process and their values in time tq are denoted as wi (q), where q ∈ N0. The
pudding model is based on substrate concentrations in neurons and given time.
Being prepared to SOM learning we have to study the concentration profile first
using single and complete activation procedures.

The case of traditional diffusion (α = 2) has been discussed in [18] and the
main results introduce us into the formalism of diffusion process.

2.1. Traditional approach

The slow information transfer in the nervous system can be modelled as diffu-
sion process [6] with first order chemical reaction [9]. The reactant is generated
by single neuron activity [21] and the diffusion process [40] spread the substance
in the neuron neighbourhood. Our model is based on the second Fick’s law [2] of
diffusion which is modified by kinetics of pseudo-monomolecular [35] chemical
reaction. The neuron activity can be modelled as Dirac impulse in given time. The
main advantage of these simplifications is in the existence of analytical solution
which can be obtained as follows.

Let N ∈ N be space dimension, y ∈ RN be point coordinate, D, t, λ > 0 be
the diffusion coefficient, time and the rate constant of a chemical reaction. The
free diffusion of reacting substrate of concentration c : RN → R+0 is driven by
partial differential equation

∂c(y, t)

∂t
= D∇2c(y, t) − λc(y, t) (1)

with initial condition

c(y, 0+) = δ(y), (2)

where δ : RN → R+0 is Dirac function.
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The fundamental solution of (1) is

c(y, t) =
1

(4πDt)N/2
· exp *,−

‖y‖22
4Dt

+- · exp(−λt). (3)

Due to system linearity, time and space invariance of (1) we can use the funda-
mental solution to study of multi-neuron system with sequential activities.

Being prepared to SOM learning we have to study the concentration pro-
file first.

2.1.1. Single activation

The pudding SOM learning is based on the activation of a single neuron.
We will study j-th neuron which is supposed to be active in time tk . Therefore,
formally j = ϕk . But it is not necessary to study the substrate concentration in
any point. The learning is based only on the concentration (3) in neuron points.
The concentration in time tq is

c(y, p j, tq) =
1

(4πD(tq − tk ))N/2
· exp *,−

‖y − p j ‖22
4D(tq − tk )

+- · exp
(

−λ(tq − tk )
)

(4)

for q > k. The formula can be simplified to

c(pi, p j, tq) =
1

(4πD(q−k)∆t)N/2
·exp *,−

d2
i, j

4D(q−k)∆t
+-·exp

(−λ(q−k)∆t
)

. (5)

After the substitution a = 4D∆t > 0, b = λ∆t > 0 we obtain resulting activation
formula

c(pi, p j, tq) = (πa(q − k))−N/2 · exp *,−
d2

i, j

a(q − k)
− b(q − k)+- . (6)

When min(di, j ­ 1), then we suggest to use a = 1, b = 1/10 for the first
experiments as will be demonstrated in next sections.

2.1.2. Complete activation

The SOM learning is based on substrate concentrations in q-th step in the time
tq. This concentration is a result of previous activation sequence ϕ1, ϕ2, . . . , ϕq−1
using single activation model (6). Due to linearity of (1) we can use the additivity
principle and directly calculate the cumulative concentration in the i-th neuron
and step q

ci,q =

q−1
∑

k=1

c(pi, pϕk, tq − tk ) =
1

(πa)N/2
·

q−1
∑

k=1

exp

(

−
d2
i,ϕk

a(q−k)
− b(q − k)

)

(q − k)N/2
. (7)
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Resulting formula consists of all concentration information which is necessary for
the SOM learning. Therefore, the concentration ci,q is only a function of activation
history, SOM topology and parameters a, b. The difference between single and
complete activation is depicted on figure 1 for normal diffusive learning. The
concentration of substrate is very high in the neighborhood of last winning
neuron of the history. But the history is result of learning which will be studied
in the next section.

