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Thermal buckling of temperature-dependent functionally
graded Timoshenko beams

Thermal buckling behavior of a functionally graded material (FGM) Timoshenko
beam is studied based on the transformed-section method. The material and thermal
properties of the FGM beam are assumed to vary across the beam thickness according
to a power-law function, a sigmoid function and an exponential function. The results
of buckling temperature for the FGM beams with respective temperature-dependent
and temperature-independent properties under uniform and non-linear temperature
rises are presented. Some results are compared with those in the published literature
to verify the accuracy of the present work. The effects of the material distributions,
temperature fields, temperature-dependent properties and slenderness ratios on the
thermal buckling behaviors of FGM beams are discussed. It is believed that the
present model provides engineers with a simple and effective method to study the
effects of various parameters of the FGM beam on its thermal buckling behavior.

1. Introduction

Functionally graded materials (FGMs) are non-traditional composite mate-
rials with a smooth variation of material properties in the specified directions.
This graded property is achieved by gradually varying the volume fraction of the
constituent materials so that the discontinuity of mechanical properties between
materials can be eliminated. Generally, FGMs are made of the ceramic and metal
with the properties of the high toughness of metal and excellent strength and
temperature resistance of ceramic. Thus, engineering structures made from ceram-
ic/metal FGMs have been widely used in many fields under thermal environments.
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When a structure is subjected to a high-temperature condition, under certain con-
ditions the thermal buckling due to the thermal loading may occur. Therefore, a
good understanding of the thermal buckling behavior of FGM structures, espe-
cially for beam members, in thermal conditions is needed in order to use them in
an effective and safe way. The buckling problems [1–14] of FGM beams subjected
to mechanical loads had been studied in the past decades by various analytical and
approximate methods. Because the present paper is focused on the study of thermal
buckling of FGM beams, merely the relevant literature is reviewed next.

In [15] authors presented close-form expressions for the critical thermal buck-
ling temperature of FGM Euler-Bernoulli beams under various thermal loadings.
The material properties are assumed to vary across the thickness direction ac-
cording to a power-law function. The effects of temperature distributions such as
uniform temperature rise, linear and nonlinear temperature distribution on the ther-
mal buckling were investigated. In [16] authors studied the thermal buckling and
free vibration of third-order shear deformable FGM beams subjected to uniform
temperature rise. The effects of material compositions, power law indices, slen-
derness ratios, temperature-dependent properties and boundary conditions were
investigated. The results indicated that temperature-dependent properties signifi-
cantly affect the thermal buckling and vibration of the thick beams. Based on the
Galerkin’s decompositionmethod [17], authors investigated the thermo-mechanical
buckling and non-linear vibration of FGM Euler-Bernoulli beams on non-linear
elastic foundations. A simple power law is used to model the smooth change of
material properties in the thickness direction. Closed-form solutions for the critical
buckling temperature and nonlinear natural frequency were established and used
to study the effects of volume fraction indices, foundation parameters, thermal
loads, vibration amplitudes and boundary condition. In [18] authors analyzed the
thermal-mechanical buckling of temperature-dependent FGM Timoshenko beams
using the virtual displacements principle. The material and thermal properties are
changed across the thickness with a power-law distribution, and depend on tem-
perature and position. Close-form solutions were obtained for the critical thermal
buckling temperature of FGM beams under uniform temperature rise, linear and
nonlinear temperature distribution, respectively. In [19] authors presented the crit-
ical buckling temperature and buckling modes of FGM Timoshenko beams with
longitudinal crack under uniform temperature rise using the Hamilton’s principle
and differential quadrature method. The materials properties are varied along the
thickness direction according to a power law distribution. The effects of mate-
rial graded index, crack length, crack depth and crack position were discussed.
Based on the Ritz method [20], the authors investigated the thermal buckling and
post-buckling behaviors of temperature-dependent FGM Timoshenko beams un-
der uniform temperature rise and heat conduction using a generalized differential
quadrature method. The properties are assumed to vary across the thickness direc-
tion by a simple power law function. The effects of the power-law index, foundation
stiffness, thermal loading types, temperature-dependent properties and boundary
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conditions on thermal stability behaviors were studied. In [21] authors applied the
Hamilton’s principle and state space approach to analyze the vibration and buck-
ling behaviors of higher order shear deformable FGM beams under mechanical and
thermal loads. The material properties are assumed to depend on the temperature
and position, and vary along the thickness according to a power law function. Three
types of thermal loadings such as uniform, linear and nonlinear temperature rise
were taken into account. The effects of material constituents, power law indices,
temperature distributions, slenderness ratios and restraint conditions on the buck-
ling temperature, buckling loads and natural frequencies were discussed. Based on
a shooting method [22], authors presented the thermal buckling and post-buckling
of FGMTimoshenko beams with properties varying along the thickness by a power
law function. The beam is assumed to rest on non-linear elastic foundations and be
subjected to uniform and non-linear temperature rise, respectively. The influences
of the foundation stiffness, power law exponent and slenderness ratio on the buck-
ling temperature and post-buckling deformations were investigated. In [23] authors
investigated the hygro-thermal effects on the vibration and thermal buckling of high
order shear deformable FGM beams using Lagrange’s equations and Ritz method.
The effects of power law index, slenderness ratio, transverse normal strain, temper-
ature and moisture on natural frequencies and buckling temperatures were exam-
ined. In [24] authors studied thermal buckling and post-buckling behaviors of FGM
beams under uniform temperature rise using the Euler–Bernoulli, Timoshenko and
various higher-order shear deformation beam theories. The temperature-dependent
properties of the constituents were considered. A two-step perturbationmethodwas
used to obtain the buckling loads and post-buckling equilibrium paths. In [25] au-
thors investigated the thermal buckling of elastically supported FGM Timoshenko
beams under uniform temperature rise using Stokes’ transformation technique.Ma-
terial properties are assumed to vary along the thickness direction according to a
simple four-parameter power law. The effects of the power law index, FGMmodel,
slenderness ratio and restraint conditions were examined. Based on the variational
principle and Ritz method [26], the authors presented the thermal buckling stabil-
ity of fixed-fixed FGM Euler-Bernoulli beams subjected to linear and nonlinear
temperature gradient. The temperature-dependent material properties are assumed
to vary along the thickness direction according to a power law function. The ef-
fects of material constituents, volume fraction index and slenderness ratio on the
thermal buckling loads were investigated. In [27] authors investigated the thermal-
mechanical buckling of porous FGM sandwich beams under thermal conditions
based on the high order shear deformation theory and physical neutral plane. The
temperature-dependent properties are approximated by a modified Voigt mixture
rule. The effects of porosity, the physical neutral plane, gradient index, temperature-
dependent properties, face-to-core ratios on the thermal buckling of porous FGM
beams under uniform, linear and nonlinear temperature rises were examined.

