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Accepted: 29 November 2019 This article intends to justify the gap in the research of similarity coefficient driven approach-

es and cell formation problems (CFP) based on ratio data in cellular manufacturing systems
(CMS). The actual implication of ratio data was vaguely addressed in past literature, which
has been corrected recently. This research considered that newly projected CFP based on
ration data. This study further revealed the lack of interest of researchers in investigation for
an appropriate and improved similarity coefficient primarily for CFP based on ratio data.
For that matter a novel similarity coefficient named as Generalized Utilization-based Simi-
larity Coefficient (GUSC) is introduced, which scientifically handles ratio data. Thereafter
a two-stage cell formation technique is adopted. First, the proposed GUSC based method
is employed to obtained efficient machine cells. Second, a novel part allocating heuristic is
proposed to obtain effective part families. This proposed approach is successfully verified on
the test problems and compared with algorithms based on another similarity coefficient and
a recent metaheuristic. The proposed method is shown to obtain 66.67% improved solutions.

Keywords
Cellular manufacturing, machine utilization percentage, ratio data, similarity coefficient.

Introduction

Group Technology (GT) is a contemporary man-
ufacturing philosophy that develops part families ex-
ploiting the resemblances of parts based on the ge-
ometric shapes, features or manufacturing require-
ments and allocates them to the suitable machine
groups/cells. GT exploits the benefits of flow pro-
duction such as decreased throughput times, re-
duced work in progress, curtailed tool requirements,
enhanced product quality and improved control of
operations. CMS is an application of GT, which
presents a hybrid system of jobshop (production va-
riety) and flowshop (production volume). The design
process of CMS is initiated with an effective solution
to the machine-part grouping problem that would at-
tain the competent machine cells to further process
the appropriate part families in optimized produc-

tion condition [1]. Designing effective cells in CMS
is the most crucial and basic task in CMS research.
There have been numerous approaches proposed in
CMS literature, which effectively solve the CFPs in
CMS. Among these, production flow analysis (PFA)
based method is mostly explored [2], which deals
with processing requirements of parts, operational
sequences and operational time of the parts on the
machines. Many review and survey articles are pub-
lished based on the cell formation techniques in CMS
[3]. Among which array-based methods [4, 5], clus-
tering methods [6, 7], graph theory driven methods
[8, 9], mathematical programming methods [10, 11]
and similarity coefficient driven approaches [12, 13]
are prominent. Recently soft-computing based op-
timization techniques are being adopted for CFPs
to find near-optimal solutions efficiently. References
[14] and [15] have covered nearly the entire horizon
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of soft-computing based methodologies being applied
for machine-part grouping problems.

Among all these various techniques, similarity co-
efficient (SC) based approaches are acknowledged
to be more adaptable, computationally inexpensive,
prompt and exact while compared to the other meth-
ods. References [16] pointed out these SC based ap-
proaches are more sensitive while including manu-
facturing information in the CFP. The research in
engineering computation is becoming critical due to
the complexities in real world applications. Hence
the computationally inexpensive or data-driven mod-
els are being evolved recently [17] and SC based ap-
proaches are ideal in such cases. Therefore, the main
research questions are being set as, how could SC
be used in newer CFP based on ratio data? Could
this new SC be compared with latest cell formation
techniques? To answer these, an attempt is made in
this paper to construct a novel utilization-based SC
to solve the CFP based on ratio data and compared
the results with latest cell formation techniques.

Similarity coefficient

The SC based scientific measures are being adopt-
ed in many disciplines of scientific research such as
physical science, biological science, medical science,
engineering science etc. [18]. The SC describes nu-
merical score of similarity between a pair of objects
(machines in CMS). It is required to adopt a suitable
clustering method while employing SC to obtain da-
ta groups/clusters. SC approaches are substantially
popular in the domain of CMS [19]. The step by step
procedure of SC based methods can be competently
employed in CMS [20], which is as follows,

Input:
• Machine part Incidence Matrix (MPIM).
• Rows and columns of MPIM represent machines

and parts respectively. The MPIM matrix is de-
noted by Uq×p with q machines and p parts. An
element of Uq×p is denoted by uij such that,

uij =

{
non zero, if part j goes machine i,
0, otherwise.

