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Abstract 

Groundwater quality modelling plays an important role in water resources management decision making processes. 
Accordingly, models must be developed to account for the uncertainty inherent in the modelling process, from the sample 
measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference sys-
tems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. In the current study, 
fuzzy set theory is applied to groundwater-quality related decision-making in an agricultural production context; the 
Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) are used to develop a series of 
new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices and hydro-
logical data from the Sarab Plain, Iran. Rather than drawing upon physiochemical groundwater quality parameters, the pre-
sent research employs widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and 
LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the 
United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in 
assessing groundwater quality for agricultural uses. The SFL model is recommended as it outperforms both MFL and LFL 
in terms of accuracy when assessing groundwater quality using irrigation indices. 
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INTRODUCTION 

The potable, domestic, industrial and agricultural use 
of water resources has contributed to global concerns re-
garding the degradation of water quality [VADIATI et al. 
2018]. The main causes of water quality issues include 

agricultural practices, expanding industries and tourism 
[GOETHALS, VOLK 2016]. Groundwater quality deteriora-
tion, and its effects on soil quality and farmland produc-
tivity, is also problematic. In semi-arid countries particu-
larly, population growth and rising water demands have led 
to the over-exploitation of surface and ground water re-
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sources. This rising pressure on water resources has in-
creased the need for groundwater quality assessments 
[BAIN et al. 2014]. In the Middle East, and especially in 
Iran, widespread groundwater distribution and consump-
tion networks have been implemented to support agricul-
tural activities [VAN DER GUN et al. 2007]. Accounting for 
roughly 94% of the nation’s annual water usage, Iran’s agri-
cultural sector is the nation’s biggest water resource stake-
holder [ALIZADEH, KESHAVARZ 2005]. Given the potential 
effects of irrigation water on cultivated soils and crops, the 
assessment and monitoring of water quality are important 
to decision-makers. Accordingly, the Food and Agriculture 
Organization of the United Nations (FAO) has published 
water quality guidelines for the agriculture sector.  

Compared to surface water, groundwater carries 
a greater quantity and variety of dissolved minerals, com-
plicating the assessment of its quality. Variations in crop 
tolerance for different minerals adds to this challenge [AB-

BASI, ABBASI 2012]. Variation in groundwater quality is 
tied to a range of factors, including regional hydrogeology, 
geochemical processes, irrigation return flows, cation ex-
change and anthropogenic activities [GORGIJ, VADIATI 
2014; VADIATI et al. 2013]. Groundwater is subject to the 
poorly understood process of hydrochemical evolution as it 
passes through different soil layers and geologic for-
mations, and moves from recharge to discharge areas 
[SINGH et al. 2013]. 

Many diagrammatic and graphical techniques can be 
used to represent the hydrochemical characteristics of wa-
ter destined for agricultural applications [DONEEN 1962; 
PIPER 1944; SCHOELLER 1962; STIFF 1951; USSL 1954; 
WILCOX 1955]. Given the lack of precision in these dia-
grams, particularly for marginal samples, their interpreta-
tion can prove challenging. The widely-used United States 
Salinity Laboratory (USSL) water quality classification 
system for agricultural production applications, which 
draws solely on electrical conductivity (EC) and sodium 
adsorption ratio (SAR), and ignores other critical indices 
(e.g., magnesium adsorption ratio (MAR), soluble sodium 
percentage (SSP), Kelly’s ratio (KR), residual sodium car-
bonate (RSC) and permeability index (PI)), is ill-suited for 
water quality assessment. Among these techniques are wa-
ter quality assessments and modelling methods involving 
multi-criteria decision-making that must also consider 
qualitative and quantitative uncertainties and their trans-
formation [WANG et al. 2016]. The fact that many samples 
may be classified within a single category obscures the 
interpretation of USSL results, complicating decision-
making and highlighting the need for models that address 
these issues. Moreover, deterministic approaches and 
graphical techniques cannot account for uncertainty 
throughout the water quality assessment process. In the 
current study, the researchers propose to overcome these 
limitations in water quality assessment by: (i) using fuzzy 
logic (FL) and (ii) developing generalized models to evalu-
ate groundwater quality using important irrigation indices.  

Among the many discussions of water quality criteria 
selection for decision-making in the literature, a great 
number have noted the inability of deterministic approach-
es to monitor uncertainty throughout the entire decision-

making process [DAHIYA et al. 2007]. Ambiguity and the 
absence of inherent certainty, differing standards and deci-
sion-making units, along with challenges regarding judg-
ment, have led water resources researchers to explore 
fuzzy set theory and FL [BARDOSSY et al. 1995]. Based on 
the consideration of water quality assessment as a fuzzy 
concept involving many indicators and classes, compre-
hensive fuzzy evaluation methods have recently been de-
veloped and evaluated for their potential use in water 
quality assessment [DANGE, LAD 2017; WANG et al. 2014]. 

While studies have applied surface water quality crite-
ria to groundwater quality evaluation for agricultural pur-
poses, few studies have directly addressed groundwater 
quality. Similarly, while many studies have discussed the 
applications of FL in water resources evaluation, these 
have been largely limited to the assessment of water quali-
ty for potable uses [DAHIYA et al. 2007; HOSSEINI- 
-MOGHARI et al. 2015; VADIATI et al. 2016]. Accordingly, 
further research on water quality assessment, particularly 
in the context of groundwater use for agricultural purposes, 
is necessary [ALAVI et al. 2010; MIRABBASI et al. 2008; 
OSTOVARI et al. 2015].  