As reviewed previously, most studies on thermal buckling problems were con-
centrated on FGMbeamswithmaterial properties varying in the thickness direction
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according to a power law function. Accordingly, various analytical and numerical
methods were used to analyze FGM beam structures with good accuracy. How-
ever, the thermal buckling of FGM beams with the variation of material properties
by a sigmoid function and an exponential function had seldom been reported.
In addition, no attempt was made to analyze the thermal buckling problem of
FGM Timoshenko beams based on the transformed-section method [28]. Thus,
the present paper applies the transformed-section method [29, 30] to investigate
the thermal buckling behaviors of FGM Timoshenko beams with material prop-
erties varying according to the power-law function (P-FGM), sigmoid function
(S-FGM) and exponential function (E-FGM), respectively. The material and ther-
mal properties of the beam are assumed to depend on the temperature and thickness
coordinate. The temperature-dependent and temperature-independent solutions of
the critical buckling temperatures for various clamped-clamped P-FGM, S-FGM
and E-FGM beams under uniform temperature rise (UTR) and nonlinear temper-
ature rise (NTR) are determined. To validate the accuracy of the present model,
some calculated results for the critical buckling temperatures of FGM beams with
various material models, volume fraction indices, temperature distributions and
slenderness ratios are compared with those by other investigators. A good agree-
ment is achieved. The effects of the material distribution types, temperature fields,
volume fraction indices, temperature-dependent properties and slenderness ratios
on the thermal buckling behaviors of different FGM beams are investigated.

2. Functionally graded materials

A FGM beammade frommetal and ceramic is investigated, which has a length
of l and rectangular cross-section of b× h. The top surface of the beam is ceramic-
rich and its bottom one is metal-rich. Fig. 1 shows the beam configuration and
coordinate frames xyz and x1y1z1. The axis x is on the physical midplane xy and
the x1 axis is the neutral axis of the transformed cross-section. The y and y1 axes
are in the width direction of the beam; the z and z1 axes are collinear and along the
thickness direction. The effective properties P(z) of the FGM beam, such as the
effective Young’s modulus E, shear modulus G, thermal expansion coefficient α
and thermal conductivity K , are assumed to change continuously across the beam

Fig. 1. Beam configuration and coordinate systems
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thickness according to the power-law function, sigmoid function or exponential
function.

For the P-FGM beam, its effective property is expressed as

P(z) = Pb + (Pt − Pb)
(

z
h
+

1
2

)k
. (1)

Here Pt and Pb represent thematerial properties of the beam at its upper and bottom
surfaces, respectively; the non-negative exponent k is the volume fraction index; the
thickness variable z ranges from−h/2 to h/2. Fig. 2 depicts the variation of property
P(z)/Pt in the thickness direction for the P-FGM beam with various values of k.
As can be seen, a smaller value of volume fraction index represents a more sudden
increase in the property P(z)/Pt near the bottom surface and the material at the
top surface is the dominant constituent. In contrast, the property P(z)/Pt changes
abruptly near the top surface for a larger value of volume fraction index and the
dominant constituent is the material at the bottom surface. For S-FGM beam, its
effective property P(z) is expressed by two power law functions as follows.

