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OPTIMUM CONTROL OF SELECTED VIBRATION FORMS

IN MECHANICAL SYSTEMS

In the paper, the authors describe and solve the problem of optimum control

of selected vibration forms in mechanical systems. Two illustrative examples have

been used to present the procedure for determination of the optimum controller

coefficients.

In the first example, a simplified mechanical system is considered, while in the

second one – a rotor with magnetic bearing. In both cases, the integral performance

indices have been defined in order to minimize the vibration level at selected points

of the structures.

The system with the magnetic bearing is structurally unstable. For this reason,

the authors present the way of finding the weight coefficients of integral performance

index for unstable, multi-degrees-of-freedom system. In that way, the selected modal

forms attain the previously assumed dynamic properties and the performance index

takes the minimum value. The results of numerical analysis show that the proposed

way is efficient and makes it possible to control selected forms of vibration in the

system.

1. Introduction

Due to the danger of high displacement level, the problem of transverse

rotor vibrations control is very important and still requires investigations.

Vibrations, as a side effect of machine functioning, result from unbal-

ance, asymmetry or the presence of non-axial elements placed on the rotor.

Vibrations are unavoidable and cause that the rotor, working in a stable area,

vibrates at a certain frequency and amplitude. Vibration level affects the

magnitude of the dynamic reactions in bearing nodes and, in consequence,
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the durability of the toe-pan system. For the above reasons, in the paper

one has made an effort to suppress the vibrations using an optimum control

procedure.

Although the algorithms for choosing the optimum controller settings

are known, some difficulties with their physical realization can appear. The

level of optimum control command often exceeds the possibilities of classical

piezoelectric actuators. On the other hand, it is very difficult to apply electro-

dynamic actuators when the rotor turns. To avoid these problems, a magnetic

bearing has been applied to the optimum control of the rotor vibrations.

The rotor with a magnetic bearing is a structurally unstable system.

Thus the controller should not only to control the rotor vibrations, but also

to stabilize them.

Therefore, the problem of optimization leading to Riccati equation for

the unstable system has been solved.

In the paper, one presents an efficient way of finding the weight co-

efficients of the integral performance index for unstable, multi-degrees-of-

freedom system. In this way, the chosen modal forms would have the pre-

viously assumed dynamic properties and the performance index would take

the minimum value. The presented method gives the possibility to control

the selected vibration forms of the system.

2. Mathematical description of the dynamics of mechanical systems

The simplified model of the structure, shown in Fig. 2 and Fig. 5, is

obtained by the rigid finite element method [1], [5], [6], [10]. It depends

on dividing the structure into non-flexible mass elements called rigid finite

elements (RFE) which are connected by massless spring-damping elements

(SDE).

The equations of motion are derived in two stages [1], [5], [6], [10].

In the first stage, the differential equation of the system free of constraints

is determined, while in the second stage two subsystems with known and

unknown motion are separated. The system free of constraints is the one

whose constraints have been replaced by their reactions. Thus, the number

of freedom degrees of the system free of constraints equals

ñ = n + r, (1)

where: n – number of degrees of freedom of the system with constraints,

r – number of constrains (i.e. fixed degrees of freedom).

The equation of motion of the system free of constraints (with ñ degrees

of freedom) can be expressed in the form
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M̃ · ¨̃q + L̃ · ˙̃q + K̃ · q̃ = f̃ , (2)

where: M̃, L̃, K̃ – matrices of inertia, damping and stiffness of the system

free of constraints, q̃, f̃ – vectors of generalised displacements and forces of

the system free of constraints.

Some components of the vector q̃ are given in time domain (i.e. kine-

matic excitations), but the other ones – the unknown time functions, refer to

displacements of the system. These components can be arranged in such a

way that the ones of the vector of unknown displacements q, will be first,

and the components of the vector of kinematic excitations z will follow them.

Thus, we can write

q̃ = col(q, z), (3)

where: q – vector of unknown generalised displacements (n × 1), z – vector

of given kinematic excitations (r × 1).

By analogy, the vector of generalised forces is

f̃ = col(p, r), (4)

where: p – vector of given generalised forces (force excitations) (n × 1),

r – vector of unknown generalised forces (constraint reactions) (r × 1).

It is possible to divide the equation of motion (2) into matrix blocks

as a consequence of some arrangement of components of the generalised

displacements vector (3) and the generalised forces vector (4), which leads

to [1], [5], [6]
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(5)

where: M, L, K – matrices of inertia, damping and stiffness of subsystem

with unknown motion (n×n), M′, L′, K′ – matrices of inertia, damping and

stiffness of subsystem with given motion (r × r), M′′, L′′, K′′ – matrices of

inertia, damping and stiffness of the interaction subsystem (n × r).