2.2. Anomalous diffusion

As rarely observed in nature, the anomalous diffusion [33] is a more complex
alternative to the traditional one. Both formulation and solution of models with
anomalous diffusion are very complicated and not trivial except of case when
α = 1 which is sometimes called ballistic diffusion. We will formulate the model
in general form first. Let 1 ¬ α < 2, Dα > 0 be anomalous exponent and diffusion
coefficient. The free anomalous diffusion of reacting substrate of concentration
c : RN → R+0 is driven by partial differential equation

∂c(y, t)

∂t
= Dα∇(α)c(y, t) − λc(y, t) (8)

with initial condition
c(y, 0+) = δ(y), (9)

where δ : RN → R+0 is Dirac function.
The explicit solution is obtainable only for α = 1. The fundamental solution

for λ = 0 is probability distribution function of multivarietal Cauchy distribution
[22] for scale γ = D1t

c(y, t) =

Γ

(

N + 1

2

)

Γ(1/2)πN/2
· D1t
(

D2
1t2
+ ‖y‖22

) (N+1)/2
. (10)

Using shift theorem [7] of Laplace transform we obtain the general solution

c(y, t) =

Γ

(

N + 1

2

)

Γ(1/2)πN/2
· D1t · exp(−λt)
(

D2
1t2
+ ‖y‖22

) (N+1)/2
(11)

and therefore,

c(y, p, tq) =

Γ

(

N + 1

2

)

Γ(1/2)πN/2
·

D1(tq − tk ) · exp(−λ(tq − tk ))
(

D2
1 (tq − tk )2

+ ‖y − p‖22
) (N+1)/2

, (12)
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c(pi, p j, tq) =

Γ

(

N + 1

2

)

Γ(1/2)πN/2
· D1(q − k)∆t · exp(−λ(q − k)∆t)

(

D2
1 (q − k)2(∆t)2

+ d2
i, j

) (N+1)/2
. (13)

After the substitution a = D1∆t > 0, b = λ · ∆t > 0 we obtain

c(pi, p j, tq) =

aΓ

(

N + 1

2

)

Γ(1/2)πN/2
· (q − k) · exp(−b(q − k))
(

a2(q − k)2
+ d2

i, j

) (N+1)/2
, (14)

ci,q =

q−1
∑

k=1

aΓ

(

N + 1

2

)

Γ(1/2)πN/2
·

q−1
∑

k=1

(q − k) · exp(−b(q − k))
(

a2(q − k)2
+ d2

i, j

) (N+1)/2
. (15)

The learning efficiency depends on concentration profiles. Therefore, it is useful
to compare substrate concentrations in the case of anomalous diffusion with the
normal case. Results of single and complete activation are depicted in Fig. 2
for anomalous diffusive learning. As seen in Figs. 1 and 2 the substrate is more
spread in the case of anomalous diffusion and the difference between minimal
and maximal concentration are smaller. These differences between normal and
anomalous diffusions influence the SOM learning algorithm and the main aim
of this paper is to decide what kind of diffusion is more suitable for new type of
diffusive SOM learning.

Figure 1: Concentration profile for normal diffusive learning after single (left) and com-
plete (right) activation (N = 2, a = 1, b = 1/10, H = 37, q = 100)
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Figure 2: Concentration profile for anomalous diffusive learning after single (left) and
complete (right) activation (N = 2, a = 1, b = 1/10, H = 37, q = 100)

3. SOM learning approach

There are many approaches how to perform modelling of self organisation.
They can be directly inspired by anatomy and physiology of neuronal system
or rather by other ideas which are easy to realize. Our research is inspired by
the pudding model of atom in physics [21, 37], where the nucleus of atoms are
supposed as points (raisins) in the electron continuum (pudding). In the case of
self organisation we will place individual neurons instead of the atom nucleus
into the continuum which would transfer the information in the system. But
the main question is which model of nitric oxide diffusion is more suitable for
SOM learning and whether the diffusive learning over-perform the traditional
Kohonen in learning quality. In case of SOM we differ between three main
approaches.

3.1. Kohonen learning

Kohonen network maps input vectors (patterns) of arbitrary dimension N
onto a discrete map with 1 or 2 dimensions. One of main expected results is that
patterns close to one another in the input space are to be close to one another in the
map. This is called to be topologically ordered. Kohonen network is composed
of a grid of output units and N input units. The input pattern is fed to each
output unit. The input lines to each output unit are weighted. These weights are
initialised to small random numbers.
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In case of Kohonen learning [20] we use rules as follows. The weight of i-th
neuron is changed in q-th step by rule

wi (q) = wi (q − 1) + α(q) · ci,q · (xq − wi (q − 1)) (16)

for i = 1, . . . ,H , xq ∼ U(S) is uniformly selected pattern from S, ci,q is the
substrate concentration according to (7) and α(q) > 0 is the ageing function
which is supposed to be non-increasing. The winner selection according to the
Kohonen rule [20]

ϕq ∈ arg min
k=1,...,H

‖xq − wk ‖2. (17)

As in the traditional SOM learning we have to initialize the weights [1] and use
appropriate ageing strategy. We generate the initial weights from the multivariate
Gaussian distribution as

wi (0) ∼ N(EX, varX/100) (18)

for i = 1, . . . , H . The ageing function α(q) can be constant in the first experiments,
but satisfying α(q) · ci,q ¬ 1 to avoid learning instability.