P(z) = Pb +
1
2

(Pt − Pb)
(
1 +

2z
h

)k
, −h/2 6 z 6 0, (2a)

P(z) = Pb + (Pt − Pb)

1 −

1
2

(
1 −

2z
h

)k , 0 6 z 6 h/2. (2b)

Fig. 2. Variation of effective property P(z)/Pt versus beam thickness
for P-FGM beam with various values of volume fraction index k

Fig. 3 shows the variation of property P(z)/Pt against the thickness coordinate
for the S-FGM beam with different values of k. It is noted that the property varies
rapidly near the top and bottom surfaces for k < 1 but changes abruptly near the
middle surface for k > 1. The effective property P(z) for E-FGM beam is given as

P(z) = Pte
γ
(

2z
h −1

)
, γ =

1
2

ln
(

Pt

Pb

)
. (3)
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Fig. 4 illustrates the property P(z)/Pt with respect to the thickness for the E-FGM
beam. Like the P-FGM beam, the bottom surface is fully metal whereas the top
surface is fully ceramic. Compared to Fig. 2, it is noted that its property falls
between those of the P-FGM beam with k = 1 and 2.

Fig. 3. Variation of effective property P(z)/Pt versus beam thickness
for S-FGM beam with various values of volume fraction index k

Fig. 4. Variation of effective property P(z)/Pt versus beam thickness
for E-FGM beam

When the materials considered are dependent on temperature, the nonlinear
equation of the Touloukian model [31] is used to evaluate the thermal-elastic
material properties in terms of temperature.

P = P0
(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
, (4)

where P0, P−1, P1, P2 and P3 are coefficients associated with the constituent and
T = T0 + ∆T . T0 and ∆T denote the ambient temperature (300 K) and temperature
difference, respectively.
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3. Temperature fields

In the present study, the temperature rise is assumed to vary along the thickness
direction of the FGM beam. Additionally, the uniform temperature rise and nonlin-
ear temperature rise thermal conditions are considered. For FGM beams subjected
to uniform temperature rise, the temperature of the whole beam is uniform. The
temperature change of the beam is ∆T = T −T0, in which T is the final temperature
and T0 = 300 K is the initial uniform temperature.

For FGM beams under nonlinear temperature rise, the temperature field T (z)
along the thickness can be obtained by solving the one-dimensional steady state
heat conduction equation with the prescribed temperature conditions at the top and
bottom surface

d
d z

(
K (z)

dT
d z

)
= 0,

T
(

h
2

)
= Tt , T

(
−

h
2

)
= Tb ,

(5)

where K (z) is the thermal conductivity independent of the temperature, which can
be obtained for the P-FGM, S-FGM and E-FGM beam from Eqs. (1) to (3), respec-
tively. Tt and Tb represent the prescribed temperature at the top and bottom side,
respectively. Then, substituting the expression of K (z) into Eq. (5) and performing
the integration, the temperature field for the P-FGM, S-FGM and E-FGM beam
can be determined.

For P-FGM and S-FGM beams, the solution of Eq. (5) can be found by using
the polynomial series. The temperature field for the P-FGM beam is given as [21]

T (z) = Tb +
R2
R1
∆T, (6)

with

R1 =

n∑
j=0

(−1) j

( j k + 1)
K̄ j,

R2 =

n∑
j=0

(−1) j

( j k + 1)
K̄ j

(
z
h
+

1
2

) jk+1
.

The temperature distribution for the S-FGM beam is obtained as

T (z) =




Tb +
D2
D1
∆T −h/2 6 z 6 0,

Tt −
D4
D3
∆T 0 6 z 6 h/2,

(7)
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with

D1 =

n∑
j=0

1
( j k + 1)



(
−

1
2

K̄
) j
+

Kb

Kt

(
1
2

K̄1

) j ,
D2 =

n∑
j=0

(−1) j

( j k + 1)

(
1
2

K̄
) j (

1 +
2z
h

) jk+1
,

D3 =

n∑
j=0

1
( j k + 1)



Kt

Kb

(
−

1
2

K̄
) j
+

(
1
2

K̄1

) j ,
D4 =

n∑
j=0

1
( j k + 1)

(
1
2

K̄1

) j (
1 −

2z
h

) jk+1
.

Here ∆T = Tt − Tb is the temperature difference between the upper and bottom
surfaces of the FGMbeam; K̄ = (Kt − Kb) /Kb and K̄1 = (Kt − Kb) /Kt . Sufficient
terms of the series should be taken in evaluating the temperature distribution to
ensure the convergence. For the E-FGM beam, the solution of Eq. (5) can be
determined by direct integration. Its temperature field is given as

T (z) = Tb +

(
e−γ

(
2z
h −1

)
− e2γ

)
(
1 − e2γ) ∆T . (8)

4. Governing equations

Considering a FGM beam subjected to the temperature rise from the reference
temperature T0 to the current temperature T , it can be regarded as a beam under
a thermal compressive load PT at a distance zT as given in Fig. 1. They can be
determined as follows:

PT = −

∫
E(z)α(z) (T − T0) d A, (9)

zT =

∫
E(z)α(z)z (T − T0) d A∫
E(z)α(z) (T − T0) d A

. (10)

Here E(z) and α(z) are the effective Young’s modulus and thermal expansion
coefficient, respectively. They can be obtained for the respective P-FGM, S-FGM
and E-FGM beam according to Eqs. (1) to (3).

