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FOR IDENTIFICATION OF EXPERIMENTAL DATA

In the paper, the authors present the approach to modelling of austenitic steel
hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic
material model with mixed hardening. Non-linear uniaxial constitutive equations are
derived from more general relations with the assumption of an appropriate evolution
of back stress. The aim of the paper is to propose a robust and efficient identification
method of a well known material model.

A typical LCF strain-controlled test was conducted for selected amplitudes of
total strain. Continuous measurements of instant stress and total strain values were
performed. Life time of a specimen, signals amplitudes and load frequency were also
recorded.

Based on the measurement, identification of constitutive equation parameters
was performed. The goal was to obtain a model that describes, including hardening
phenomenon, a material behaviour during the experiment until the material failure.
As a criterion of optimisation of the model least square projection accuracy of the
material response was selected.

Several optimisation methods were examined. Finally, the differential evolution
method was selected as the most efficient one. The method was compared to standard
optimisation methods available in the MATLAB environment. Significant decrease of
computation time was achieved as all the optimisation procedures were run parallel
on a computer cluster.
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1. Introduction

The essential experimental tools that provide data for parameters identi-
fication of constitutive models are cyclic fatigue tests. For the description of
many materials, linear constitutive models are not suitable. Very often it is
necessary to introduce some nonlinearity to the constitutive relation in order
to obtain satisfactory results in modelling of such a material.

On the other hand, having a non-linear constitutive equation, one en-
counters the problem of finding analytical solution, and numerical methods
must be employed. Additionally, in such a case identification of the equation
parameters is not a trivial problem especially due to the required numerical
differentiation of recorded signals.

2. Constitutive equations

In literature describing cyclic properties of material, the elastc-plastic
model with mixed hardening is most frequently assumed [1], [2]. The back
stress specifies the center of yield surface and represents the kinematic hard-
ening. In turn, varying radius of this surface represents isotropic hardening
or softening (the yield surface expands or shrinks). The yield condition is
assumed in a familiar form.

3
F = \/E(Sij = Xij)(si; = Xij) —R=0 (1)

where s;; denotes the stress deviator, X;; is the back stress deviator and R is
the radius of the yield surface. Assuming the evolution of back stress to be
governed by the hardening and recovery processes, we have

.2 :
X,'j = §C85 - ’}/X,' iAd (2)
sf; . denotes the plastic strain tensor and A is the length of plastic strain
trajectory
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The equation (2) is the one most often used to describe cyclic properties
of a material. In the case of different kinds of irreversible processes con-
sidered like creep or ratchetting, the back stress is defined by the following
sum:
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The Authors’ aim is to verify identification method, so that the simplest
formulation of equation (4) is used. The equation (2) is the familiar Frederick-
Armstrong rule with constant C and A. The back stresses than evolves to the
limit surface [3]

3 3C
=X X;i= — 5
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Similarly, we have limit surface in the stress space

§ijSij = R+ — (6)
In turn, we assume the evolution equation for radius of the yield surface

R =0 (7)

The parameter of isotropic hardening depends on the length of plastic
strain trajectory only. The plastic strain tensor can be evaluated assuming,
for example, the associated flow rule

) . OF .3(S,'j —Xi]')
= = 8
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The hardening modulus H can be determined from the consistency con-
dition
oF :
— G- AH =0, 9
5o ©)
where

3(si; — XipXi;
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The model parameters C and A may be functions of the length of plastic
strain trajectory as well as the functions of distance § between the yield
surface and corresponding limit surface. The distance ¢ is the length of the
interval determined by the actual point on the yield surface and the point
on the limit surface with the same normal vector. In uniaxial state equations
(1)—(5) took respectively the following form

H=C- +0@) (10)
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The function y(41) must be a function of positive values and asymp-
totically convergent to a specified finite value. The function may be used to
describe material cyclic hardening or softening. If the function is decreasing,
the radius of the limit surface grows and hardening of the material occurs.
On the other hand, if the function increases, the limit surface shrinks, and
softening of the material occurs.