3.2. Normal and anomalous diffusive learning

Novel learning algorithm is completely devoted to Kohonen learning rules
[20] as follows. The weight of i-th neuron is changed in q-th step by rule

wi (q) = wi (q − 1) + α(q) · ci,q · (xq − wi (q − 1)) (19)

for i = 1, . . . ,H , xq ∼ U(S) is uniformly selected pattern from S, ci,q is substrate
concentration according to (7) or (15) respectively and α(q) > 0 is ageing
function which is supposed to be non-increasing. The winner is also selected
according to Kohenen rule [20] as

ϕq ∈ arg min
k=1,...,H

‖xq − wk ‖2. (20)

The main difference between the traditional SOM learning [1] and our approaches
is in the application of diffusive equations (1) and (8) which generate the con-
centration profiles (7) and (14). The learning feedback is driven by the winner
index ϕq from (17) which is used in the next step of concentration calculations
(7) and (14).

As in the traditional SOM learning we have to initialize the weights [1] and
use appropriate ageing strategy. We recommend to generate the initial weights
from the multivarietal Gaussian distribution as

wi (0) ∼ N(EX, varX/100) (21)

for i = 1, . . . , H . The ageing function α(q) can be constant in the first experiments,
but satisfying α(q) · ci,q ¬ 1 to avoid learning instability.
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4. SOM quality measures

There are two main problems in SOM learning. First of them is called butterfly
structure when the patterns are mapped in SOM graph with higher topographic
error. The second problem is in a low accuracy of self organisation when the
weights of SOM are far from the pattern set and the quantization error is higher.
We will specify these measures first. The basic way of quality measurement
design is based on measuring distances. The Euclidean distance of points x, y in
R

n is denoted d(x, y) = ‖x − y‖2.
Using the pattern x j we can investigate the distances to weights wk and define

winner as
win( j) ∈ arg min

k=1,...,H
d(x j − wk ) (22)

but the function win( j) is of stochastic nature due to possible distance equities. In
some cases we found the winner but one i.e. the second winner which is defined as

win2( j) ∈ arg min
k∈M j

d(x j − wk ), (23)

whereM j = {1, . . . , H } \ {win( j)}.
Using distances and winners we can design traditional measures of various

nature.

4.1. Distance penalization

The Quantization Error (QE) is traditionally related to all forms of vector
quantization and clustering algorithms [34]. Using linear penalisation we directly
penalise the distances between patterns and corresponding winner weights as

QE1 =

m
∑

j=1

d(x j,wwin( j) ). (24)

The quadratic penalisation

QE2 =

m
∑

j=1

d2(x j,wwin( j) ) (25)

is also frequently used but has higher sensitivity to outliers.

4.2. Topographic error

General topographic rule is: if two objects are close in reality they must
be closed also in the map. Using this principle topographic error (TE) [15] is
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defined as

T E = 1 − 1

m

m
∑

j=1

gwin( j),win2( j), (26)

where G ∈ {0, 1}H×H is SOM topology matrix with gu,v = I(‖pv − pv ‖2 ¬ 1).
The main advantage of TE is in its robustness to outliers.

4.3. Correlation based measures

The correlations between mutual distances of patterns and mutual distances
of winner weights can be directly used as quality measures.

Let i, j be pattern indexes. The mutual pattern distances can be defined as
di, j = d(xi, x j ). The mutual distances of corresponding weights are
δi, j = d(wwin(i),wwin( j) ).

Finally, we obtain m(m − 1)/2 pairs of corresponding distances and directly
calculate Pearson correlation coefficient r , Spearmann ρ or Kendall τ coeffi-
cient as quality measure. The correlation coefficients are frequently declared
as p-values of independence hypothesis H0 to be comparable with significant
level 0.05.

4.4. Time complexity of measures

The evaluations of QE1, QE2 and T E are very fast with time complexity
O(mnH ). The evaluation of correlation measures is more complex. The Pearson
r has time complexity O(mnH + m2) due to simple statistics over m(m − 1)/2
distance pairs. The Spearmann ρ is complicated with pair sorting and its time
complexity is O(mnH +m2 log(m)). The Kendall τ is not recommended for large
pattern sets due to time complexity O(mnH + m4).