In deriving the differential equations governing the bending defection of
the FGM beam under a thermal compressive load using the transformed-section
method, the original rectangular cross section (Fig. 5a) of FGM beam with two
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(a) original section (b) transformed section

Fig. 5. Beam of functionally graded materials

compositions is transformed into an equivalent cross-section with the material of
the top surface (Fig. 5b). A modular ratio, n(z), is defined as

n(z) =
E(z)
Et

. (11)

Then, the centroid of the neutral axis of the transformed section, ho, the cross-
sectional area of transformed section, At , and the effective second moment of area
about the neutral axis of this transformed area, Ie, are obtained as

ho =

∫
At

z d A∫
At

d A
=

h/2∫
−h/2

zn(z)bd z

h/2∫
−h/2

n(z)bd z

, (12)

At =

h/2∫
−h/2

bn(z) d z, (13)

Ie =
∫
At

z2
1 d A =

h/2∫
−h/2

bn(z)z2 d z − h2
o

h/2∫
−h/2

bn(z) d z. (14)

The detailed derivations of Eqs. (12)–(14) can be found in the authors’ earlier work
[29, 30]. Introducing the expression of E(z) into Eqs. (11) to (14), we can obtain
the modular ratio, centroid, area of transformed section and effective area moment
of inertia for the respective P-FGM, S-FGM and E-FGM beam as follows.
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P-FGM:

n(z) = Ē +
(
1 − Ē

) (
z
h
+

1
2

)k
, (15a)

ho =
k
(
1 − Ē

)
2 (k + 2)

(
1 + kĒ

) h, (15b)

At =

(
Ē +

1 − Ē
k + 1

)
A, (15c)

Ie =
bh3

12


Ē+12

(
1−Ē

) (
1

k+3
−

1
k+2
+

1
4k+4

)
−

3k2
(
1−Ē

)
(k+1)(k+2)2

(
1+kĒ

)  . (15d)

S-FGM:

n(z) =




Ē +
1
2

(
1 − Ē

) (
1 +

2z
h

)k
−h/2 6 z 6 0,

Ē +
(
1 − Ē

) 1 −
1
2

(
1 −

2z
h

)k 0 6 z 6 h/2,
(16a)

ho =
k (k + 3)

(
1 − Ē

)
4(k + 1)(k + 2)

(
1 + Ē

) h, (16b)

At =
1
2

(
1 + Ē

)
A, (16c)

Ie =
bh3

12



1
2

(
1 + Ē

)
−

3k2(k + 3)2
(
1 − Ē

)2

8(k + 1)2(k + 2)2
(
1 + Ē

)  . (16d)

E-FGM:

n(z) = e
1
2 ln Ē

(
1− 2z

h

)
, (17a)

ho =


1 + Ē

2
(
1 − Ē

) + 1
lnĒ


h, (17b)

At =
Ē − 1
ln Ē

A, (17c)

Ie =
bh3

12



12Ē
(
ln Ē

)2
− 12

(
1 − Ē

)2(
1 − Ē

) (
lnĒ

)3


. (17d)

Accordingly, the equivalent beam with the transformed cross-section is then
considered as a homogeneous beam with an effective bending rigidity Et Ie and
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effective shear rigidity Gt At subjected to an eccentric load PT at a distance
e = ho − zT from the centroidal axis of the beam. The shear modulus Gt is
given by Et/2(1 + ν) where ν is Poisson’s ratio. By applying the minimum po-
tential energy principle and first order shear deformation theory to the equivalent
beam with the transformed section under an eccentric load, one can obtain the
following static bending equations for the FGM beam under a thermal compressive
load at the end supports.

κGt At
*
,

d2w

d x2
1
−

dφ
d x1

+
-
− PT

d2w

d x2
1
= 0, (18a)

Et Ie
d2φ

d x2
1
+ κGt At

(
dw
d x1
− φ

)
= 0. (18b)

The boundary conditions at x1 = 0, l are

either κGt At

(
dw
d x1
− φ

)
− PT

dw
d x1
= 0 or w = 0, (19a)

either Et Ie
dφ
d x1
− PT e = 0 or φ = 0. (19b)

Here w and φ denote the bending displacement about the neutral axis x1 and the
rotation about they1 axis, respectively; κ is the shear correction factor taken to be
5/6 throughout this paper. To study the thermal buckling behavior of bifurcation
type [18], only the FGM beams with the clamped end supports are investigated.
Hence, the boundary conditions at x1 = 0, l are

w = 0, φ = 0. (20)

From Eq. (18a) and its derivatives, we have

dφ
d x1
=

(
1 −

PT

κGt At

)
d2w

d x2
1
, (21)

d3φ

d x3
1
=

(
1 −

PT

κGt At

)
d4w

d x4
1
. (22)