The current study’s novelty arises from its develop-
ment of generalized rule-based fuzzy models for water 
quality evaluation using widely accepted irrigation indices. 
This research attempts to fill gaps in water quality evalua-
tion model theory by applying three types of FL models: 
Sugeno (SFL), Mamdani (MFL) and Larsen (LFL). While 
these three models normally achieve similar levels of accu-
racy, each has different strengths and weaknesses. In this 
study, they were used to develop new fuzzy inference sys-
tem (FIS) models for agricultural applications. To deal 
with the inherent uncertainty in groundwater quality as-
sessment, a comprehensive FL rule-based decision model 
was built based on expert knowledge. 

STUDY METHODS 

USSL-DIAGRAM FOR IRRIGATION WATER QUALITY 
EVALUATION 

The USSL diagram [USSL 1954] (see: Fig. 1) targets 
agricultural production, and draws on two important phys-
iochemical criteria (SAR and EC), and is a widely accepted 
system for water quality classification. The USSL diagram 
is divided into different salinity zones based on EC: low 
(<0.025 S∙m–1), medium (0.025–0.075 S∙m–1), high (0.075–
0.225 S∙m–1) and very high (0.225–0.500 S∙m–1) [USSL 
1954].  

IRRIGATION INDICES  

The suitability of groundwater for irrigation is influ-
enced by factors such as soil type, soil drainage, salt toler-
ance and crop type [MICHAEL 2008]. Among the most fre-
quently used water quality evaluation criteria are the SAR, 
MAR, EC, SSP, KR, RSC and PI. SAR represents the alka-
linity hazard to crops [RAGHUNATH 1987]; excessive so-
dium in water can stunt plant growth and deteriorate soil 
structure through the dispersion of clay particles, harden 
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Fig. 1. USSL diagram classes for evaluation of irrigation waters; 
source: USSL [1954] 

soil, and cause surface crusting and the alteration of soil 
hydraulic conductivity [RAMESH, ELANGO 2012; SUAREZ 
et al. 2006]. Since high levels of sodium can reduce soil 
permeability, the SSP is important in groundwater quality 
evaluation for irrigation purposes. Irrigation water RSC 
assesses water acceptability for irrigation purposes 
[HOWARI et al. 2005] and correlates with the adsorption of 
sodium to the soil [EATON 1950]. Accordingly, for irriga-
tion purposes, water is not suitable when RSC > 2.5 mmol 
Na∙dm–3, and is deemed harmful when RSC > 5 mmol 
Na∙dm–3. DONEEN [1962] assessed irrigation water quality 
using the PI as long-term irrigation can affect soil permea-
bility. A high magnesium ratio in irrigation groundwater 
decreases soil quality and crop yield [GOWD 2005]. PALI-

WAL [1972] introduced the MAR index as a measure of 
magnesium hazard, where MAR > 50 and MAR < 50 indi-
cate whether groundwater is unsafe or safe for irrigation 
purposes, respectively. The KR is based on the ratio of 
measured sodium to calcium and magnesium [KELLEY 
1940], where KR < 1.0 and KR > 1.0 indicate suitable and 
unsuitable water for irrigation, respectively. EC reflects the 
dissolved constituents present in groundwater, and when 
elevated, reduces the absorption of nutrients and water 
from the soil and increases soil solution osmotic pressure 
[MARGHADE et al. 2011].  

FUZZY INFERENCE SYSTEM (FIS) 

The concept of FL, proposed by ZADEH [1965], has 
been applied in many science and technology fields. FISs 
normally consist of three main steps: 1) fuzzification,  
2) fuzzy rule base, and 3) defuzzification. One of the main 
advantages of FIS is that it tolerates various types of uncer-
tainty. 

The fuzzy sets assign a domain for the interval [0, 1]: 

 𝐴 ൌ  ൛൫𝑥ଵ , 𝜇஺ሺ𝑥ሻ൯|𝑥 ∈ 𝑋ൟ,      𝑜 ൑ 𝜇஺ሺ𝑥ሻ ൌ 1 (1) 

Where: 𝜇஺ሺ𝑥ሻ is the membership function (MF) of 𝑥 in 𝐴.  

A fuzzy set’s level of fuzziness is determined through 
the selection of the MF membership values (ranging from 
0 to 1) and shape (e.g., trapezoidal, triangular, etc.) [KUS-

KO 1993]. Qualitative aspects of expert knowledge are 
transferred as “if-then” rules [ZADEH 1965]. Since fuzzy 
inference rule-based systems accommodate different types 
of uncertainty and vagueness that influence results, FISs 
are helpful in water management decision-making [LER-

MONTOV et al. 2009]. A FIS is comprised of elements such 
as MFs, logical operations and fuzzy rules [ZADEH 1965]. 
The aggregation of separate rules is accomplished by 
means of a conjunctive and/or disjunctive system, such that 
logical outputs are subsequently extracted for all rules. In 
conjunctive and disjunctive systems, rules are connected 
by “and” and “or” connectives, respectively [ROSS 2012].  