(1)

Step 1:
Employ an appropriate SC and compute the nu-

merical score of similarity between each pair of ma-
chines to obtain a symmetric similarity matrix. For
an example, the machine-machine similarity matrix
is denoted by Sq×q and its elements are sij expressed
as,

sij =

{
1, if i = j,
similarity value, otherwise,

(2)

and
sij = sji. (3)

Equation (2) states that the diagonal elements of
matrix Sq×q has maximum similarity (similarity be-
tween same machines for each row) and the score is 1.
Equation (3) portrays that the similarity between
machines i and j is same as the similarity between
machines j and i, therefore the matrix is symmetric
in nature.

Step 2:
Once the similarity matrix Sq×q is obtained,

a suitable clustering approach is required to apply on
the similarity scores available through matrix Sq×q.
This procedure would find out clustering scores based
on some threshold values specified for the algorithm
and finally obtains a tree structure known as dendro-
gram. This shows the hierarchical structure of each
pair of machines. This dendrogram visually depicts
the machine clusters to be selected depending upon
the number of cells.

Output:
Machine-Cell assignment matrix MCq×c where

each elements mcij is presented as,

mcij=

{
1, if machine i is assigned to cell j,
0, otherwise.

(4)

Cell formation problems are combinatorial opti-
mization (CO) problems due to their intrinsic com-
plexities. Due to this fact many methodologies are
available in past literature as stated in section #1.
Among these approaches SC based techniques are
the primitive techniques since the basic objective
of SC and GT are indifferent. Both exploit simi-
larities between objects (machines) and group them
systematically [21]. Unlike other methodologies such
as mathematical programming approaches or soft-
computing techniques, the SC based approaches are
more flexible in terms of choice of SC and clustering
algorithms. Therefore, selection of a particular SC
doesn’t influence the selected clustering algorithms
since the step 1 and step 2 of the procedure men-
tioned previously are independent to each other [18].

One of the earliest papers of 1972 successfully ini-
tiated the use of SC with an adoption of single linkage
clustering algorithm (SLCA) to form efficient cells in
CMS [12]. Thereafter many researchers successfully
practiced SC based approaches in CMS [22–34].

SC based approaches can be further classified as,
(1) problem specific approaches (solely designed for
CFPs) [25, 30, 31] and (2) generic approaches (appli-
cable for any data classification problems) [22, 34].
References [18] suggested that the generic approach-
es are more inclined in finding the similarities be-
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tween pair of machines rather than the appropri-
ateness while the problem specific SC would act in-
versely. This fact implies that the problem specific
approaches are more suitable when important pro-
duction factors such as part volume, unit processing
time, alternative routing, operation sequence, ma-
chine utilization etc. are considered in the design.
However, the aim of this discussion is to restrict this
section within the scope of SC oriented approaches
to the CFP based on ratio data. References [25] first
proposed a novel SC known as Cell Bond Strength
(CBS) based on production volume and unit process-
ing time, which is shown to be more effective than
Jaccard’s index driven SC. References [26] has sug-
gested a problem model other than the 0-1 binary
CFP, which can incorporate part volume or unit pro-
cessing time. This work exploited seven existing sim-
ilarity measures such as McAuley’s coefficient [12],
modified multiplicative weight, modified Hamann’s
index, modified Baroni-Urbani’s measure etc. along
with four hierarchical clustering techniques efficient-
ly. A primitive and generic matching measure is used
as the grouping measure along with product moment
correlation coefficient and inter-cell moves [7]. In an-
other study a new similarity coefficient is demon-
strated, which successfully incorporates alternative
part routings, machine capacity, part demand and
processing times in an effective manner and conduct-
ed an optimal clustering analysis henceforth [35]. A
production volume driven similarity coefficient is in-
troduced by ref. [36], which modified Jaccard’s index
based McAuley’s coefficient. This approach compe-
tently minimized the inter-cell and intra-cell moves
and obtained an improved scheduling process. Ref.
[34] proposed an e-learning tool, which utilizes the
similarity between machines and parts, which is cal-
culated using part volume and processing time. This
minimizes inter-cell and intra-cell moves. It can be
concluded that the CBS coefficient by [25] is the only
SC, which solely deals with ratio data. This fact is al-
so confirmed by Yin’s major review work on SC [18].
The reason behind this limited use of SC based ap-
proaches could be found in a recent study [37]. SC
based approaches either seems substantially simple
or it is absolutely complicated to be developed. Ex-
act SC would need much of the information from the
problem in hand and a real effect of SC on perfor-
mance metrics would also be an interesting area to
be covered.