Substituting Eq. (21) into Eq. (18b) yields

φ = β̄
d3w

d x3
1
+

dw
d x1

, β̄ =
Et Ie
κGt At

(
1 −

PT

κGt At

)
. (23)

Then, differentiating Eq. (18b) and using Eqs. (21) and (22) leads to the following
fourth-order differential equation governing the buckling of FGM beams in terms
of the bending deflection w

d4w

d x4
1
+ β2 d2w

d x2
1
= 0, (24a)
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with
β2 =

PT

Et Ie

(
1 −

PT

κGt At

) . (24b)

Substituting Eq. (23) into Eq. (20), the clamped boundary conditions can also be
rewritten in terms of w as

w = 0, β̄
d3w

d x3
1
+

dw
d x1
= 0. (25)

In the next section, the solutions of the thermal buckling temperature for clamped-
clamped FGM beams under uniform temperature and nonlinear temperature rises
will be derived.

5. Thermal buckling analysis

The general solution for the bending deflection w in Eq. (24) can be given as

w (x1) = C1 cos βx1 + C2 sin βx1 + C3 + C4x1 . (26)

Here, the constants C1, C2, C3 and C4 and value of β are determined by properly
imposing the restraint conditions of the beam. Introducing the clamped boundary
conditions w(0) = w(l) = 0 and β̄w′′′(0) + w′(0) = β̄w′′′(l) + w′(l) = 0 into
Eq. (26) yields the following eigenvalue equation



1 0 1 0
cos βl sin βl 1 l

0 β − β̄ β3 0 1
−

(
β − β̄ β3

)
sin βl

(
β − β̄ β3

)
cos βl 0 1






C1

C2

C3

C4




= 0. (27)

To obtain a nontrivial solution of Eq. (27), the determinant of its coefficient matrix
is taken to be zero, which leads to

sin
βl
2

[
2
(
β − β̄ β3

)
l cos

βl
2
− 4 sin

βl
2

]
= 0. (28)

Thus, the smallest critical value βcrl satisfying Eq. (28) is 2π. Therefore, the critical
thermal buckling load (PT )cr of the clamped-clamped FGM beam can be obtained
from Eq. (24b) as

(PT )cr =
(2π)2Et Ie/l2

1 +
(2π)2Et Ie/l2

κGt At

. (29)
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For the FGM beams under a uniform temperature rise ∆T , the compressive
thermal load in Eq. (9) can be obtained as follows.

PT = BEtαt A∆T, (30)

with

B =

(
1 − Ē

)
(1 − ᾱ)

2k + 1
+

(
1 − Ē

)
ᾱ + Ē (1 − ᾱ)

k + 1
+ Ēᾱ (P-FGM), (31a)

B =
1
2


1 + Ēᾱ −

(
1 − Ē

)
(1 − ᾱ)

k + 1
+

(
1 − Ē

)
ᾱ + Ē (1 − ᾱ)

2 (2k + 1)


(S-FGM), (31b)

B =
1 − Ēᾱ

Ēᾱ ln
(
Ēᾱ

) (E-FGM). (31c)

Here A = bh, Ē = Eb/Et and ᾱ = αb/αt . Then, using Eq. (30) in Eq. (29),
the critical thermal buckling temperature for clamped-clamped FGM beams with
temperature-independent material properties under uniform temperature rise can
be obtained as

∆TUTR
cr =

1
Bαt Al2

(2π)2Ie

1 +
(2π)2Et Ie/l2

κGt At

. (32)

By properly using the coefficient B (Eq. (31)), the area of transformed section At

(Eqs. (15c), (16c) and (17c)) and effective area moment of inertia Ie (Eqs. (15d),
(16d) and (17d)) in Eq. (32), the closed-form solutions of the critical thermal
buckling temperature for the clamped-clamped P-FGM, S-FGMand E-FGMbeams
under uniform temperature rise can be obtained, respectively.

For the FGM beam under nonlinear temperature rise, we can obtain the fol-
lowing associated thermal load for the P-FGM, S-FGM and E-FGM beam by using
Eqs. (6)–(8) in Eq. (9), respectively,

PT = CoEtαt A (Tb − T0) + CEtαt A∆T, (33)

where the coefficients Co and C for the respective P-FGM, S-FGM and E-FGM
beam are given as follows.

P-FGM beam

Co =

(
1 − Ē

)
(1 − ᾱ)

2k+1
+

(
1 − Ē

)
ᾱ + Ē (1 − ᾱ)

k+1
+ Ēᾱ, (34a)

C =
1
R1




n∑
j=0

(
−K̄

) j
( j k+1)



(
1 − Ē

)
(1 − ᾱ)

( j+2)k+2
+

(
1 − Ē

)
ᾱ + Ē (1 − ᾱ)

( j+1)k+2
+

Ēᾱ
j k+2





. (34b)



406 Wei-Ren Chen, Chun-Sheng Chen, Heng Chang

S-FGM beam

Co =
1
2


1 + Ēᾱ −

(
1 − Ē

)
(1 − ᾱ)

k + 1
+

(
1 − Ē

)
ᾱ + Ē (1 − ᾱ)

2(2k + 1)


, (35a)