3. Experimental data

Experimental data were obtained in cyclic tests on typical round spec-
imens (acc. to PN-74-H-04327) of diameter of 7.5 mm made of AISI 304
steel. Mechanical properties of steel are given in Table 1. The tests were
performed on MTS machine with the total strain signal amplitude being
controlled and the frequency of the signal kept at 0.2 Hz.

Table 1.
Mechanical properties of AISI 304 steel

E [Mpa] HRB Ry, [MPa] R; [MPa] R, [MPa] AS [%]

1.93e5 216 593 752 65 34

It was assumed that the total strain may be decomposed into plastic
and elastic parts and therefore the plastic strain value was computed in a
following way

oy =8 (11)

During the experiment, the load and the signal of material response
were recorded with a time index for every one of 80 points per cycle. There
were two types of experiments realised. In the first one, the amplitude of
the control signal was changed starting from 0.0005 to 0.007 with a step of
0.0005. There were 100 cycles per amplitude level realized. In the second
one, typical fatigue experiments with constant amplitude of total strain were
performed.
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For materials exhibiting distinct hardening (see Fig. 1), like austenitic
steel AISI304, identification based on the data acquired in a step test leads
to underestimated results for hardening, although this type of experiment is
a good test bed for an identification procedure development and verification.
It is also useful for a fast estimation of parameters ranges that are further
necessary as an input for the identification procedure.
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Fig. 1. Hysteresis loops with time stamps in the constant total strain amplitude experiments
plotted in plastic strain domain. On the left hysteresis for 1, = 0.003, on the right for [J, = 0.005

The approach to data acquisition that requires recording the whole spectra
of input and output signals, is different than that presented in [6] but enables
identification of a complete parameter vector in one course instead of di-
viding the identification process into several stages. Another advantage of
having complete signal recorded is the ease of the identification procedure
programming and then its deployment while one has to supply structured
files with time-indexed measured data and parameters for the identification
procedure only.

4. Identification
4.1. General identification scheme

The lest square method is used as a hysteresis fitting criterion and there-
fore the objective function may take the following form

Q=f(0(t)—5'(t))2dt (12)
0

Since both components — measurements and simulation data — of the
function Q are discrete ones, the function should be written in a summation
form
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i=0
where o(#;) denotes measured material response at instant ¢#; and
6 = d(t; C,R, Xp, y(A(t;))) — computed material response at instant 7;. Addi-
tionally, basing on the results presented in [6], one assumes that yield surface
radius R is constant, and parameter y is a function of the length of plastic
strain trajectory. The function y(4) was assumed as

y () = e 4 e, (14)

Finally, the parameter vector consisted of 6 parameters: C, R, Xo,a, b, ¢
among which X, is an initial condition technical parameter introduced to
enable start of a numerical solver. It denotes an initial location of the yield
surface and is unique for every recorded load and response spectrum.

The core of the identification procedure is a numerical solver of the non-
linear equation (2). It is based on the well known Dormand-Prince formula
for solving ordinary differential equations. The solver is programmed in the
MATLAB/Simulink environment and utilises fixed step ODES implementa-
tion of Dormand-Prince method provided by this environment.

By means of the solver, the material response, the essential part of the
objective function (12), is computed during identification procedure. The
function (12) is minimized by the differential evolution algorithm. All op-
timisation procedures are run parallel on a computer cluster, the result of
which is a significant reduction of processing time.

4.2. Differential evolution method

The differential evolution method (DE) was developed by Price and Storn
[4], [5]. It is a simple and fast, population based stochastic function min-
imizer. DE method is widely applied in filters and radio design, multipro-
cessor synthesis, neural networks learning and various optimization cases.
The source (Java, C, and Matlab) code of the DE algorithm is presented on
Authors’ web page [5].
The DE method fulfils several requirements, and has the following ad-
vantages [4]:
— the ability to handle non-differentiable, nonlinear and multimodal cost
functions,
— parallelizability,
— ease of use, i.e. few control variables,
— good convergence properties.



www.czasopisma.pan.pl P N www.journals.pan.pl

N
-

APPLICATION OF DIFFERENTIAL EVOLUTION ALGORITHM... 333

At the beginning of an optimization procedure, an initial population of
parameter vectors is supplied. Every value of a vector parameter is randomly
chosen from a given interval. The interval is independently specified for
every parameter. Determination of the interval requires some information
about the parameter range as the DE method is the most efficient if the
optimal parameter value is located within given interval.