Problem definition

Ratio level data or processing time is being used
synonymously in CMS since past few decades. How-

ever, the accurate explanation of ratio level data was
rarely portrayed in past. In the earlier research works
in CMS many researchers discussed part volumes,
processing time, machining sequences, machine ca-
pacities as production factors to the CFPs, how-
ever these factors are not quantified reasonably in
their studies [7, 25, 26]. Many other interrelated is-
sues such as cell utilization, exceptional utilization,
and machine-machine similarity measures are over-
looked. References [38] first described ratio level da-
ta in the mathematical form. As proposed, the in-
cidence matrix is generated using ratio of total pro-
cessing time and available machine hours, which is
practically termed as machine utilization percentage
by the manufacturing personnel. This is stated as,

uij =
(tij × nj)

MHi
, (5)

where

uij=

{
zero, if part j does not go in machine i,
non zero, if part j goes in machine i,

(6)
tij – unit processing time (hour/unit) of part j on
machine i; 1 ≤ i ≤ q and 1 ≤ j ≤ p, nj – production
volume of part j, MH i – available machine hours of
machine i, U = [uij ] is (p× q) – machine-component
incidence matrix where uij – percentage utilization
of machine i induced by part j.

Equation (5) produces an MPIM, that is U , which
is recognized as processing time or ratio data in past
literature.

Since then the ratio data based CFPs are be-
ing used often in many articles [31, 39–43]. Refer-
ences [39] specified that the ratio data can be synony-
mously used as workload data in CMS and this phe-
nomenon converts the binary incidence matrix into
real valued U matrix. All the ‘1’s of the binary inci-
dence matrix are changed to fractional values, which
would be called as the workload data or ratio da-
ta. This proposition is reinforced by the statement
of [42, p. 637], ‘The real valued matrix is produced by
assigning random numbers in the range of 0.5 to 1 as
uniformly distributed values by replacing the ones in
the incidence matrix and zeros to remain in its same
positions.’. This procedure produces the real valued
matrix U at random in unrestricted manner, which
is unscientific realistically.

In real-world practice the elements (uij) of
U point to ratio values. These are obtained us-
ing (Hours÷Hours) expression, which is unit-less.
Therefore, these cannot be termed as processing
time/operational time (absolute values). Some re-
searcher mentioned this as capacity percentage [44],
which is partially correct as capacity of a machine
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is also known as available machining hours. Howev-
er, capacity percentage is a vague term since it is the
utilization of machine expressed in percentage value.
uij demonstrates the fraction of available machine
hours of i-th machine needed to process the demand-
ed quantity of j-th part. This is, termed as percent-
age utilization of machine in real factory shop-floor,
more reasonable and appropriate terminology than
the processing/operational time.

To correctly present the real valued matrix U ,
a constraint is prescribed with Eq. (5).

Constraint:
Eqn. (7) depicts that the sum of percentage uti-

lization of all parts over ith machine is required to be
less than or equal to 1. This is because the total uti-
lization of any machine would never exceed its total
available machine hours, which is 100%.

p∑
j=1

uij ≤ 1. (7)

In experience closely all the authors of the pub-
lished articles, who considered ratio data in CMS,
ignored the above indicated constraint of Eq. (7),
which is a crucial proposition while designing the
test datasets. Even after proposing the correct math-
ematical formulation of ratio data, [38] also over-
looked constraint of Eq. (7) while generating their
test problems. Thus, practicing the test problems
from the past literature would not be a correct se-
lection for the ratio data driven CFP. To serve the
purpose a novel step by step technique for ratio data
matrix generation is described as,