The equation (5) can be written as a system of two equations:

M · q̈ + L · q̇ + K · q = h(t), (6)

r = M′′
T
· q̈ + M′ · z′′ + L′′

T
· q̇ + L′ · ż + K′′

T
· q + K′ · z , (7)
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where

h(t) = p − M′′ · z̈ − L′′ · ż − K′′ · z (8)

is the vector of reduced force-kinematic excitations.

The solution to equation (6) yields the vector of generalised displace-

ments q. Subsequently, the vector of constraint reactions r is determined on

the basis of (7).

3. State-space representation of the mathematical model

The equation of motion (6)÷(8) can be written in a state space form as:

ẋ = A · x + B · u,

y = C · x,
(9)

where: x = col(x1, x2) = col(q, q̇) – state vector (2n × 1),
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
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– input matrix (2n × k), u = h(t) – input vector (k × 1).

The system described by equation (9) can be transformed into the modal

state-space representation, which is characterized by the block-diagonal sub-

matrices [2], [3], [9]
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, i = 1, 2, . . . , n, (10)

where: n – number of degrees of freedom, ζi – damping coefficient,

ωni – natural frequency of non-damped vibrations, ωdi – frequency of damped

vibrations.

The modal state-space representation of the block-diagonal form subma-

trices (10) can be obtained by applying the linear transformation of the state

variables

x = Td · Tb · xm = Tm · xm, (11)

where: Td – eigenvectors of matrix A, which transform matrix A into diago-

nal form, Tb – matrix that transforms complex diagonal form of A into real

block-diagonal form. It takes the form [8]
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and is created in such a way that number 1 is inserted instead of the real

eigenvalues of A, while in the other ones, according to complex conjugate

eigenvalues of A, 2×2 block-matrix, as in (12).

Putting equation (11) into (9) yields a modal state-space representation,

i.e.:

ẋm = Am · xm + Bm · u,

y = Cm · xm,
(13)

where: Am = T−1
m · A · Tm, Bm = T−1

m · B, Cm = C · Tm.

4. Optimum control of selected modal forms with assumed previously

dynamic properties

For the system described by the equation (9) the integral performance

index can be defined as [4]

I =
1

2

tk
∫

0

(xT
· Q · x + r2u)dt, (14)

where: Q – weighing matrix, r – positively defined input weighing coefficient.

The control input command u(t) that minimizes the integral performance

index (14), for a general mechanical system shown in Fig. 1, is expressed by

the following relationship [3], [4], [8]

u(t) = −R · x, (15)

where R is the feedback matrix gain given by

R =
1

r
BT
· S, (16)

whereas S is a solution of the Riccati equation [3], [4], [7]
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S · A −
1

r
S · B · BT

· S + Q + AT
· S = 0. (17)

u(t)

p(t) z(t)

x(t)
A, B, C

MECHANICAL

SYSTEM

R

CONTROLLER

Fig. 1. General scheme of vibration control

It can be proved that the control input (15) is optimal, i.e. it minimizes

the index (14), when the characteristic equation of the closed-loop transfer

function

D(s) = det(sI − (A − B · R)), (18)

and the characteristic equation of the open-loop transfer function

D0(s) = det(sI − A) (19)

are related by the equation [4]

D(−s)D(s) = D0(−s)D0(s) +
1

r
LT

0 (−s) · Q · L0(s), (20)

where

L0(s) = C · (sI − A)ad j · B (21)

is the numerator of the open-loop transfer function of (9).

5. General procedure for computation of weight coefficients

One can choose the weight coefficients of the integral performance in-

dex (14) such that it takes the minimum value, and the system exhibits the

dynamic properties prescribed earlier.

For this purpose, for the multi degree-of-freedom system [3] one should:

1. Transform the equation (9) into the block-diagonal form (13).

2. Reduce the system by removing from Am, Bm rows and columns that are

insignificant for the system dynamics, and from T−1
m only the insignificant

rows according to Am.
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3. Calculate the weight coefficients of Qmr , from the equation (20) for the

reduced system (Amr , Bmr) substituting A and B in (18) and (19) by Amr

and Bmr and C in (21) by Imr .

4. Calculate Q for the full order system from the equation Q = T−T
mr ·Qmr ·Tmr .

The latter is obtained by putting (11) into (14).