Then, evolution mechanism is applied to parameter vectors. To the next
iteration, or in terms of genetic algorithms generation, only those parameter
vectors of the procedure “survive” that produce the least value of an objective
function. The evolution mechanism consists simply of adding a weighted
difference between two vectors while creating new one (this procedure is
called “mutation”) and comparing a newly created vector to the one from
an existing population. In order to increase the diversity of the perturbed
(“muted”) vectors, one introduces the “crossover”. Crossover procedure gen-
erates trial vector by randomly mixing the perturbed vector with the last target
vector. If the trial vector produces a lower value of an objective function than
that compared to, the new vector replaces it in the population (“selection”)

[4], [5].

Optimization estimator &

0 20 40 B0 a0 100
Iteration

Fig. 2. Typical plot of changes of objective function value obtained in the DE identification
procedure

The differential evolution algorithm outperforms [4] others (Adaptive
Simulated Annealing, the Annealed Nelder and Mead approach, the Breeder
Genetic Algorithm, the EASY Evolution Strategy and the method of Stochas-
tic Differential Equations). In most instances, DE outperformed all of the
above minimizations approaches in terms of required number of function
evaluations necessary to locate a global minimum of the test functions. The
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algorithm is very simple and straightforward and DE is also very easy to use
as it requires only few robust control variables.

Let’s consider an example that is based on a model presented in the cur-
rent paper and let’s go through one generation of an optimization procedure.
First, one shall start from providing ranges for parameters that set up the
parameter vector x; = [C, R, Xy, a, b, c]. The ranges are given by additional
two vectors:

Xmax = [Cmam Rmam X()max’ Amax bmam Cmax]
and
Xmin = [Cpins Rimin» Xomins @mins Dmins Cmin]-

Then, first generation of i/ = n vectors is randomly generated. Their
elements vary within the previously given intervals. Based on the generated
vectors, another vector v named trial vector is created according to relation

V=X56t F(xIQ,G - xlg,G) (15)

where 11, 15,13 € [0,n — 1] and are mutually different integers, G is the num-
ber of current generation and F denotes real, constant amplification factor.
Further, in order to increase diversity among parameter vectors, vector u
is generated in the so-called crossover process [4]. Elements of vector u
are combination of v and one of x;¢ vectors. Finally, vector u is compared
to one of x; vectors and if it yields a lower value of objective function, it
becomes a member of generation G+ 1, if not x; ¢ is passed to this generation.
The basic DE1 scheme of differential evolution was presented above. Other
evolution schemes are also available [4], [5]. Fundamentally, they are similar
to the one described above and mainly differ on the manner of the trial vector
generation.

4.3. Identification results

The progress of an objective function value changes in the DE procedure
iterations as presented in Fig. 2. The value close to minimum is reached in 50
iterations (generations). The maximum number of generations was arbitrarily
reduced to 100. In comparison to the conjugate gradient method, DE gives
the value of an objective function lower by an order of magnitude for the
same identification data set within less than 100 generations.

Table 2.
The best fitted parameter vector for the step load test experimental data

Parameter C R a b c

Value 408599 72.49 -0.50 7.32 1938
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In Table 2, the best-fitted parameter vector for the step load experimental
data is presented. The plots of mechanical hysteresis loops (plastic strain —
stress) simulated with parameters obtained by the identification method and
compared to experimental results are presented in Fig. 3.
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Fig. 3. Sample experimental (dots) and simulated (continuous lines) mechanical hysteresis loops
for the step load test on the left. On the right, experimental data for a constant total strain
amplitudes and simulation for that case on the basis of parameters values given in Table 2

Table 3.
The best fitted parameter vector for a constant amplitude experiments data
Parameter C R a b c
Value 488670 88 —-0.0652 7.42 1317
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Fig. 4. Sample experimental (dots) and simulated (continuous lines) mechanical hysteresis loops
for the constant amplitude [, = 0.004 on the left and [J, = 0.005 on the right