Input:
Number of machines q and parts p

Routine:
Create random real valued matrix of size q × p
Case 1: if q ≤ 10
Limit the density of zeroes in the range of 40%

to 50%
Limit sum total of each row ≤ 1
Case 2: if q ≤ 20
Limit the number of zeroes in the range of 60%

to 70%
Limit sum of each row ≤ 1
Case 3: if q > 20
Limit the number of zeroes in the range of 80%

to 90%
Limit sum of each row ≤ 1

Output:
q × p real valued incidence matrix

This proposed technique carefully impose a con-
trol mechanism for the density of zeros in the in-
cidence matrix while satisfying the constraint of
Eq. (3). A thorough inspection throughout all the
real valued test problems of past literature reveals
that the density of zeroes is restricted in the range
of 40% to 50% in small size problems (q ≤ 10), 60%
to 70% in medium test problems (q ≤ 20) and 80%
to 90% in large test problems (q > 20). In future stu-
dents/researchers can promptly obtain the test prob-
lem of any size to use it in their study/research.

Research methodology

This section introduces a new Generalized
Utilization-based Similarity Coefficient (GUSC) for
CFP based on ration data. Thereafter a two-stage
technique is introduced, which efficiently solves the
CFP. In the first stage the GUSC and the single link-
age clustering algorithm (SLCA) is used to obtain
machine cells first. In the next stage an appropriate
part allocating heuristic is applied to assign the part
families to the newly developed cells.

Generalized Utilization-based Similarity
Coefficient (GUSC)

The CBS similarity coefficient is defined by the
sum of the ratios of the total utilization percentage
on machine M1 and M2 owing to the shared parts on
machines M1 and M2 [25]. It is expressed as,

CBS[ M1,M2 ] =
a+ c

a+ b+ c
+

d+ e

d+ e+ f
, (8)

a, b, c, d, e and f are the percentage utilization of
parts P1, P2, P3 and P4 on machines M1 and M2
shown in Table 1.

Table 1
MPIM example.

P1 P2 P3 P4

M1 a b c

M2 d e f

CBS is a basic SC, which works well with ratio
data and the solution generated using CBS is not the
best solution to the problem but is considerably good
solution. A good design of SC for utilization driven
CFP must incorporate the following ideas,
1) total utilization percentage of shared parts on

both machines M1 and M2,
2) total utilization percentage of shared parts on ma-

chine M1 only,
3) total utilization percentage on of shared parts on

machine M2 only,
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4) total number of operations of shared parts on none
of the machines M1 and M2.
The formulation of the CBS did not consider all

the stated facts while computing similarity scores be-
tween a pair of machines. Therefore, a more gener-
alized concept of a similarity coefficient is required
for utilization driven CFP. Henceforth a new similar-
ity coefficient named as the Generalized Utilization-
based Similarity Coefficient (GUSC) is proposed and
it is expressed as,

sij=


p∑

k=1

uikxijk

p∑
k=1

uik

+

p∑
k=1

ujkxijk

p∑
k=1

ujk

×
 1

1 +
p∑

k=1

yijk

,
(9)

Sij – similarity between machine i and machine j,
uik – utilization of machine i induced by part k, p –
total number of parts, q – total number of machines,
xijk – 1 if part k visits both machines i and j; 0 oth-
erwise, yijk – 1 if part k visits neither of the machines
i and j; 0 otherwise.

The major objectives of the proposed GUSC
are to minimize total exceptional utilization (TEU)
which is the total utilization percentage induced by
exceptional elements (TEU) and maximize total cell
utilization (TCU) which is the sum total of the in-
dividual in-cell utilization percentage. This will in-
directly control the number of voids and exceptional
elements.

Linkage clustering techniques

Single Linkage Clustering Algorithm (SLCA) is
ideally a simple hierarchical clustering algorithm,
which can be employed in conjunction with some
appropriate similarity or distance measure for the
clustering analysis of data [45]. This technique pro-
duces explanatory narrations and graphically present
the structure of obtained data clusters. This method
would be more suitable if the hierarchical correlation
exists in data. SLCA is recognized as an adjacent
neighbor technique, which exploits the distance be-
tween two clusters. The distance between cluster i
and another cluster j is defined as:

Eij = min(dij), i ∈ (1, ..., nr)j ∈ (1, ..., ns). (10)

Equation (10) hierarchically generates a (m− 1)× 3
intermediate matrix, where m is the number of ma-
chines in the CFP. Columns of this intermediate ma-
trix depict indices of machine clusters, which are hi-
erarchically pairwise connected to obtain a binary
tree. The leaf nodes of the tree are assigned machine
numbers from 1 to m. The higher clusters are ob-
tained from the leaf nodes and visualized further.