4.5. Composed quality measures

In our research we prefer the QE1 as main optimal criterion. Due to sensitivity
to outliers we use QE2 only as supplementary. Due to higher time sentiment we
do not apply the correlation measures. The T E can be interpreted as probability
of topology saving in random graph. Comparing T E as p-value with critical level
of α we can test the hypothesis H0 whether the resulting topology is random.
Therefore, T E ¬ α indicates significant topology of SOM mapping. Accepting
only significant topology we can focus only to QE1 and avoid butterfly effect.

5. Anomalous and traditional diffusion modelling in SOM learning

To compare three different SOM learning processes we use also three learning
approaches based on different number of learning epochs. We evaluate the quality
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of SOMs for one, two and three epoch learning strategy in case of traditional
Kohonen, diffusive and anomalous SOM.

In case of traditional Kohonen learning strategy we used following variable
ranges:

• Number of epochs E ∈ {1, 2, 3}.

• Learning rate α ∈ {5, 2, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.001}.

• Radius R = {10, 5, 3, 2, 1, 0.75, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05}.

• Learning steps Nk = 50000.

In case of diffusive learning strategies we used following variable ranges:

• Number of epochs E ∈ {1, 2, 3}.

• Diffusive parameter
a = {5, 4, 3, 2.5, 1, 0.75, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0.01, 0.001}.

• Kinetic parameter b = {0, 0.1, 0.2, 0.5, 1}.

• Learning rate α0 = {10, 5, 3, 2, 1, 0.75, 0.5, 0.3, 0.1, 0.05, 0.01, 0.001}.

• Learning steps Nk = 50000.

In all cases we performed ten experiments and the best solution satisfying
T E < 0.05 and QE1 = min has been found every setting.

Using this general methodology we test and compare results of three learning
approaches on three different datasets. First dataset is our own artificial dataset to
easily see the performance of tested approach. The second dataset is represented
by traditional iris dataset and the third one is represented by wine quality dataset.

5.1. Case study I: Uniform data sample

As the first intuitive way of comparison we used artificial dataset. The dataset
is useful for testing the SOM quality. We generated 10 000 randomly distributed
points in the neighbourhood of 19 nodes of SOM in hexagonal topology. Indi-
vidual patterns were generated as Gaussian mixture of 19 cases with mean value
corresponding to node positions and standard deviation σ = 0.2.

5.1.1. Single epoch learning

First, we obtain the results for single epoch learning i.e. E = 1. The best results
of single epoch learning are collected in Table 1 as quantitative errors (QE1, QE2)
and topographic errors together with the best parameter setting. The best results
were obtained for diffusion SOM followed by anomalous SOM and the worse
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Table 1: Case study I: Single epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = 0.50

0.07689 0.08443 0.00000
α0 = 0.30

α = 2, b = 0.00

Diffusion SOM a = 0.40 0.07180 0.07622 0.00000
α0 = 0.35

α = 1, b = 0.10

Anomalous SOM a = 0.30 0.07422 0.07894 0.03250
α0 = 0.30

result has been obtained by Kohonen algorithm which is not recommended for
single epoch learning.

The results of two epoch learning are included in Table 2 in the same meaning.
In case of two epoch learning we still see the best results of Diffusion SOM but
in case of Anomalous SOM and Kohonen we obtained comparable results.

Table 2: Case study I: Two epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = (2.00, 0.50)

0.07214 0.07822 0.00000
α0 = (0.5000, 0.1000)

α = 2, b = 0.00

Diffusion SOM a = (2.00, 0.01) 0.06954 0.07442 0.00010
α0 = (3.00, 0.001)

α = 1, b = 0.00

Anomalous SOM a = (0.75, 0.10) 0.07278 0.07889 0.04210
α0 = (0.60, 0.001)

Three epoch learning strategy confirms the power of Diffusion SOM as seen
in Table 3. But Kohonen learning strategy brings better results than anoma-
lous SOM.

This artificial example leads to following rules:

• All three approaches are able to reduce T E < 0.05.

• Optimal kinetic constant b in many optimal cases.

• The measures QE1, QE2 bring the same order of methods.
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• Diffusion SOM overperformed anomalous SOM and Kohonen SOM learn-
ing in all cases.