FUZZIFICATION 

Different types of MFs, both linear and nonlinear, are 
involved in the construction of the fuzzification process. 
The MF of a trapezoidal fuzzy set is calculated as [ROSS 
2012]: 

𝑓ሺ𝑥; 𝑎, 𝑏, 𝑐, 𝑑ሻ ൌ ቐ
0  𝑥 ൏

௔

ௗ
൏ 𝑥 

ሺ௔ି௫ሻ

ሺ௔ି௕ሻ
  𝑎 ൑ 𝑥 ൑ 𝑏 

 𝑏 ൑ 𝑥 ൑ 𝑐 
ሺௗି௫ሻ

ሺௗି௖ሻ
   𝑐 ൑ 𝑥 ൑ 𝑑 

ቑ (2) 

Where a, b, c and d are constants.  

FUZZY RULE BASE 

The rule base, known as fuzzy “if-then” rules, is in-
cluded in linguistic terms prepared by experts or based on 
extractions from the data set. Every rule consists of 
a mathematical methodology that transfers expert 
knowledge into fuzzy “if-then” rules. The fuzzy rules are 
comprised of two parts; the antecedent (the “if” part) and 
the consequent (the “then” part) [WANG et al. 2009]. 

DEFUZZIFICATION 

The procedure of converting a fuzzy output into a crisp 
value is called defuzzification. Frequently used defuzzifi-
cation operators include the centroid of area (COA), calcu-
lated as: 

 𝑌஼ை஺
∗ ൌ  

׬
 

ೊ ఓಲሺ௒ሻ௒ௗ௒

׬
 

ೊ ఓಲሺ௒ሻௗ௒
  (3) 

Where: 𝑌஼ை஺
∗  is the fuzzy output converted into a crisp  

value and 𝜇஺ሺ𝑌ሻ is the aggregation of the output MF 
[WANG et al. 2009]. 

FUZZY LOGIC-BASED MODELS 

The main advantage of FL-based models is their ca-
pacity to handle both numerical and linguistic terms simul-
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taneously [VADIATI et al. 2016]. Addi-
tionally, the models are transparent with 
regards to the fuzzy system as they use 
“if-then” rules and MFs. As such, FL 
models are straightforward and can be 
used in many practical applications for 
modelling and control of complex sys-
tems. The many FIS models found in the 
literature can generate outputs that differ 
significantly. The most well-known FIS 
model types (e.g., Mamdani [MAMDANI, 
ASSILIAN 1975], Sugeno [TAKAGI, 
SUGENO 1985] and Larsen [LARSEN 
1980]; MFL, SFL and LFL, respectively) 
follow an “if antecedence then conse-
quence” pattern. While all fuzzy models 
share the same antecedence, consequence 
comes in different forms for different 
models. Further inter-model differences 
are based on their formulation of fuzzy 
“if-then” rules, aggregated rules and the 
defuzzification process. In zero or first-
order SFL models, the output MFs are 
constant or linear, whereas the MFL and 
LFL model outputs are fuzzy sets, which 
then require defuzzification. 

A typical rule base in MFL has the 
form, Ri = if x is Ai and y is Bi then z is Ci  
i = 1, 2, …, n then Ri = (Ai ∩ Bi) → Ci is 
defined by 𝜇ோ೔

ൌ 𝜇ሺ஺೔ ୟ୬ୢ ஻೔→஼೔ሻሺ𝑥, 𝑦, 𝑧ሻ.  
A typical rule base in LMF, Ri = if x is Ai 
and y is Bi then z is Ci i = 1, 2, …, n then 
Ri = (Ai ∩ Bi) → Ci is defined by 𝜇ோ೔

ൌ
𝜇ሺ஺೔∩஻೔→஼೔ሻሺ𝑥, 𝑦, 𝑧ሻ. In SFL, the rule structure is based on if 
Input 1 ൌ 𝑥଴ and Input 2 ൌ 𝑦଴, then 𝑧 ൌ 𝑝𝑥଴ ൅ 𝑞𝑦଴ ൅ 𝑟. 
For a zero-order Sugeno model, the output level is a con-
stant (𝑝 ൌ 𝑞 ൌ 0) [TAKAGI, SUGENO 1985]. A graphical 
illustration of the MFL, LFL and SFL models are shown in 
Figure 2. 

STUDY AREA AND DATA 

The Sarab Plain is located in northwestern Iran. The 
Sabalan Mountain, situated in the northern part of the 
study area, has the highest and lowest elevations of 4850 m 
and 1660 m a.s.l., respectively. The study area has an aver-
age annual rainfall of 343 mm and an average annual tem-
perature of 7.9°C. The Sarab alluvial aquifer originates 
from the weathering of the Sabalan and Bozqoush moun-
tain ranges. The main outcrops in the Sarab plain consist 
of: andesite, dacite, basalt, evaporate sediments, conglom-
erate, siltstone, and marl, which may have an impact on 
groundwater quality. The groundwater level fluctuation in 
the unconfined Sarab aquifer is due mostly to precipitation, 
river recharge, irrigation return flows to groundwater and 
intensive groundwater withdrawal [VADIATI et al. 2016]. 
The hydrochemical composition of groundwater in the 
Sarab Plain is strongly controlled by geology, hydrogeolo-
gy and evaporation minerals within Miocene sediment 
formations. The verification of FL methods is improved 

through the use of general data. Therefore, hydrogeological 
uncertainty and the intensive impact of agricultural activi-
ties in the Sarab Plain made this study area ideal for check-
ing the applicability of FL models with respect to regional 
and seasonal variability in groundwater quality. 

