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Exact solution of flow in a composite porous channel

This article concerns fully developed laminar flow of a viscous incompressible
fluid in a long composite cylindrical channel. Channel consist of three regions. Outer
and inner regions are of uniform permeability and mid region is a clear region.
Brinkman equation is used as a governing equation of motion in the porous region
and Stokes equation is used for the clear fluid region. Analytical expressions for
velocity profiles, rate of volume flow and shear stress on the boundaries surface are
obtained and exhibited graphically. Effect of permeability variation parameter on the
flow characteristics has been discussed.

1. Introduction

Fluid flow in a composite cylindrical channel, which is partially filled with
a porous medium and partially with a clear fluid has practical applications due
to its common occurrence in natural, scientific, and engineering situations. The
study of porous channels flows has received tremendous attention during the last
years. This is because of the significance and diversity of this research area in
various applications. These applications include thermal insulation, biomedical
systems, porous bearings, bio convection in porous media and crude oil extraction.
The practical application of flow in annular space can be found in oil and gas
wells and gas-cooled nuclear reactors. Many authors investigated problems of flow
through/past porous cylindrical channel. An analytical study on the flow in a fully
developed section of the three-dimensional composite channel is presented for
different geometrical configurations, e.g., (i) a single porous medium of uniform
porosity; (ii) two different uniform porous media (iii) three porous layers each of
uniform porosity, including when assembled to produce a symmetrical situation.
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Analytical solutions for different cases are compared and the effect of the Darcy
parameter is discussed by Al-Hadhrami et al. [1]. An analytical study in the fully
developed section of the composite channel is presented when the channel is of
constant height and composed of several layers of porous media, each of uniform
porosity. In the fully developed flow regime the analytical and numerical solutions
are graphically indistinguishable by Al-Hadhrami et al. [2]. Heat transfer to a
fluid passing through a channel filled with porous materials is the subject which
includes the derivation of the temperature solutions in channels having different
cross sectional geometries. It is investigated by Haji-Sheikh and Vafai [3]. Steady
flow in a composite channel bounded by two infinite parallel plates is considered,
in which lower part of the channel is occupied by a clear fluid while the upper
part is occupied by a fully saturated porous medium with uniform permeability.
The upper plate and the porous medium are fixed while the lower plate moves
with a constant velocity. Using Brinkman-Forchheimer-extended Darcy equation
analytical solution is obtained by Kuznetsov [4]. A fully developed laminar forced
convection inside a semi-circular channel filled with a Brinkman-Darcy porous
medium and obtained analytical solutions for the flow by Wang [5]. Nield et al.
[6] carried out a theoretical analysis of fully developed forced convection in a
fluid-saturated porous-medium channel bounded by parallel plates, with imposed
uniform heat flux or isothermal condition at the plates. They obtained an ‘exact’
solution of the Brinkman-Forchheimer extension of Darcy’s momentum equation
for flow in the channel. A calculation of the permeability of a swarm of particles
is extended to closely packed particles by Brinkman [7]. Analytical study of the
steady incompressible flow past a circular cylinder embedded in a constant porosity
medium based on the Brinkman model and a closed form exact solution for the
governing equations, which leads to an expression for the separation parameter,
are reported by Pop and Cheng [8]. Fully developed forced convection inside a
circular tube filled with saturated porous medium and with uniform heat flux at the
wall is investigated on the basis of a Brinkman-Forchheimer model. The results
for the two limiting cases of clear fluid and Darcy flow conditions are shown
by Hooman and Gurgenci [9]. Exact solution for forced convection in a channel
filled with porous medium is given by Vafai and Kim [10]. Laminar flow through
a porous channel bounded by two parallel plates maintained at a constant and
equal temperature is considered by Kaviany [11] and it is shown that the Nusselt
number for fully developed fields increases with an increase in porous media shape
parameter. The Brinkman-extended Darcy model (Brinkman flow) of a laminar
mixed-convection flow in a annular porous region is considered by Parang and
Keyhani [12], and the closed form nature of the solution is advantageous in the
demonstration of the importance of the wall effect. Vadasz [13] analytically solved
the fluid flow through heterogeneous porous medium in a rotating square channel
having permeability variation in the vertical direction of the channel. An analytical
solution is obtained for a fully developed, forced convection in a gap between
two concentric cylinders. The inner cylinder is exposed to a constant heat flux
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and the outer outer is thermally insulated. A porous layer is attached to the inner
cylinder. The effects of the permeability, thermal conductivity and the thickness of
the porous material are investigated using a Brinkman-extended Darcy model by
Chikh et al. [14]. An analytical solution for fully developed flow in a curved porous
channel for the specific case of monotonic permeability variation according to the
law k = €A% is obtained by Govender [15]. Analytical solution for a composite
porous cylindrical channel is taken, in which inner and outer part of the cylindrical
channel are of different permeability. Singh and Verma [16] considered two cases of
permeability variation of the inner porous cylinder: linear variation and quadratic
variation, and they found expressions for the velocity, rate of volume flow, average
velocity and shear stress on the impermeable boundary. Verma and Datta [17]
carried out the study on channel flow of a viscous incompressible fluid through a
heterogeneous porous medium with linear permeability variation with permeability
of the porous medium assumed to vary with the transverse distance between the
plates of the channel. They obtained analytical expressions for the velocity for
two cases, Poiseuille and Couette flow, and discussed the influence of various
parameters on the flow. An analytical solution is obtained by using Brinkman
equation for viscous, incompressible fluid in a composite cylindrical channel having
inner porous cylinder of uniform permeability and outer porous cylinder of variable
permeability. Two cases for outer porous cylinder are considered: (i) linear variation
(ii) quadratic variation. Effect of permeability variation is discussed by Verma and
Singh [18]. Exact solution for slow flow of a viscous fluid past a porous cylindrical
shell is obtained by using the Brinkman equation. Flow in a clear region outside the
cylindrical shell is governed by the Stokes equation. At the interface between the
clear fluid and porous region, the continuity of velocity components and continuity
of the stress components is assumed. Exact expression for velocity, pressure and
drag on the solid cylinder has been obtained by Verma and Verma [19].