• Kohonen method overperformed anomalous SOM in case of multi-epoch
learning, i.e. E ­ 3.

Table 3: Case study I: Three epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = (5.00, 3.00, 0.01)

0.06977 0.07487 0.01500
α0 = (2.00, 0.50, 0.05)

α = 2, b = 0.00

Diffusion SOM a = (0.20, 0.15, 0.10) 0.06640 0.07050 0.00000
α0 = (3.00, 0.50, 0.001)

α = 1, b = 0.00

Anomalous SOM a = (1.00, 0.50, 0.25) 0.07150 0.07721 0.01990
α0 = (10.00, 1.00, 0.006)

Therefore, we will use two standardized datasets in next sections to demon-
strate the real use of alternative methods. We compare the results for one and
three epoch learning strategies.

5.2. Case study II: Iris flower task

We employ traditional iris flower classification task [10] to demonstrate the
quality of SOM learning methods in the second case. The total number of 150
patterns of three classes (Iris setosa, Iris virginica, Iris versicolor) is described
by four properties (sepal length, sepal width, petal length, petal width). We will
compare only the results of 1 and 3 epoch learning strategies.

In the case of single epoch learning we collect the best results in Table 4
meanwhile the three epoch learning results are in Table 5.

The rules of optimal learning are same as in previous artificial example:

• All three approaches are able to reduce T E < 0.05.

• Optimal kinetic constant b in many optimal cases.

• Diffusion SOM overperformed anomalous SOM and Kohonen SOM learn-
ing in all cases.

• Anomalous diffusion brings worse results in case of QE2 and single epoch
learning than Kohonen SOM learning.

• Kohonen method overperformed anomalous SOM in case of multi-epoch
learning, i.e. E ­ 3.



712 R. HREBIK, J. KUKAL

Table 4: Case study II: Single epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = 0.75

0.22732 0.25794 0.03333
α0 = 0.20

α = 2, b = 1.00

Diffusion SOM a = 0.75 0.20627 0.23137 0.04000
α0 = 0.75

α = 1, b = 0.20

Anomalous SOM a = 0.50 0.21612 0.26052 0.04667
α0 = 0.75

Table 5: Case study II: Three epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = (1.00, 0.75, 0.50)

0.18318 0.20630 0.02000
α0 = (0.30, 0.10, 0.01)

α = 2, b = 0.00

Diffusion SOM a = (1.00, 0.75, 0.50) 0.16611 0.18383 0.04000
α0 = (1.00, 0.50, 0.05)

α = 1, b = 0.00

Anomalous SOM a = (1.00, 0.50, 0.25) 0.21023 0.23457 0.04667
α0 = (2.00, 1.00, 0.01)

5.3. Case study III: Wine quality

Finally we use the traditional white wine quality task. Its dataset is represented
by 4 898 patterns of 12 continuous attributes [31].

We compared only single and three epoch learning strategies again. In the
case of single epoch learning we collect the best results in Table 6 meanwhile the
three epoch learning results are in Table 7.

The rules of optimal learning are same as in previous artificial example:

• All three approaches are able to reduce T E < 0.05.

• Optimal kinetic constant b in many optimal cases.

• Diffusion SOM overperformed anomalous SOM and Kohonen SOM learn-
ing in QE1.

• Kohonen learning achieves worse results in single epoch learning.



ANOMALOUS AND TRADITIONAL DIFFUSION MODELLING IN SOM LEARNING 713

Table 6: Case study III: Single epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = 5.00

19.58427 26.92369 0.03818
α0 = 0.40

α = 2, b = 0.50

Diffusion SOM a = 2.50 8.33177 12.93502 0.04512
α0 = 0.75

α = 1, b = 0.00

Anomalous SOM a = 2.50 12.29983 18.21313 0.04757
α0 = 0.50

Table 7: Case study III: Three epoch learning

Method Parameters QE1 QE2 TE

Kohonen
R = (5.00, 2.00, 1.00)

8.64661 12.04015 0.04962
α0 = (5.00, 1.00, 0.01)

α = 2, b = 0.20

Diffusion SOM a = (5.00, 3.00, 0.10) 8.28362 12.73005 0.04226
α0 = (0.10, 0.50, 0.05)

α = 1, b = 0.00

Anomalous SOM a = (5.00, 3.00, 1.00) 8.47783 12.91590 0.04920
α0 = (0.10, 0.08, 0.05)

• Kohonen method overperformed anomalous SOM in QE1 and QE2 in case
of three epoch learning.