This visual tree is termed as dendrogram that indi-
cates the potential clustering results.

Part allocating heuristic

Next step is to assign the appropriate part fami-
lies to the machine cells obtained from the previous
step. For that matter a part allocating heuristic is de-
veloped based on the part allocation factor for part
j in cell k. The formula is stated as,

PAHjk =

(
qk∑
i=1

uij

)2 qk∑
i=1

aij

qk∑
i=1

p∑
j=1

uij

q∑
i=1

uij

q∑
i=1

aij

, (11)

qk – the number of machines in cell k, q – total num-
ber of machines in plant, p – total number of parts in
plant, uij – utilization on machine i induced by part
j (non-zero or zero ratio level data), aij – if part j
is being processed by machine j (0-1 binary data),
PAHjk – association score of part j in cell k.

Equation (11) is the product of three fraction-
al figures, percentage of total utilization of part j in
cell k, percentage of total utilization of cell k required
to process part j and percentage of total number of
operations for part j being processed in cell k. The
design of part allocating heuristic carefully incorpo-
rates two major objectives,
• minimization of total exceptional utilization

(TEU) by reducing number of exceptional utiliza-
tions,
• maximization of total cell utilization (TCU) by

reducing number of voids.

The cell formation algorithm

The two-stage cell formation algorithm is demon-
strated as,
Stage 1:
Input:
Machine-part incidence matrix U
Output:
Machine-cell assignment string MCA

Machine Cell Assignment Procedure:

Step 1. Procedure similarity()
1.1 Set [m,n] = size(U)
1.2. Initialize m×m empty matrix S
1.3. Initialize number of cells c
1.4. For i = 1 to m
1.4.1. For j = i+ 1 to m
1.4.1.1. Compute Sij for pair of machines (i, j)

using Eq. (9)
1.4.1.2. Set Sij = Sji

1.4.2. End
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1.5. End
1.6. For i = 1 to m
1.6.1. For j = 1 to m
1.6.1.1.1. if i == j
1.6.1.1.2. Set Sij = 1
1.6.2. End
1.7. End
1.8. Return S
Step 2. End
Step 3. Procedure Cluster()
Step 4. Initialize an one-dimensional empty

array MCA of size m
Step 5. Initialize an empty matrix MC of size

m× c
5.1. Set all the machines as leaf nodes or

singleton clusters
5.2. Compute the smallest Euclidian dis-

tance between two clusters
5.3. Construct a matrix INTM of size (m−

1)×3 to from the hierarchical tree struc-
ture

5.4. Construct dendrograms using matrix
INTM

5.5. Select appropriate machine cells for
the maximum level of similarity

5.6. For i = 1 to m
5.6.1. For k = 1 to c
5.6.1.1. Set MCik = 1 or 0 depending upon the

machine-cell assignment
5.6.2. End
5.7. End
5.8. For i = 1 to m
5.8.1. For k = 1 to c
5.8.1.1. if MCik == 1
5.8.1.2. Set MCA(i) = k
5.8.2. End loop
5.9. End loop
5.10. Return MCA

Stage 2:
Input:
MCA and U
Output:

PCA

Part Assignment Heuristic:

Step 1. Initialize an empty matrix MAT of
size q × c

Step 2. Set [q, p] = size(U)
Step 3. Set c = max(MCA)
Step 4. Initialize empty matrix PAH of size

p× c
Step 5. Initialize an one-dimensional empty

array PCA of size p

Step 6. For i = 1 to q
a. Set MAT(i, MCA(i)) = 1

Step 7. For j = 1 to p
a. For k = 1 to c

i. Calculate PAHjk, elements of
PAH using Eq. (11)

b. End loop
Step 8. End loop
Step 9. For j = 1 to p

a. For k = 1 to c
i. if PAHjk == max(j-th row of
PAH)

ii. Set PCA(j) = k
b. End loop

Step 10. End loop
Step 11. Return PCA

A numerical example

• To illustrate the proposed two stage approach,
a small test problem (5× 10) is considered in Ta-
ble 2. The first step is to obtain similarity ma-
trix of size (5× 5) from this incidence matrix us-
ing GUSC. The similarity matrix S is a symmetric
matrix. Therefore, only the upper half is shown in
Table 3.
• In next step SLCA algorithm is applied to obtain

the dendrogram and machine-cell assignment vec-
tor MCA. The dendrogram is shown in Fig. 1,
where five machines are visible along horizontal
axis as singleton clusters or leaf nodes.

Table 2
(5× 10) MPIM U.

m1 m2 m3 m4 m5
p1 0.149741 0.165117 0.197491 0 0.133516
p2 0.01799 0 0.034073 0 0
p3 0.037942 0 0 0 0
p4 0 0 0.174167 0 0.203849
p5 0.175803 0.197782 0.000131 0 0
p6 0.19799 0.105536 0.119881 0 0
p7 0.099619 0.18017 0 0 0.18466
p8 0 0 0 0 0.15649
p9 0.132189 0 0.222688 0.982303 0.192257
p10 0 0.185663 0.145023 0.016983 0.030215
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Table 3
Symmetric matrix S (5× 5) obtained using GUSC.

m1 m2 m3 m4 m5

m1 1 0.51519 0.736592 0.381982 1.036835

m2 1 0.433907 0.047908 0.341034

m3 1 0.35289 0.72445

m4 1 0.249384

m5 1

Fig. 1. Dendrogram obtained for (5× 5) similarity matrix.

Thereafter the hierarchical links are also visible,
and two cells are identified as cell 1 {machine 1, 2,
3, 5} and cell 2 {machine 4}. The MCA vector is
presented as,

MCA =
[
1 1 1 2 1

]
.

In the next stage, the MCA vector is provided as
input to the part allocating heuristic algorithm. Af-
ter applying part allocating heuristic method, a part-
cell mapping matrix is obtained and presented in Ta-
ble 4, which depicts closeness score of each part in
each of the cells. The higher is the closeness score,
the better is the mapping of that part to the cor-
responding cell. Table 4 shows that part 1 to 8 and
part 10 are assigned to cell 1 and part 9 is assigned
to cell 2. The part-cell assignment vector PCA is ob-
tained from this result and presented as,

PCA = [ 1 1 1 1 1 1 1 1 2 1 ].

Table 4
Part-cell mapping matrix based on closeness score.

cell 1 cell 2

p1 0.187752 0

p2 0.015135 0

p3 0.01103 0

p4 0.109889 0

p5 0.108639 0

p6 0.123084 0

p7 0.135015 0

p8 0.045491 0

p9 0.042674 0.157837

p10 0.075149 0.000191

Thereafter the solution matrix with block diago-
nal cellular structure (grey colored) is obtained from
MCA and PCA and depicted in Table 5.

Table 5
Solution matrix for (5× 10) test problem.

m4 m1 m2 m3 m5

p9 0.982303 0.132189 0 0.222688 0.192257

p1 0 0.149741 0.165117 0.197491 0.133516

p2 0 0.01799 0 0.034073 0

p3 0 0.037942 0 0 0

p4 0 0 0 0.174167 0.203849

p5 0 0.175803 0.197782 0.000131 0

p6 0 0.19799 0.105536 0.119881 0

p7 0 0.099619 0.18017 0 0.18466

p8 0 0 0 0 0.15649

p10 0.016983 0 0.185663 0.145023 0.030215

Computational experiments

In this study a novel SC based cell formation ap-
proach is proposed considering percentage utilization
of machines instead of the binary (0-1) or processing
time. The proposed model minimizes TEU and maxi-
mizes TCU while improving the score of performance
measure, which is developed by [46]. This is known as
Utilization-based Grouping Efficiency (UGE), which
effectively counts all the overseen disputes in all the
previous performance measures for ratio data driven
CFP. UGE is defined as,