Increasing demand for water supplies at new farms has 
led to excessive deep well drilling and the subsequent 
over-extraction of groundwater in the plain. As a result, 
deterioration of groundwater quality has recently become 
a major concern. To assess groundwater quality, a total of 
49 well samples were collected in the wet season, specifi-
cally in April 2015, and their hydrochemical parameters 
analysed based on standard procedures outlined by the 
American Public Health Association [APHA, AWEF 
1998]. The physical parameters (EC, pH and temperature) 
were measured in situ and hydrochemical, physiochemical 
and ion balance error analysis was carried out in a labora-
tory at the University of Tabriz, Iran. The sampling sites 
and the water resources map of the Sarab Plain is presented 
in Figure 3. 

MODEL DEVELOPMENT 

The main aim of the present study was to explore FL 
rule-based decision models based on important irrigation 
indices with the aim of replacing conventional classifica-
tion diagrams that have parameter selection insufficiencies. 

Fig. 2. Graphical diagrams of fuzzy logic models: a) of Mamdani, b) of Larsen,  
c) Sugeno; source: own elaboration based on MAMDANI and ASSILIAN [1975],  

LARSEN [1980] and TAKAGI and SUGENO [1985] 
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Fig. 3. The sampling sites and water resources map of the Sarab 
Plain, Iran; source: own elaboration  

The general process used to develop a fuzzy rule-based 
model for agricultural purposes is presented in Figure 4. 
The procedure begins with the selection of sampling loca-

tions and groundwater quality indices. This is followed by 
fuzzification of groundwater quality parameters, fuzzy rule 
design based on expert knowledge and datasets, and final-
ly, the development of the MFL, SFL and LFL models. 
Since water quality degradation can be caused by various 
environmental factors acting simultaneously, indices most 
appropriate to local environments and most relevant to the 
quality of groundwater should be selected. Selecting a suit-
able number of relevant indices is also necessary to  
define the main concerns of management and to facilitate 
efficient restoration and conservation efforts for water re-
sources. 

Fuzzy-logic models based on measured data have been 
receiving more attention than traditional fuzzy models, 
which in general, strictly employ linguistic rules. The 
MFL, SFL and LFL models developed in this research can 
provide groundwater quality assessment for agricultural 
purposes. In the current study, a number of irrigation water 
indices relevant to water quality (e.g., EC, SAR, SSP, RSC, 
PI, MAR and KR) were selected as input parameters in the 
development of the FIS models. More specifically, these 
indices were used to develop the generalized fuzzy models 
based on the prescribed ranges of each parameter. The 
 

 
Fig. 4. The general process to develop the fuzzy inference system (FIS) models; source: own elaboration 
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structure of the proposed fuzzy models is depicted in Fig-
ure 5. The process was executed using MATLAB [Math-
Works 2014]. The FISs transfer of expert judgment was 
expressed as “if-then” rules. In the antecedent “if” compo-
nent, the model input parameters SAR, SSP, RSC, PI, MAR, 
KR, and EC, were each categorized into three linguistic 
terms: “low”, “moderate”, and “high”. In the consequent 
“then” element, the model outputs were categorized as 
“desirable”, “acceptable”, and “unacceptable”. 

Appropriate methods for evaluating FL models depend 
strongly on the number of fuzzy sets. Several MF shapes 
can exist, however, simple “trapezoid” MFs work well 
[BARUA et al. 2013]. In the present study, triangular and 
trapezoidal MFs were used according to the nature of the 
hydrochemical parameters and information available from 
past studies and research. Moreover, to achieve an ideal 

FIS, the type of MFs were selected according to a trial and 
error process involving expert input. For example, Figure 6 
shows the MF of the SSP input parameter. 

Fuzzy sets determine each input MF, thereby defining 
fuzzy sets in terms of degrees of membership, ranging 
from 0 to 1. Table 1 shows the parameter MFs used in the 
inference fuzzy model in this study. The rules for the mod-
el were constructed based on information drawn from the 
effects of physicochemical input parameters on soil and 
crop quality. The number of rules in the fuzzy inference 
model depends on input parameters and linguistic terms. 
Generally, the weight of every rule is a number between 
0 and 1; rule weights were set at 1 in the present study. 

After the fuzzy rules are determined, the structure of 
the FL model must be designed. Using an implication pro-
cess, the previously-developed rules served to transform 

 
Fig. 5. A schematic illustration of the fuzzy inference (FIS) models used in the current study; electrical conductivity (EC), sodium 
adsorption ratio (SAR), magnesium adsorption ratio (MAR), soluble sodium percentage (SSP), Kelly’s ratio (KR), residual sodium 

carbonate (RSC), permeability index (PI), fuzzy logic (FL), fuzzy inference system (FIS); source: own elaboration 

 
Fig. 6. Membership function of the soluble sodium percentage (SSP); source: own elaboration 

Table 1. The parameter membership functions used in inference fuzzy models 

Input model High Moderate Low 
c = d b a d c b a d c a = b 

Sodium adsorption ratio 50 14 10 13 10 7 3 7 4 0 
Soluble sodium percentage 100 67 55 67 57 42 28 42 35 0 
Residual sodium carbonate 9 2.8 2 3.5 2.5 1.25 0.5 1.5 0.5 –13.1 
Permeability index 100 62 50 62 56 42 33 44 36 0 
Magnesium adsorption ratio 100 63 55 66 58 44 36 42 35 0 
Kelley's ratio 9 0.9 0.65 0.9 0.65 0. 5 0.3 0. 5 0.35 0 
Electrical conductivity 4000 3400 2800 3500 3000 780 600 800 695 0 

Explanations: a, b, c, and d = membership function parameters. 
Source: own study. 
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the input MFs into a single MF defined as the output varia-
ble. The outputs of every rule were separately aggregated 
into a single fuzzy set, which was then used as the input for 
the defuzzification procedure. For the implication proce-
dure, the “min” and “product” operators were used in MFL 
and LFL models, respectively. For both the MFL and LFL 
techniques, the COA defuzzification method, a well-
known and widely used technique, was used to obtain the 
crisp output values [HELLENDOORN, THOMAS 1993]. 