Identification results for data obtained in the constant amplitude experi-
ments are presented in Table 3, and in Fig. 4. New values of the best fitted
parameter vector shown in Table 3, as it was said before, differ from those
given in Table 2. One should notice significant change of the parameter a
value in the comparison to changes of other parameters. It results in better



www.czasopisma.pan.pl P N www.journals.pan.pl

=
<
DEMIA

336 LUKASZ MACIEJEWSKI, WOICIECH MYSZKA, GRAZYNA ZIETEK

fitting of simulated curves to experimental data within the range of total
strain amplitudes from 0.003 to 0.005.

5. Conclusions

In the paper, the Authors assumed the model of Friderick-Armstrong,
which was accepted and commonly used to the description of the cycli-
cal plasticity. The experimental data were obtained for symmetrical cycles.
Therefore, the parameters of this model can be constant. For unsymmetrical
cycles, the dependence of these parameters on the length of the trajectory
of the plastic deformation or on the distance from the limit surface may
be introduced additionally. Experimental investigations were carried out at
controlled plastic strain amplitude (no ratchetting) and one could receive
good approximation of the dependence between the plastic deformation and
the stress, the consequence of which was good approximation of dissipated
energy.

Based on a one selected function, the identification method of non-linear
differential equation parameters was examined. The proposed constitutive
equation approximates hysteresis loops for the range of 0.003 to 0.005 of
total strain value for AISI 304 steel. The steel exhibits distinct hardening,
and therefore the data obtained in a step load experiment are not suitable
for identification, although simulated curves fit data obtained in this exper-
iment well. For the identification, the data obtained in constant total strain
amplitudes experiments are more applicable. The constitutive relation may
be modified by adding the distance parameter between yield surface and its
limiting surface. The identification method would in this case be the same,
but the numerical solver should be programmed again.

The differential evolution algorithm finds its application for the identi-
fication of non-linear differential equation parameters where a solution of
the equation is obtained by a numerical method. It minimizes the objective
function much better than the procedure described in [6] that incorporates
gradient methods. Utilisation of a computer cluster results in further increase
of the presented approach efficiency.

Manuscript received by Editorial Board, February 14, 2007;
final version, September 03, 2007.
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Zastosowanie algorytmu ewolucji roznicowej do identyfikacji danych eksperymentalnych
Streszczenie

W pracy autorzy przedstawiaja sposéb matematycznego opisu procesu umocnienia stali austen-
itycznej w oparciu o modele Fredericka-Armstronga i spr¢zysto-plastyczny Chaboche z mieszanym
umocnieniem. Nieliniowe jednoosiowe réwnania konstytutywne sg wyprowadzane z bardziej ogdl-
nej zalezno$ci przy zalozeniu odpowiedniej postaci réwnania ewolucji Srodka powierzchni plas-
tyczno$ci. Celem pracy jest zaproponowanie wydajnej metody identyfikacji dla dobrze znanego
modelu.

Dla wybranych amplitud odksztalcenia catkowitego przeprowadzono typowe préby niskocyk-
lowe. Rejestrowano czasy zycia probek a takze amplitudy i czgstotliwosci sygnalu sterujacego
(odksztalcenia catkowitego) i sygnatu odpowiedzi materiatu (naprezenia).

W oparciu o wyniki badan eksperymentalnych przeprowadzono identyfikacj¢ parametréw
réwnania konstytutywnego. Celem identyfikacji bylo uzyskanie modelu opisujacego zachowanie si¢
materialu w trakcie préby az do jego zniszczenia. Za kryterium optymalizacji przyjeto estymator
otrzymany metoda najmniejszych kwadratéw.

Przetestowano kilka metod optymalizacji. Ostatecznie, jako najbardziej wydajna, wybrano
metod¢ ewolucji ré6znicowej. Metodg poréwnano ze standardowymi metodami dostepnymi w pakiecie
MATLAB. Znaczna redukcje czasu identyfikacji uzyskano dzigki réwnolegtemu uruchamianiu pro-
cedur optymalizacyjnych klastrze obliczeniowym.