6. Illustrative examples

6.1. Example 1

The simplified two-degrees-of-freedom system consists of two rigid mass-

es connected by spring and damping elements (Fig. 2). General co-ordinates

of the system are displacements of RFE-s: q1 and q2. The system is excited

by force p(t) = δ(t), where δ(t) is the Dirac delta function (Fig. 2). The

control signal u(t) has also a force character.

m2 m1

k2 k1

b1b2

u(t)

RFE 1SDE 1RFE 2SDE 2

p(t)

q2 q1

Fig. 2. Model of the structure under consideration

Table 1.

The parameter values of the model

i
mi bi ki

[kg] [Ns/m] [N/m]

1 2 3 15000

2 1 3 10000

The parameters values of the model are defined in Table 1.

The mathematical model of such system can be written in the form of (9),

where:
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, (22)

and its eigenvalues are put in Table 2.
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Table 2.

Eigenvalues of the system shown in Fig. 2

Modal form Eigenvalues Dynamic properties

1
−4.863636 + 173.1367i ς = 0.02808

−4.863636 − 173.1367i ωn = 173.205

2
−0.386363 + 49.9985i ς = 0.0077272

−0.386363 − 49.9985i ωn = 50

The problem consists in computation of the matrix weight coefficient Q

of the integral performance index (14) to shift the modal form 2 (Tab. 2)

to the place which is characterized by the dynamics properties: ς = 0.25,

ωn = 100 and to attain the minimum value of performance index (14).

Further, one proceeds in accordance with the description given at the fifth

point. Transformation to the state-space modal representation (13) yields:
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(23)

Reducing the system to the form that should be shifted leads to the following

matrices:
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The open-loop characteristic equation (19) for the reduced system takes the

form

D0(s) = det(sImr − Amr) = s2
+ 0.77272724789s + 2500, (25)

whereas for the closed loop it becomes

D(s) = det(sImr−(Amr−Bmr ·Rmr)) = s2
+2ςωns+ω

2
n = s2

+50s+10000. (26)
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and substituting (25)÷(27) into (20), and then comparing the coefficient ac-
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From the equation Q = T−T
mr ·Qmr ·Tmr , it is possible to obtain the weighing

matrix Q for the full order system. The solution of the Riccati equation (17)

for the full order system gives

S =





































1995910.512 661743.999 30011.174 10011.786

219397.443 9981.032 3329.683

196.918 65.76

sym 21.9606





































(30)

and from (16)

R =
[

15005.588 4990.516 98.459 32.88
]

. (31)

The eigenvalues of the system with the optimum feedback matrix gain

R (31) are put into Table 3.

Table 3.

Eigenvalues of the system with the optimum controller

Modal form Eigenvalues Dynamic properties

1
−4.863 + 173.136i ς = 0.02808

−4.863 − 173.136i ωn = 173.205

2
−25.001 + 96.824i ς = 0.25001

−25.001 − 96.824i ωn = 100

Computer simulation have been performed using the Matlab package and

the results are shown in Fig. 3 and Fig. 4.
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Fig. 3. Displacement of m1 with and without optimum controller
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Fig. 4. Displacement of m2 with and without optimum controller

6.2. Example 2

The model of the laboratory rotor with a magnetic bearing consists of 5

RFEs and 4 SDEs (Fig. 5) [3]. SDEs no. 5 and 6 approach the oscillatory

bearing, while SDEs no. 7 and 8 – the magnetic bearing. Each RFE has two

degrees of freedom, in other words, displacement in the transverse direction

y and angular displacement around axis x.

RFE 1 SDE 1 RFE 2 SDE 2 RFE 3 SDE 3 RFE 4 RFE 5SDE 4

SDE 5 SDE 6

x
z

y

SDE 7 SDE 8

Fig. 5. The discrete model of the laboratory rotor

The task depends in this case on minimizing the vibrations of RFE 3 by

the acting force, being generated with magnetic bearing at point RFE 3 or

RFE 4.

The integral performance index (14) has been defined for the discrete

model with the magnetic bearing.

The structure with a magnetic bearing is unstable (Fig. 7). Thus, the

modal form (13) of it has been reduced to the unstable mode. The reduced

matrix equation (13) for that model is described by the triple Amr , Bmr , Cmr .

Appropriate matrices are as follows:
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Amr =















427.72 0

0 −432.5















, Bmr =















60.075

61.693















,

Cmr =















197.0590 5.6049

−204.9874 −5.5223















.

(32)

Because of the large size of the matrices A, B and C for that system, only

its reduced form has been presented in the paper. The full order mathematical

model can be found in [3].

The denominator of the open-loop transfer function (19) for the reduced

system equals

D0(s) = det(sImr − Amr) = s2
+ 4.78s − 184988.75. (33)

Assuming that the dynamics properties of the closed-loop reduced system

are equal to: ς = 0.25, ωn = 263, the characteristic equation takes the form

D(s) = det(sImr − (Amr − Bmr · Rmr)) = s2
+ 2ςωns + ω

2
n = s2

+ 131.5s + 69169. (34)

Then one can compute L0 from (21), i.e.