UGE=

(
c∑

k=1

[
Uk
cell

(
1− Vk

Ek

)])1− Uee
c∑

k=1

Uk
cell


Uplant

, (12)

where

Uk
cell =


mic∑
i=1

pic∑
j=1

uij


k

, (13)

Uee =

moc∑
i=1

poc∑
j=1

uij , (14)

Uplant =

mtp∑
i=1

ptp∑
j=1

uij , (15)

c – number of cells, m – number of parts, p – num-
ber of machines, k – index of cell {k = 1, 2, ..., c}, i –
index of machines {i = 1, 2, ...,m}, j – index of parts
{i = 1, 2, ..., p}, Uk

cell – total utilization of k-th cell,
Uplant – total utilization of plant, Uee – total utiliza-
tion outside the block diagonal cell structure, uij –
utilization of machine i induced by part j; 1 ≤ i ≤ q
and 1 ≤ j ≤ n, Vk – total number of voids in cell k

96 Volume 10 • Number 4 • December 2019



Management and Production Engineering Review

{k = 1, 2, ..., c}, Ek – total number of elements in cell
k {k = 1, 2, ..., c}, mic – number of machines in cell,
pic – number of parts in cell, moc – number of ma-
chines outside of cells, poc – number of parts outside
of cells, mtp – total number of machines in plant, ptp
– total number of parts in plant.

UGE yields 100% efficiency score in the absence
of exceptional elements or voids, which is referred as
a perfect solution for CFPs.

Result and discussion

The proposed SC based approach is coded in
MATLAB on a 2.4 GHz Intel i3 computer. The pro-
posed algorithm is tested on a set of 15 test prob-
lems generated using the algorithm demonstrated in
section #3. The obtained solutions are compared
with the solutions obtained by CBS SC method
and a recently developed metaheuristic method
known as Non-dominated Sorting Buffalo Optimiza-
tion (NSBUF II) [47]. Table 6 presents the com-
parison among the results of all three methods. It
can be observed that the sizes of test problems are
varying between very small (5× 10) to very large
(45× 120). GUSC outperforms the CBS based ap-
proach in most instances by attaining 66.67% bet-
ter UGE scores. However, GUSC produces results
at per with the latest NSBUF II. For data #14,
GUSC even outpace NSBUF II. While CBS attains
best solutions for 3 test problems (9× 15, 12× 12,
22× 35) out of 15. Only for the 7× 11 test prob-
lem both the SC techniques obtains same solution as
NSBUF II. This indicates that CBS is also a good
measure and comparable with newer similarity in-

dices. However, GUSC could be established as the
most suitable SC for the ratio data-based CFP. Ta-
ble 6 also portrays the TCU and TEU scores ob-
tained by all the approaches. It is observed that the
corresponding TCU and TEU values of an improved
UGE score are higher and lower respectively. This
fact clearly indicates that the UGE considers the uti-
lization inside the cells and outside the cells. Anoth-
er insight of utilization-based CFP is that, even if
the number of voids is in the higher side but max-
imizing TCU value is more crucial while obtaining
a good solution. GUSC is not only better as a SC,
but also it can contest with latest metaheuristic al-
gorithm.

This fact clearly demonstrates the effectiveness of
GUSC based technique, which is computationally in-
expensive, prompt and improved one for CFP based
on ratio data.

Figure 2 shows the pictorial view of the results
obtained by GUSC, CBS, and NSBUF II. The supe-
riority of GUSC over CBS is clearly displayed in this
graphical representation, however it is substantially
close to the NSBUF II. In this study computation-
al time is not considered as a performance criteri-
on because SC based approaches produce solutions
quickly even for the large size data. Therefore, time
consumption is negligible. Moreover, the prime focus
of this research is to provide effective and prompt
solutions for CFP to the shop-floor personnel with
enhanced TCU and TEU scores. For the inquisitive
readers, the CPU time is provided for the largest
test problem (45× 120) solved using GUSC based
approach, which is 0.4452 seconds.

Table 6
Comparison of results obtained using GUSC, CBS, NSBUF II.