C =
1

2D1




n∑
j=0

(
−

1
2

K̄
) j

( j k+1)



1
4

(
1 − Ē

)
(1 − ᾱ)

( j+2)k+2
+

1
2

(
1 − Ē

)
ᾱ+Ē (1 − ᾱ)

( j+1)k+2
+

Ēᾱ
j k+2






−
1

2D3




n∑
j=0

(
1
2

K̄1

) j
( j k+1)



1
4

(
1 − Ē

)
(1 − ᾱ)

( j+2)k+2
−

1
2

(
1 − Ē

)
+ (1 − ᾱ)

( j+1)k+2
+

1
j k+2






+
1
2


1 −

1
2

(
1 − Ē

)
+ (1 − ᾱ)

k+1
+

1
4

(
1 − Ē

)
(1 − ᾱ)

2k+1


. (35b)

E-FGM beam

Co =
1 − Ēᾱ

Ēᾱ ln
(
Ēᾱ

) , (36a)

C =
1

1 − Kb/Kt



ĒᾱKb/Kt − 1
ln

(
ĒᾱKb/Kt

) − Kb

(
1 − Ēᾱ

)
Kt Ēᾱ ln

(
Ēᾱ

)  . (36b)

Introducing Eq. (33) into Eq. (29), the temperature-independent critical thermal
buckling temperature for clamped-clamped FGM beams under nonlinear tempera-
ture rise can be obtained as

∆TNTR
cr =

(2π)2Ie
Cαt Al2

*.
,

1
1 + (2π)2Et Ie

κGt At l2

+/
-
−

Co (Tb − T0)
C

. (37)

Likewise, the closed-form expressions of the temperature-independent critical ther-
mal buckling temperature for the P-FGM, S-FGM and E-FGMbeams under nonlin-
ear temperature rise can be determined, respectively, by substituting the associated
coefficients Co and C, area of transformed section At and effective area moment
of inertia Ie into Eq. (37).

When the temperature-dependent material properties are concerned, an itera-
tion procedure is needed to calculate the thermal buckling temperatures of FGM
beams under uniform temperature and nonlinear temperature rises using Eqs. (32)
and (37). The detailed process can be found in [16, 26].
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6. Results and discussions

Thermal buckling behaviors of various FGMbeamsmade of a ceramic (Si3N4)
and a metal (SUS304) under uniform and nonlinear temperature rises are investi-
gated. Three types of materials, such as P-FGM, S-FGM and E-FGM models, are
considered. The temperature-dependent coefficients of various material properties
for Si3N4 and SUS304 are given in Table 1 [32]. For simplicity, Poisson’s ratio
for both materials is assumed to be constant and taken to be 0.3. The solutions
of thermal buckling temperature of FGM beams with and without temperature-
dependent materials are presented, and denoted as TD solutions and TID solutions,
respectively.

Table 1.
Temperature-dependent coefficients of thermal and material properties for Si3N4 and SUS304

material P0 P−1 P1 P2 P3

Si3N4

E (Pa) 348.43e+9 0 −3.070e-4 2.160e-7 −8.946e-11
α (1/K) 5.8723e-6 0 9.095e-4 0 0
K (W/mK) 13.723 0 −1.032e-3 5.466e-7 −7.876e-11
SUS304
E (Pa) 201.04e+9 0 3.079e-4 −6.534e-7 0
α (1/K) 12.330e-6 0 8.086e-4 0 0
K (W/mK) 15.379 0 −1.264e-3 2.092e-6 −7.223e-10

6.1. Model verification

First, the thermal buckling of P-FGM beams is considered. Table 2 presents the
values of thermal buckling temperature with different values of k for the P-FGM
beams with l/h = 25 subjected to uniform temperature rise. Both TID and TD
solutions are shown and compared with those by other investigators. As can be
seen, the present TID solutions agree well with those given in [20, 22, 25]. The TD

Table 2.
Comparison of buckling temperature ∆Tcr (K) of P-FGM beams with l/h = 25 under UTR

source k = 0 0.5 1 2 5 10 ∞

TID

present 692.85 510.00 458.78 423.62 394.49 376.22 338.02

Ref. [20] 692.70 509.89 458.68 423.53 394.39 376.14 337.94

Ref. [22] 693.05 510.14 458.91 423.75 394.61 376.34 338.12

Ref. [25] 698.95 – 461.82 – – 376.70 –

TD
present 508.26 399.57 367.39 345.22 326.46 313.65 285.12

Ref. [20] 508.17 399.50 367.32 345.15 326.40 313.58 285.06
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solutions are in excellent agreement with those in [20] as well. In Table 3, the TID
and TD solutions of buckling temperature for P-FGM beams of l/h = 40 under
nonlinear temperature rise with various values of k are given and compared with
those in [20, 26]. A good agreement between the present results and the published
ones is also observed.