• Kohonen method overperformed diffusion SOM in QE2 only in case of
three epoch learning.

6. Conclusions

Novel method of SOM learning based on anomalous diffusion has been de-
veloped and experimentally compared with SOM with normal diffusion and with
Kohonen SOM learning. General aim was to decide whether the anomalous diffu-
sion is able to improve the quality of SOM learning. The side effect of this study
is in the optimal parameter setting which is easy to generalize. In all cases the
SOM learning with normal diffusion overperformed the other approaches in case
of QE1, but the traditional Kohonen learning is worse than anomalous diffusion
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learning in QE1 only in the case of single epoch learning. In the case of QE2
criterion the diffusion SOM is the best choice only for the single epoch learning.
The kinetic parameter b of both diffusion model can be set to zero in many cases
which is strongly recommended choice. Moreover the behaviour in the case of
artificial two–dimensional dataset is very similar to the behaviour on real datasets
of higher dimensions. Our algorithm is nature inspired, slow diffusion of nitric
oxide is its significant part and multi–epoch learning strategies are omitted as in
the case of brain learning.

References

[1] E. Alonso: Computational Neuroscience for Advancing Artificial Intelli-
gence: Models, Methods and Applications: Models, Methods and Applica-
tions. Premier reference source. Medical Information Science Reference,
2010.

[2] D. Brogioli and A. Vailati:. Diffusive mass transfer by nonequilibrium
fluctuations: Fick’s law revisited. Phys. Rev. E, 63, 012105 (2000).

[3] W.L. Chang, L.M. Pang and K.M. Tay: Application of self-organizing
map to failure modes and effects analysis methodology. Neurocomputing,
249 (2017), 314–320.

[4] J.A.F. Costa, A.P.V. Pinto, J.R. de Andrade and M.G. de Medeiros: Clus-
tering of regional hdi data using self-organizing maps. In 2017 IEEE Latin
American Conference on Computational Intelligence (LA-CCI), (2017),
1–6.

[5] J. Crank: The mathematics of diffusion, J. Crank ed. Clarendon Press
Oxford [England], 2nd ed. edition, 1975.

[6] E. Cussler: Diffusion: Mass Transfer in Fluid Systems. Cambridge Series
in Chemical Engineering. Cambridge University Press, 2009.

[7] B. Davies: Integral Transforms and Their Applications. Texts in Applied
Mathematics, Springer New York, 2002.

[8] G. Edelman and J. Gally: Nitric oxide: linking space and time in the
brain. Proceedings of the National Academy of Sciences, 89(24), (1992),
11651–11652.

[9] J. Espenson: Chemical Kinetics and Reaction Mechanisms. Advanced
Chemistry Series, McGraw-Hill, 1995.



ANOMALOUS AND TRADITIONAL DIFFUSION MODELLING IN SOM LEARNING 715

[10] R.A. Fisher: The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2), (1936), 179–188.

[11] J.A. Gally, P.R. Montague, G.N. Reeke and G.M. Edelman: The no
hypothesis: possible effects of a short-lived, rapidly diffusible signal in
the development and function of the nervous system. Proceedings of the
National Academy of Sciences, 87(9), (1990), 3547–3551.

[12] J. Garthwaite, S.L. Charles and R. Chess-Williams: Endothelium-
derived relaxing factor release on activation of nmda receptors suggests
role as intercellular messenger in the brain. Nature, 336(6197), (1988),
385–388.

[13] A. Gelperin: Nitric oxide mediates network oscillations of olfactory in-
terneurons in a terrestrial mollusc. Nature, 369(6475), (1994), 61–63.

[14] D. Graupe: Deep Learning Neural Networks: Design and Case Studies,
2016.

[15] L. Hamel: Som quality measures: An efficient statistical approach. In Pro-
ceedings of the 11th International Workshop WSOM 2016, pages 49–59,
Houston. Springer, 2016.

[16] N.A. Hartell: Strong activation of parallel fibers produces localized cal-
cium transients and a form of ltd that spreads to distant synapses. Neuron,
16(3), (1996), 601–610.

[17] C. Hölscher: Nitric oxide, the enigmatic neuronal messenger: its role in
synaptic plasticity. Trends in neurosciences, 20(7), (1997), 298–303.