RESULTS 

EVALUATION OF GROUNDWATER QUALITY  
USING THE USSL DIAGRAM 

The USSL classification diagram (Fig. 7) of ground-
water classifies water samples into several categories, e.g., 
C1–S1, C2–S1, C3–S1, C3–S2, C4–S2 and C4–S4. Twen-
ty-four samples were classified as C2–S1, meaning that 
they posed no hazard of sodium exchange in soils for agri-
cultural use. Twenty samples were in the C3–S1 class, 
meaning that there was little hazard of sodium exchange. 
One sample was in the C1–S1 class, indicating that the 
water had a low saline level and was acceptable in each 
type of soil for agricultural use. One sample was placed in 
each of the C3–S2 and C4–S2 classes, which represent 
high and very high salinity water, respectively; both clas-
ses indicated the need for specific soil management prac-
tices in the case of agricultural use. The remaining two 
samples were classified as C4–S4, indicating that the water 
was highly saline and unacceptable for agricultural use. 

The spatial distribution of groundwater samples in the 
Sarab Plain, as classified by the USSL classification dia- 
 

 

 

Fig. 7. The USSL diagram classification of groundwater samples 
from the Sarab Plain; source: own study  

gram, showed that samples in the C2–S1 class were found 
largely in the east where the aquifer is recharged from 
streams (Fig. 8). Samples in the moderate water quality 
C3–S1 class were found mainly in the middle section of 
the study area, where groundwater quality deteriorates due 
to the dissolution of gypsum and mineral salts from Mio-
cene formations, cation exchange and urban wastewater. 
The sample in the C4–S2 class was located in the northern 
region of the Sarab Plain, where salinity and SAR increased 
as a result of aquifer recharge from the saline waters of the 
Talkheh Rud River [ASADOLLAHFARDI et al. 2011]. 

 

Fig. 8. Spatial USSL classification diagram of groundwater 
samples in the Sarab Plain, Iran; source: own study  

IRRIGATION INDICES 

The key indices, SAR, PI, KR, MAR, RSC, SSP and EC 
were used to determine the water quality for agricultural 
purposes. In the study area samples, KR ranged between 
0.03 and 7.6, and PI ranged between 29.4 and 92.1. 
A summary of the irrigation indices of groundwater sam-
ples from the Sarab Plain is shown in Table 2. A plot of the 
spatial variation of irrigation indices in the Sarab Plain 
(Fig. 9) shows a complex pattern, precluding simple con-
clusions regarding the varying behaviour of each index. 
For example, higher values of EC, SSP and MAR were ap-
parent in the northern/northwestern, central, and north-
east/south-west parts of the Sarab Plain, respectively. In 
contrast, the distribution of PI was found to be highly vari-
able. 

Table 2. Summary of irrigation indices in groundwater of the 
Sarab Plain 

Statistic SSP RSC PI MAR KR EC SAR 
Minimum 7.5 –13.1 29.4 9.5 0.03 185 0.08 
Maximum 75.9 8.2 91.2 51.1 7.6 3400 27.2 
Mean 53.0 –0.9 55.3 28.7 0.6 952 2.6 
Standard deviation 12.9 3.6 14.4 10.1 1.2 750 6.9 

Explanations: SSP = soluble sodium percentage, RSC = residual sodium 
carbonate, PI = permeability index, MAR = magnesium adsorption ratio, 
KR = Kelly’s ratio, EC = electrical conductivity (μS∙cm–1), SAR = sodium 
adsorption ratio. All ion concentration of the parameters were expressed 
in mg∙dm–3. 
Source: own study. 
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Fig. 9. Spatial variation of irrigation indices in groundwater of the
Sarab Plain, Iran; KR = Kelly’s ratio, EC = electrical conductivity,
SAR = sodium adsorption ratio, MAR = magnesium adsorption
ratio, SSP = soluble sodium percentage, RSC = residual sodium
carbonate, PI = permeability index; source: own study 
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RESULTS OF THE FUZZY INFERENCE SYSTEM 
MODELS 

The comparison of groundwater quality classes using 
the proposed FL methods and the USSL diagram (Tab. 3) 
shows that, for sample number 1, for example, input pa-
rameters of SAR = 2, SSP = 47.5, KR = 0.5, MAR = 31.6,  

 

RSC = –2.1, PI = 51.3 and EC = 1510 μS∙cm–1, led to the 
sample being classified as “acceptable” by the FL ap-
proaches (MFL, LFL and SFL), and to fall within the C3–
S1 category of the USSL classification. Many samples 
were situated on the border between the USSL C2–S1 and 
C3–S1 categories (Fig. 7). Therefore, the inherent uncer-
tainty in various steps of groundwater quality assessment, 

Table 3. Comparison of groundwater quality classes using fuzzy logic and USSL class 

No. 
Crisp values of input parameters Decision-making based on fuzzy logic-based models 

USSL 
class SAR SSP KR MAR RSC PI EC 

Mamdani model 
(MFL) 