No. Size No. of cell
GUSC CBS NSBUF II

UGE TCU TEU UGE TCU TEU UGE TCU TEU

1 5× 10 2 52.932 3.8752 0.564 36.656 3.6203 0.819 52.932 3.8752 0.564

2 7× 11 2 48.202 5.496 0.796 48.202 5.496 0.7966 48.202 5.496 0.7966

3 9× 9 2 50.322 6.206 0.828 47.818 5.8975 1.1372 50.322 6.206 0.828

4 9× 15 2 44.998 7.4956 0.64 45.099 6.7077 1.4279 45.099 6.7077 1.4279

5 10× 10 3 38.054 7.0204 1.064 35.299 6.4671 1.618 38.054 7.0204 1.064

6 10× 25 3 37.492 7.6846 1.100 36.028 7.454 1.3314 37.492 7.6846 1.100

7 12× 12 3 21.918 6.2079 2.379 28.839 6.6607 1.9272 28.839 6.6607 1.9272

8 15× 15 3 36.923 10.670 2.097 34.936 9.6504 3.1176 36.923 10.670 2.097

9 20× 20 4 25.069 12.835 4.13 9.716 10.045 6.9205 25.069 12.835 4.13

10 20× 35 4 24.503 14.326 3.635 19.556 13.242 4.7194 26.912 16.627 2.833

11 22× 35 4 22.923 16.304 1.644 24.678 16.074 1.8751 24.678 16.074 1.8751

12 24× 40 4 19.737 14.986 2.917 17.197 14.908 2.9959 19.737 14.986 2.917

13 30× 48 5 16.473 20.720 4.779 15.669 20.701 4.7983 20.016 21.226 4.171

14 35× 48 5 15.539 16.220 2.693 15.208 15.153 3.7607 15.143 15.011 3.983

15 45× 120 6 12.089 34.602 7.918 8.5653 28.680 13.840 14.767 36.382 4.897
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Fig. 2. Pictorial view of performance comparison among GUSC, CBS, NSBUF II in terms of UGE, TCU and TEU.

Managerial implications

This study has several perceptions, which are ad-
vantageous for the operations/production managers
while taking decision on the shop-floor. Trading off
between number of exceptional elements and voids
are the primitive decisive factor for the managers
while obtaining effective cells and minimizing the
inter-cell and intra-cell movement costs. However,
the prime objectives of utilization-based CFP are
to increase the TCU and reduce the TEU. These in
turn reduce the overall production time and costs,
which further reduce inventories and market re-
sponse times. Therefore, a prompt and realistic so-
lution obtained from the proposed model can make
the decisions of the managers easier and quick, which
further possibly influences some important decisions
such as the need of subcontracting of exceptional
parts or machine duplications etc. The clustering
analysis can also help to select the number of cells,
which is not pre-defined in this approach. Thus, this
approach shows more flexibility for the decision mak-
ers. Moreover, this approach is less complex mathe-
matically, which is useful for the layman practicing
in industry.

Conclusions

This article identifies the gap in the research of
SC based approaches and ratio data driven machine-
part grouping problems. Firstly, it is identified that
very few articles practically introduced SC based ap-
proaches for CFP based on ratio data. Among those,

only ref. [24] introduced a SC based method sole-
ly applicable to the ratio data CFP, which is useful.
Thereafter this SC has never been improved, extend-
ed or modified. A novel data generation technique
is adopted to generate the realistic test problems.
Further, a new similarity coefficient namely GUSC
is introduced in this study. This GUSC is success-
fully applied on 15 test problems generated before-
hand and the applied algorithm obtains the ideal ma-
chine cells further. A novel part allocation heuristic
is adopted subsequently to produce the part fami-
lies. The proposed SC based approach is shown to
outperform CBS by attaining 66.67% improved solu-
tions and perform at per with a latest metaheuristic
algorithm known as NSBUF II. The proposed ap-
proach can promptly generate the near-optimal so-
lutions that could be useful for the shop-floor person-
nel in future. This work can be extended in future for
other production factors such as product sequence,
lot sizes etc. This GUSC could also be combined with
latest metaheuristic algorithm to obtain more im-
proved cells in CMS.

This work is supported by the SFI Manufactur-
ing (Project No. 237900) and funded by the Research
Council of Norway (RCN).
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