[18] R. Hrebik and J. Kukal: Diffusion modelling: Topographic error of som
under control. Soft Computing (2018), page submitted.

[19] T. Kohonen: Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43(1), (1982), 59–69.

[20] T. Kohonen: Self-Organizing Maps. Springer Series in Information Sci-
ences. Springer Berlin Heidelberg, 2012.

[21] S. Kornblith, R.Q. Quiroga, C. Koch, I. Fried and F. Mormann: Per-
sistent single-neuron activity during working memory in the human medial
temporal lobe. Current Biology, 27(7), (2017), 1026–1032.

[22] S. Kotz and S. Nadarajah: Multivariate T-Distributions and Their Appli-
cations. Cambridge University Press, 2004.



716 R. HREBIK, J. KUKAL

[23] J.R. Lancaster: Simulation of the diffusion and reaction of endogenously
produced nitric oxide. Proceedings of the National Academy of Sciences,
91(17), 1994), 8137–8141.

[24] A. Lavecchia: Machine-learning approaches in drug discovery: methods
and applications. Drug Discovery Today, 20(3), (2015), 318–331.

[25] P.F. Lopez, C.P.S. Araujo, P.G. Baez and G.S. Martin: Diffusion asso-
ciative network: diffusive hybrid neuromodulation and volume learning. In
International Work-Conference on Artificial Neural Networks, pp. 54–61,
Springer, 2003.

[26] P.F. Lopez, P.G. Baez and C.P.S. Araujo: Nitric oxide diffusion and multi-
compartmental systems: Modeling and implications. In International Con-
ference on Neural Information Processing, pp. 523–531, Springer, 2015.

[27] O.A. Moldes, J.C. Mejuto, R. Rial-Otero and J. Simal-Gandara: A crit-
ical review on the applications of artificial neural networks in winemaking
technology. Critical Reviews in Food Science and Nutrition, 57(13), (2017),
2896–2908.

[28] E. Oja and S. Kaski: Kohonen Maps. Elsevier Science, 1999.

[29] M. O’Shea, R. Colbert, L. Williams and S. Dunn: Nitric oxide com-
partments in the mushroom bodies of the locust brain. Neuroreport, 9(2),
(1998), 333–336.

[30] J.H. Park, V.A. Straub and M. O’Shea: Anterograde signaling by nitric
oxide: Characterization and in vitro reconstitution of an identified nitrergic
synapse. Journal of Neuroscience, 18(14), (1998), 5463–5476.

[31] P. Perner: Machine Learning and Data Mining in Pattern Recognition:
11th International Conference, MLDM 2015, Hamburg, Germany, July
20-21, 2015, Proceedings. Lecture Notes in Computer Science, Springer
International Publishing, 2015.

[32] A. Philippides, P. Husbands and M. O’Shea: Four-dimensional neuronal
signaling by nitric oxide: a computational analysis. Journal of Neuroscience,
20(3), (2000), 1199–1207.

[33] C. Pozrikidis: The Fractional Laplacian. CRC Press, 2016.

[34] G. Pölzlbauer: Survey and comparison of quality measures for self-
organizing maps.

[35] M. Senapati: Advanced Engineering Chemistry. Laxmi Publications, 2006.



ANOMALOUS AND TRADITIONAL DIFFUSION MODELLING IN SOM LEARNING 717

[36] S.H. Snyder and D.S. Bredt: Nitric oxide as a neuronal messenger. Trends
in Pharmacological Sciences, 12 (1991), 125–128.

[37] J.J. Thomson: On the structure of the atom: an investigation of the stability
and periods of oscillation of a number of corpuscles arranged at equal
intervals around the circumference of a circle; with application of the results
to the theory of atomic structure. Philosophical Magazine Series 6, 7(39),
(1904), 237–265.

[38] A. Urmos, Z. Farkas, M. Farkas, T. Sandor, L.T. Koczy and A. Nem-

csics: Fuzzy and kohonen som based classification of different 0d nanos-
tructures. In 2017 IEEE 15th International Symposium on Applied Machine
Intelligence and Informatics (SAMI), pp. 365–370, 2017.

[39] L. Wood and J. Garthwaite: Models of the diffusional spread of nitric
oxide: implications for neural nitric oxide signalling and its pharmacological
properties. Neuropharmacology, 33(11), (1994), 1235–1244.

[40] Y. Yun: The moments of a diffusion process. Statistics & Probability Letters,
138 (2018), 36–41.