Larsen model 
(LFL) 

Sugeno model 
(SFL) 

1 2.0 47.5 0.5 31.6 –2.1 51.3 1 510 acceptable acceptable acceptable C3–S1 
2 0.8 59.0 0.2 27.8 –1.2 48.5 580 desirable  desirable  desirable C2–S1 
3 0.5 64.6 0.2 25.0 –0.9 48.4 510 desirable desirable desirable C2–S1 
4 3.2 29.0 0.7 51.1 –3.9 55.5 1 460 acceptable acceptable acceptable C3–S1 
5 1.7 38.0 0.4 46.1 –2.3 51.8 1 020 acceptable acceptable acceptable C3–S1 
6 1.5 37.5 0.4 50.0 –2.2 47.1 880 acceptable acceptable acceptable C3–S1 
7 3.5 51.4 0.5 25.6 –19.7 38.9 3 400 unacceptable unacceptable unacceptable C4–S2 
8 0.1 62.1 0.0 36.8 –0.6 53.3 290 desirable desirable desirable C2–S1 
9 0.2 57.4 0.1 40.5 –0.8 51.3 325 desirable desirable desirable C2–S1 
10 0.3 46.6 0.1 48.1 –0.6 62.1 185 desirable desirable desirable C1–S1 
11 0.3 59.2 0.1 33.3 –0.3 62.5 290 desirable desirable desirable C2–S1 
12 1.5 51.7 0.4 26.4 –2.1 53.8 740 acceptable acceptable desirable C2–S1 
13 5.2 38.3 0.9 27.6 –12.7 53.8 3 000 desirable desirable desirable C2–S1 
14 2.8 54.0 0.5 19.5 –7.4 45.9 2 130 desirable desirable desirable C2–S1 
15 2.0 53.0 0.5 23.0 –6.0 44.6 1 200 acceptable acceptable acceptable C3–S1 
16 1.5 66.2 0.3 16.3 –12.6 29.4 1 765 acceptable acceptable acceptable C3–S1 
17 0.6 69.3 0.2 20.5 –5.0 31.0 847 acceptable acceptable acceptable C3–S1 
18 1.8 54.9 0.4 24.1 –6.1 42.7 1 330 acceptable acceptable acceptable C3–S1 
19 6.1 30.7 1.9 17.7 2.9 85.2 1 300 unacceptable  unacceptable  unacceptable  C3–S2 
20 15.6 20.0 4.2 16.3 7.1 91.2 3 230 unacceptable unacceptable unacceptable C4–S4 
21 0.9 63.2 0.2 23.0 –1.4 47.5 760 desirable acceptable acceptable  C3–S1 
22 0.8 64.3 0.3 20.1 –0.8 53.3 660 desirable desirable desirable C2–S1 
23 2.8 42.2 1.3 13.1 0.9 89.2 584 acceptable acceptable desirable C2–S1 
24 1.3 50.4 0.4 28.8 –0.6 60.9 600 desirable desirable desirable C2–S1 
25 0.8 48.8 0.2 40.7 –2.1 46.6 620 desirable desirable desirable C2–S1 
26 0.2 49.9 0.1 46.7 –1.0 46.8 310 desirable desirable desirable C2–S1 
27 0.5 52.8 0.2 36.4 0.0 70.2 254 desirable desirable desirable C2–S1 
28 1.0 56.7 0.2 31.0 –4.7 37.0 1 130 acceptable acceptable acceptable C3–S1 
29 2.1 56.6 0.4 23.1 –12.5 36.1 1 900 acceptable acceptable acceptable C3–S1 
30 47.2   7.5 7.7 36.0 –14.2 89.8 3 400 unacceptable unacceptable unacceptable C4–S4 
31 1.8 55.1 0.5 18.0 –2.6 54.7 870 acceptable acceptable acceptable C3–S1 
32 1.8 52.5 0.4 28.7 –5.2 43.2 1 350 acceptable acceptable acceptable C3–S1 
33 0.8 69.6 0.3   9.5 –0.6 59.7 450 desirable desirable desirable C2–S1 
34 0.4 61.6 0.2 28.4 –0.1 64.5 310 desirable desirable desirable C2–S1 
35 1.1 48.1 0.5 29.9 0.0 71.4 360 desirable desirable desirable C2–S1 
36 0.9 58.0 0.2 30.3 –3.6 38.6 835 acceptable acceptable acceptable C3–S1 
37 0.6 63.0 0.1 28.1 –2.5 39.4 800 acceptable acceptable acceptable C3–S1 
38 0.8 63.4 0.2 24.0 –2.5 41.1 870 acceptable acceptable acceptable C3–S1 
39 1.6 53.7 0.4 27.0 –6.1 41.3 1 200 acceptable acceptable acceptable C3–S1 
40 0.3 62.5 0.1 33.0 –1.7 36.6 760 acceptable desirable acceptable C3–S1 
41 0.5 55.3 0.2 34.8 –0.7 55.0 320 desirable desirable desirable C2–S1 
42 0.4 53.7 0.1 38.5 –0.6 56.0 300 desirable desirable desirable C2–S1 
43 0.7 75.9 0.2 11.2 –2.6 39.5 800 acceptable acceptable acceptable C3–S1 
44 0.9 54.5 0.3 31.8 –0.2 57.7 540 desirable desirable desirable C2–S1 
45 1.3 56.1 0.3 26.0 –2.8 46.1 860 acceptable acceptable acceptable C3–S1 
46 0.5 68.1 0.2 17.1 –0.1 64.4 300 desirable desirable desirable C2–S1 
47 0.8 68.8 0.2 14.5 0.1 56.0 540 desirable desirable desirable C2–S1 
48 0.8 50.7 0.3 37.0 –0.6 59.1 320 desirable desirable desirable  C2–S1 
49 1.4 43.6 0.5 36.2 –1.0 62.9 430 desirable desirable desirable C2–S1 