L0(s) = Imr · (sImr − Amr)ad j · Bmr =















60.075s + 25982.483

61.693s − 26387.17















. (35)

After taking for granted that

Qmr =















q1

q2















[

q1 q2

]

, (36)

and substituting (33)÷(36) into (20), and then comparing the coefficients

according to the same powers of s one can obtain the non-linear equations

from which the matrix Qmr is

Qmr = q · qT
=















−9.12i

−2.478















·

[

−9.12i −2.478i
]

=















−83.172 −22.598

−22.598 −6.14















. (37)

In this case, the system is unstable, so the matrices Qmr and Q should

be non-positively defined in order to solve the Riccati equation.
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Putting Amr , Bmr , Qmr into the equation (17) for reduced system gives

the solution

Smr =















0.13884802810511 −0.03848709780093

−0.03848709780093 −0.02341158781770















, (38)

and the from (16)

Rmr =

[

5.96694014639143 −3.75644017996119
]

. (39)

Now one can calculate the weight matrix for the full order system from

equation Q = T−T
mr · Qmr · Tmr , and the feedback gain matrix R. For this

purpose, one can apply the calculation procedure analogous to that of the

first example.

Because of a large size of the matrices S and R for the full order system,

they are not presented in the paper, however they can be found in [3].

It can be proved that the eigenvalues with the feedback matrix gain R are

unchanged except one unstable mode, which has been shifted to the assumed

previously dynamic properties: ς = 0.25, ωn = 263.

The results of computer simulation by using Matlab package are shown

in Figs. 6÷9.

The response of the rotor without the controller (Fig. 6) illustrates the

displacements of RFEs nos. 2, 3, 4. Their phases are consistent, while the

responses of RFEs no. 2 and 4 pertaining to the optimum controller (Fig.

9) are in anti-phase. This means that the optimum controller fulfils its task,

because owing to its action, the displacement of the RFE no. 3, located

between RFE no. 2 and RFE no. 4, is suppressed. Moreover, the displacement

level of RFE no. 3 is significantly reduced (Fig. 8).
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Fig. 6. Unit-step response of the rotor without the magnetic bearing



232 EDMUND WITTBRODT, RAFAŁ HEIN

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10302

time [s]

d
is

p
la

c
e
m

e
n
t
[m

]

Unit-step response

RFE no. 3

Fig. 7. Unit-step response of the rotor with the magnetic bearing and without controller
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Fig. 8. Unit-step response of the rotor with the magnetic bearing and with the optimum controller
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Fig. 9. Unit-step response of the rotor with the magnetic bearing and with the optimum controller
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7. Conclusion

The results of the computer simulation and the numerical calculations

have proved that the proposed method of choosing the weight coefficients

of an integral performance index for the stable and unstable system with

multi-degrees-of-freedom is effective. It can be applied to determine the

optimal controller coefficients dependent on state space variables, to control

the chosen forms of the structure.

Time plots of vibration presented in the above examples showed that the

level of vibrations was significantly reduced due to the control performance.

Manuscript received by Editorial Board, September 07, 2006;

final version, June 25, 2007.
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Optymalne sterowanie wybranymi formami drgań układów mechanicznych

S t r e s z c z e n i e

W artykule przedstawiono zagadnienie optymalnego sterowania wybranymi formami drgań

układów mechanicznych. Dla zaprezentowania sposobu i procedury wyznaczania optymalnych

nastaw regulatora i współczynników wagowych wskaźnika jakości posłużono się dwoma przykłada-

mi liczbowymi. W pierwszym z nich rozważano uproszczony układ mechaniczny składający się
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z dwóch sztywnych elementów skończonych połączonych za pomocą elementów sprężysto-tłumią-

cych, zaś w drugim wirnik laboratoryjny, sterowany łożyskiem magnetycznym. W obydwu przy-

padkach zdefiniowano całkowy wskaźnik jakości, aby minimalizować poziom drgań w wybranych

miejscach układów.

Układ z łożyskiem magnetycznym jest strukturalnie niestabilny. Z tego względu przedstawiono

sposób doboru współczynników wagowych całkowego wskaźnika jakości dla układu niestabilnego

taki, aby wybrane formy modalne miały założone wcześniej własności dynamiczne, a wskaźnik

przyjmował wartość minimalną. Rezultaty symulacji komputerowych wykazały, że proponowany

sposób jest skuteczny i umożliwia sterowanie wybranymi formami drgań układów mechanicznych.