Table 3.
Comparison of buckling temperature ∆Tcr (K) for P-FGM beams with l/h = 40 under NTR

source k = 0 0.5 1 2 5 10 ∞

present 534.72 421.56 379.20 345.15 312.63 292.87 255.84

TID Ref. [20] 536.62 422.18 379.47 345.22 312.64 292.87 255.81

Ref. [26] 528.40 419.22 378.22 345.16 325.49 305.49 –

present 411.33 377.77 357.86 337.01 310.13 291.36 255.84

TD Ref. [20] 412.24 377.96 357.94 337.03 310.12 291.35 255.81

Ref. [26] 441.00 381.50 352.58 335.09 302.00 281.08 –

In the next, the thermal buckling of S-FGM beams with different thermal
loadings is investigated. To the best of authors’ knowledge, the results of S-FGM
beams are not found in the published literature. The results of P-FGM beam
with k = 1 are used for the validation because it has the same properties as
the corresponding S-FGM beam. Table 4 shows the thermal buckling temperatures
for S-FGM beams of k = 1 with various slenderness ratios l/h under uniform
temperature rise alongside with those of the corresponding P-FGM beams. The
present results agree well with those given by other investigators [20, 22, 25].
Table 5 gives the results of buckling temperature of S-FGM and P-FGM beams
with k = 1 under nonlinear temperature rise. It can be seen that the present
results are consistent with those P-FGM results in [20, 26]. As seen in Tables 4
and 5, the present S-FGM results are identical with the present P-FGM results.

Table 4.
Comparison of buckling temperature ∆Tcr (K) of S-FGM and P-FGM beams with k = 1 under UTR

source l/h = 25 30 40

S-FGM (present) 458.78 320.15 180.97

P-FGM (present) 458.78 320.15 180.97

TID P-FGM [20] 458.68 – –

P-FGM [22] 458.91 – –

P-FGM [25] 461.82 322.78 181.70

S-FGM (present) 367.39 270.69 163.06

TD P-FGM (present) 367.39 270.69 163.06

P-FGM [20] 367.32 – –
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It is attributable to the fact that both S-FGM and P-FGM beams have the identical
material properties when k = 1.

Table 5.
Comparison of buckling temperature ∆Tcr (K) of S-FGM and P-FGM beams with k = 1 under NTR

source l/h = 25 30 40

TID

S-FGM (present) 977.94 679.18 379.20

P-FGM (present) 977.94 679.18 379.20

P-FGM [20] – – 379.47

P-FGM [26] – – 378.22

TD

S-FGM (present) 845.06 613.79 357.86

P-FGM (present) 845.06 613.79 357.86

P-FGM [20] – – 357.94

P-FGM [26] – – 352.58

6.2. Parametric study

Parametric studies are presented next to investigate the effects of temperature-
dependent property, volume fraction index, slenderness ratio and material gradient
type on the thermal buckling temperature of FGM beams. Tables 6 and 7 shows the
buckling temperatures for P-FGM, S-FGM and E-FGM beams with slenderness
ratio l/h = 30 under UTR and NTR thermal gradient, respectively. The P-FGM
and S-FGM beams are analyzed by varying the value of the volume fraction index.
As seen, the TID solutions always give higher values of buckling temperature than
the corresponding TD solutions. The comparison between UTR and NTR solutions
indicates that the NTR results are significantly greater than the UTR ones for all
material types and parameters. It can also be found that both TID and TD solutions
reduce with the increasing volume fraction index k for P-FGM beams, while those
of S-FGM beams have the opposite tendency.

Table 6.
Buckling temperature ∆Tcr (K) of various FGM beams with l/h = 30 30 under UTR

beam k = 0 0.5 1 2 5 10 ∞

P-FGM
TID 483.53 355.88 320.15 295.66 275.38 262.63 235.90

TD 380.23 295.75 270.69 253.22 238.42 228.72 207.80

S-FGM
TID 317.10 318.66 320.15 322.25 325.47 327.54 330.71

TD 268.63 269.69 270.69 272.13 274.41 275.92 278.27

E-FGM
TID 336.14

TD 282.06
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Table 7.
Buckling temperature ∆Tcr (K) of various FGM beams with l/h = 30 under NTR

beam k = 0 0.5 1 2 5 10 ∞

P-FGM
TID 953.62 754.13 679.18 618.74 560.92 525.84 460.27

TD 649.06 631.77 613.79 590.18 550.97 520.22 460.27

S-FGM
TID 622.07 659.54 679.18 698.59 717.23 725.21 734.10

TD 549.20 592.48 613.79 632.77 646.85 650.72 652.51

E-FGM
TID 715.34

TD 621.38

Fig. 6 presents the variations of thermal buckling temperature against the
slenderness ratio l/h for S-FGM beams with k = 1 under UTR and NTR thermal
gradient, respectively. Both TID and TD solutions decrease with the increase in the
slenderness ratio l/h. However, the difference between the TID and TD solutions
becomes smaller as the slenderness ratio l/h > 50, especially for the FGM beam
under NTR. Thus, the temperature-dependent material properties have a significant
impact on the buckling temperature for the beam with a smaller slenderness ratio.
The influence becomes minor while the beam has a higher slenderness ratio.