Explanations: SAR = sodium adsorption ratio, SSP = soluble sodium percentage, KR = Kelly’s ratio, MAR = magnesium adsorption ratio, RSC = residual 
sodium carbonate, PI = permeability index, EC = electrical conductivity. 
Source: own study. 
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from measurement to interpretation, likely affected the 
results of the USSL classification. Accordingly, the FISs 
that addressed these issues were an appropriate choice for 
groundwater quality evaluation. 

A comparison between the FIS-based approaches and 
a deterministic evaluation is presented in Table 3. For 
samples 8 and 9, SAR, KR, RSC and EC were in the low 
category, PI was in the high category, SSP was between 
the moderate and high categories, and MAR was between 
the low and moderate categories. The USSL diagram clas-
sified samples 8 and 9 in the “no risk” C2–S1 class, while 
the MFL, LFL and SFL models placed them in the “desira-
ble” category. Accordingly, based on both the USSL clas-
sification and the FL models, samples 8 and 9 were 
deemed desirable for irrigation purposes. The FL models 
classified samples 13 and 14 as “desirable” and samples 16 
and 17 as “acceptable”, while the USSL classification cat-
egorized all four samples as C3–S1. Based on the fuzzy 
models, samples 19 and 20 were classified as “unaccepta-
ble”, whereas the USSL classification categorized them as 
C3–S2 and C4–S4, respectively. For both samples, the SSP 
and MAR criteria were placed in the low category, EC was 
in the moderate category, and PI and KR were in the high 
category. The SAR and RSC were placed in the moderate 
and high category for sample numbers 19 and 20, respec-
tively. The MFL, LFL and SFL models placed sample 21 
in the “desirable”, “acceptable” and “acceptable” catego-
ries, respectively, while the USSL diagram categorized it 
as C3–S1. The USSL diagram classified sample 22 as C2–
S1 while the FL models placed sample 22 in the “desira-
ble” category.  

The developed fuzzy models’ superiority over the 
USSL classification was most apparent in samples of simi-
lar quality, as fuzzy models make a more consistent deci-
sion, especially with respect to threshold values between 
two different classes. The results of the MFL method 
showed that the number of groundwater samples catego-
rized as “desirable”, “acceptable” and “unacceptable” were 
24, 21 and 4 (Tab. 3). The results obtained from the LFL 
model were comparable to those of the MFL model. Based 
on the SFL model, 25, 20 and 4 samples, respectively, 
were categorized as “desirable”, “acceptable” and “unac-
ceptable.” Overall, under the USSL classification, the deci-
sion-making was based on crisp values, while the FIS drew 
flexible boundaries using linguistic terms with respect to 
threshold values between two different classes, thus allow-
ing for more reliable information about groundwater quali-
ty. Generally, it can be concluded that the FL models de-
veloped in the present study were able to cope with intrin-
sic uncertainty, were flexible enough to include more crite-
ria or indices compared to traditional classification dia-
grams, and were able to accommodate human and instru-
mental errors. 

DISCUSSION 

When studying the indices separately, it is easy to 
classify and understand groundwater quality. However, 
when different indices are studied together, it becomes 
difficult to assess overall groundwater quality. The fuzzy 

inference system (FIS) allows for the derivation of a com-
prehensive conclusion regarding groundwater quality evo-
lution. There is a good agreement between the fuzzy mod-
els and the USSL classification results. It can be concluded 
that the Mamdani, Sugeno, and Larsen fuzzy logic-based 
models (MFL, SFL and LFL, respectively) confirmed the 
USSL classification; beyond confirmation, these models 
provided a more consistent decision regarding water quali-
ty due to the incorporation of various irrigation indices, 
especially for marginal samples.  

The results of the present study confirmed the findings 
of MIRABBASI et al. [2008], who proposed an irrigation 
water quality model based on a FIS and compared its per-
formance to that of the USSL diagram. While showing an 
84% agreement with the USSL method, the proposed mod-
el proved to be significantly more accurate. Using an adap-
tive network-based fuzzy inference system (ANFIS), 
which compared EC–SAR values with the USSL diagram 
to evaluate irrigation water quality, ALAVI et al. [2010] 
showed the ANFIS model to be a reliable substitute for the 
traditional USSL diagram method. Similarly, OSTOVARI et 
al. [2015] employed a Mamdani FIS with a similar EC–
SAR and USSL diagram comparison to evaluate groundwa-
ter quality, for irrigation purposes, in the Marvdasht alluvi-
al aquifer. The authors showed that in 81% of cases, the 
FIS categorized water samples into the same classes as the 
USSL diagram. Nonetheless, many key groundwater quali-
ty criteria (e.g., PI, KR, MAR, RSC, SSP) were not includ-
ed. Their accuracy was gauged against a crisp classifica-
tion method (USSL diagram), and previously reported arti-
ficial intelligence techniques (e.g., FL and ANFIS) that 
based their irrigation water quality evaluations solely on 
SAR and EC, omitting many other criteria important in 
groundwater quality evaluation and classification.  

The exacerbation of soil and water salinization through 
the intensive use of fertilizers and pesticides, heavy metal 
pollution, and the use of low-quality water and soil re-
quires the development of new indices and methodologies 
to address these critical issues. However, while the need 
for extensive models that consider the effects of water 
quality on both crops and soil is clear, one must keep in 
mind that improving a model’s suitability by integrating 
more parameters also increases its uncertainties. There are 
many driving factors that can affect groundwater quality, 
including climate, hydrogeology and human activities. The 
hydrochemical parameters reveal the geological complexi-
ty of groundwater, and it was found that water-rock inter-
actions and human activities have the most influence on 
groundwater quality [GÜLER et al. 2012; KOH et al. 2009]. 
Therefore, FIS is beneficial for groundwater quality evalu-
ation in hydrogeologically complex regions such as the 
Sarab Plain. It can be argued that the fuzzy inference 
method is a suitable method for irrigation water quality 
assessment due to its integrated decision-making mecha-
nism that is based on important irrigation indices. The spa-
tial assessment of groundwater quality of the Sarab Plain 
using MFL, LFL and SFL models are shown in Figure 10, 
respectively. As can be seen, samples in the eastern part of 
the Sarab Plain were categorized as “desirable”, and 
groundwater quality deteriorated in the western and central  
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Fig. 10. Spatial assessment of groundwater quality  

of the Sarab Plain using fuzzy logic models:  
a) Mamdani, b) Larsen, c) Sugeno; Source: own study 

regions. The results of the present study suggest that, in the 
study region, the developed FL models developed assess 
groundwater quality more precisely and with a more con-
sistent logic than the USSL classification diagram (Fig. 8). 

CONCLUSIONS 

Due to the inherent uncertainty in water and soil envi-
ronments, groundwater quality assessment for agricultural 
use is a challenging task. In the current study, the Mamda-
ni, Larsen and Sugeno fuzzy logic models (MFL, SFL and 
LFL, respectively) were used to determine water quality 

more precisely and to manage the inherent uncertainty in 
the assessment procedure. The present study applied the 
fuzzy assessment method in groundwater quality evalua-
tion. The assessment of water quality using traditional 
methods, as well as its classification as “desirable”, “ac-
ceptable” and “unacceptable” based on water quality 
standards, were considered less appropriate since such 
methods overlooked the uncertainty of the sampling, anal-
ysis and interpretation steps. Using FL approaches, 
groundwater quality samples were categorized as “desira-
ble,” “acceptable” or “unacceptable” on the basis of expert 
perception. The results showed that the SFL performed 
consistently better than the other FL models. The superiori-
ty of the developed fuzzy models is most evident in sam-
ples of similar quality; FL models produced more con-
sistent results for samples of similar quality compared to 
the traditional methods. The fuzzy inference method was 
shown to be suitable for irrigation water-quality assess-
ment because of its integrated decision-making, based on 
important irrigation indices. In taking uncertainties in 
measurement and analysis of hydrochemical data into ac-
count during model development, the present study intro-
duced a more dependable and flexible method for ground-
water quality evaluation compared to traditional methods.  
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Analiza porównawcza modeli opartych na logice rozmytej do oceny jakości wód podziemnych  
na podstawie wskaźników nawadniania 

STRESZCZENIE 

Modelowanie jakości wód podziemnych odgrywa ważną rolę w procesach podejmowania decyzji dotyczących zarzą-
dzania zasobami wodnymi. W związku z tym należy opracować modele uwzględniające naturalną niepewność, która poja-
wia się od etapu pomiaru próbki, aż do interpretacji danych. Wykazano, że modele sztucznej inteligencji, w szczególności 
systemy wnioskowania rozmytego (FIS), są skuteczne w ocenie jakości wód podziemnych w odniesieniu do złożonych 
warstw wodonośnych. Zastosowanie teorii zbiorów rozmytych do podejmowania decyzji związanych z jakością wód pod-
ziemnych w kontekście produkcji rolnej, modele oparte na logice rozmytej Mamdaniego, Sugeno i Larsena (odpowiednio 
MFL, SFL i LFL) zostały wykorzystane do opracowania serii nowych, uogólnionych modeli, opartych na regułach rozmy-
tych, do oceny jakości wody z wykorzystaniem powszechnie akceptowanych wskaźników nawadniania. Zamiast czerpać 
z jakościowych parametrów fizykochemicznych wód gruntowych, w niniejszym badaniu zastosowano powszechnie przyję-
te wskaźniki rolne (np. kryteria nawadniania) podczas opracowywania modeli jakości wód podziemnych MFL, SFL i LFL. 
Za pomocą tych nowo opracowanych modeli, wygenerowano znacznie bardziej spójne wyniki niż z zastosowaniem dia-
gramu Amerykańskiego Laboratorium Gleby (USSL), uwzględniono nieodłączną niepewność danych progowych. Modele 
te były skuteczne w ocenie jakości wód podziemnych do zastosowań rolniczych. Model SFL jest zalecany, ponieważ miał 
najlepszą efektywność pod względem dokładności w ocenie jakości wód podziemnych z użyciem wskaźników nawadnia-
nia. 
 
Słowa kluczowe: model Larsona, model Mamdaniego, model Sugeno, model wnioskowania rozmytego, reguły rozmyte, 
równanie Saraba, wskaźniki irygacyjne  

 