(a) UTR (b) NTR

Fig. 6. Buckling temperature ∆Tcr (K) versus l/h for S-FGM beams with k = 1

Thermal buckling results for various FGM beams under UTR and NTR ther-
mal condition are given in Figs. 7 and 8, respectively, by changing the slenderness
ratio. The P-FGM and S-FGM beams with k = 0.5 and 2 are considered, respec-
tively. Similar behaviors regarding the variations of buckling temperature with
slenderness ratio l/h for S-FGM beams can also be seen for the P-FGM and E-
FGM beams. As observed in Fig. 7a, the P-FGM beam has the highest buckling
temperature, followed by the E-FGM beam and S-FGM beam irrespective of the
slenderness ratio. In Fig. 7b, it is noted that the E-FGM beam has the greatest
buckling temperature, and the P-FGM beam has the least value. As can be found
in Fig. 8, the variations of TID solutions under NTR thermal loading against the
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different material distribution types show the same tendency as those in the case
of UTR thermal loading. However, the TD solutions for different types of FGM
beams under NTR thermal loading vary differently depending the slenderness ratio
and volume fraction index. As shown in Fig. 8a, the S-FGM beam has the least
TD buckling temperature, and the E-FGM beam has the highest TD solution as
l/h = 20 but the P-FGM beam will have the greatest TD solution when l/h > 20.
It can be seen in Fig. 8b that the S-FGM beam has the largest TD buckling temper-
ature as l/h < 50, but the E-FGM beam has the greatest one as l/h = 50, and the
P-FGM beam has the smallest value of buckling temperature for each l/h.

(a) k = 0.5 (b) k = 2

Fig. 7. Buckling temperature ∆Tcr (K) versus l/h for P-FGM, S-FGM and E-FGM beams
under UTR

(a) k = 0.5 (b) k = 2

Fig. 8. Buckling temperature ∆Tcr (K) versus l/h for P-FGM, S-FGM and E-FGM beams
under NTR

Figs. 9a and 9b illustrate the buckling temperature results against the volume
fraction index k for the S-FGM beams with various slenderness ratios under UTR
and NTR, respectively. Both the TID and TD solutions increase slightly with the
volume fraction index for the beams underUTR irrespective of the slenderness ratio.
Unlike the UTR case, both TID and TD solutions for the beams under NTR increase
more dramatically as the value of k increases from 0 to 1, but enlarge slightly
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thereafter for each slenderness ratio. The considerable effects of temperature-
dependent material properties on the buckling temperature are observed for the
beams with a small slenderness ratio.

(a) UTR (b) NTR

Fig. 9. Buckling temperature ∆Tcr (K) versus k for S-FGM beams with different l/h

(a) UTR (b) NTR

Fig. 10. Buckling temperature ∆Tcr (K) versus k for P-FGM and S-FGM beams with l/h = 30

The buckling temperatures resulting from different types of material gradient
as P-FGM and S-FGMmodels are considered with various volume fraction indices,
as shown in Fig. 10. The FGM beams with l/h = 30 under UTR and NTR thermal
loadings are investigated, respectively. Unlike the S-FGM beam, both TID and TD
solutions for the P-FGMbeam under UTR andNTR reduce sharply with the volume
fraction index initially and then decrease gradually. The results in Fig. 10b also
indicate that the effects of the temperature-dependent material properties on TD
solutions become less significant for P-FGM beams with higher volume fraction
index under NTR thermal gradient. As expected, the solutions of the P-FGM and
S-FGM beams intersect at the point k = 1 where both beams have the identical
material properties. It can also be found that the P-FGM beam has the highest
buckling temperature as k < 1, while the S-FGM beam has the greatest one as
k > 1. It is due to the fact that the P-FGM beam has the higher volume fraction in
ceramic when k < 1, while the S-FGM beam is more ceramic-rich as k > 1.
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7. Conclusions

Thermal buckling behaviors of FGM Timoshenko beams with and without
temperature-dependent properties are investigated using the transformed-section
method. Three types of material distributions, such as power-law FGM, sigmoid
FGM and exponential FGM models are considered. Temperature independent and
temperature dependent solutions of the buckling temperature are obtained for the
P-FGM, S-FGM and E-FGM beams under uniform and nonlinear temperature
rises, respectively. The effects of material gradient type, volume fraction index,
slenderness ratio and thermal gradient on the thermal buckling are discussed.
Based on the results presented earlier, some major conclusions are addressed as
follows.

• The temperature-independent solutions considerably over-estimate the buck-
ling temperature compared to the temperature-dependent solutions, espe-
cially for the short FGM beams.

• The buckling temperature of the FGM beam subjected to nonlinear temper-
ature rise is always higher than that under uniform temperature rise.

• The buckling temperature of the FGMbeam always reduces with the increas-
ing slenderness ratio regardless of the material gradient types and thermal
loadings.

• The buckling temperature of the P-FGM beam decreases, but that of the
S-FGM beam increases as the volume fraction index increases.

• The present model provides engineers with a suitable and effectivemethod to
analyze the thermal buckling behavior of various FGM Timoshenko beams.

Manuscript received by Editorial Board, August 95, 2019;
final version, October 27, 2019.
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