In this paper, we considered a steady flow of a viscous, incompressible fluid in
a composite cylindrical channel under constant pressure gradient. The composite
channel consists of three regions. Region I is the inner cylindrical region which is
porous of permeability k;, region II is the mid region which is clear region and
region III is the outer cylindrical region which is porous region of permeability k;
as shown in Fig. 1. Brinkman equation is used as a governing equation of motion
in the porous cylinders and Stokes equation is applied for the clear flow.

2. Mathematical formulation

Steady flow of a viscous incompressible fluid in a long composite porous
channel has been considered in fully developed state. Inner porous cylindrical
region I is of radius a, mid clear annular region II is of thickness (b — a) and
outer porous region III is of thickness (c — b), as shown in Fig. 1. Flow in the
composite channel is under applied pressure gradient dp*/dz" and is along the axis
of the cylindrical channel, which is z-axis. The governing equation of motion in
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Fig. 1. Physical model of the problem

the porous region I and III is Brinkman equation [7], which for the present case in
cylindrical polar coordinate (r*, 0, z*) is
d2u N 1 du” u ., Oop
Helarm2 70 ar

T e b
where u* is the fluid velocity, u. is the effective viscosity of porous medium, u
is the fluid viscosity, k is the permeability of porous medium and dp*/dz" is the
applied pressure gradient. For the present problem, we follow Brinkman [7] and
Chikh et al. [14] and assume that u, = u (for high porosity cases). Therefore,
Eq. (1) becomes

d?u* 1 du* u* _1op”

dr*? T oz’
Now we introduce dimensionless variables as follows

2)

*

pu;
u; = —2 " o
a’ (—dp*/dz*)
a2
The characteristic velocity is determined by — (—=dp*/dz"). Using these dimen-
u

E3
r

r=— and
a

sionless variables in Eq. (2) and after dropping the star index for convenience, we
get the following equations as obtained by Chikh et al. [14]
d’u  1du a?

I S | 3
dr2+rdr ku ’ 3)

where, u is the velocity in the considered region.
Thus, for inner porous cylinder of permeability k;, the governing equation of
motion is

-+ —— —a‘u=-1 O<r<l, 4)
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where a® = a?/k; is called the permeability variation parameter for region I.

Similarly, for outer porous cylinder of permeability k,, the governing equation of

motion is

d?u  1du
—2+———ﬂ2u=—1 (g1 ST <q=c/b), 5)
dr rdr

where 82 = a?/k is called the permeability variation parameter for region II. And,
for clear region the equation of motion as mentioned by Chikh et al. [14] is

d?u  1du
_ - =1 1 < < =b .
i (I<r<gq =bla) (6)

3. Solution and results

We have no slip condition on the surface of outer cylinder and continuity of
velocity and shear stress on the interface between fluid and porous. Also, velocity
is either maximum or minimum at » = 0 depending on the permeability of the
regions. Thus, we have the following boundary conditions

Uat r=1- = Uat r=1+,
Uat r=gq; = Uat r=qg* >

Uat r=q, = 0,
du)
= -0,
( dr at r=0 (7

dy o (de
dr atr:l‘_ dr atr:l+’

( du) B ( du)
dr at r=q; dr at r=qf ’

where, g1 = b/a and ¢, = ¢/b. The solutions of Eqgs. (4), (6) and (5) as given by
Chikh et al. [14] are

1
u(r) = Ailo(ar) + A2Ko(ar) + — O<r<l, (8)
(07
2
u(r):Bllogr+Bz—rZ (1<r<q =bla) )

and

1
u(r) = Cilo(Br) + C2Ko(Br) + 2 (@1 <r<q=c/b), (10)
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where, Iy and K are the modified Bessel functions of zeroth order of first and
second kind, respectively. Here A;, Ay, B1, B>, C; and C, are the constants of
integration to be determined. Using boundary conditions (7), we get the constants
Ay, Ay, By, By, C1 and C; as given below

2R-28-T-Y
A= 20 ’
Ay =0,
B, = 1 al(@)(-2R+25+T+Y)
2 A )
g o 40 B(@(2R+25+T +Y)
4o 2A ’
= _ali(@)Ko(Bg2)(-2R+25+T +7Y) (11)
21A
BaKo(B42) +2q1K1(Bar) - BKo(Bq2)
B 281 ’
C, = ali(@)o(Bg)(-2R+25S+T +Y)
21A
-Bao(Bg2) + 2011y (Bq) + Blo(Bg2)
B 281 :

where

A = =B Io(@)Ko(Ba)To(Ba2) K1 (Bar) + 1 (Bq1) Ko(Bq2)

1
+2 ;i“) [-B*Ko(Ba) 1o(Ba1) Ko(Ba2) — Io(Ba2) Ko(Ba)}

+q1 8 log 1 Ko(Ba2) (Io(Ba2) K (Bar) + I (Ba)Ko(Ba2)} |
A= Bq1 [L(Bq1)Ko(Bq2) + lo(Bg2)Ki(Bq1)],

P I
—- Ko(Bq1) [-1o(Bg2)K1(Bq1) — L (Bq1)Ko(Bg2)] .

1 1 ¢ 1
R=p (— — o —)Ko(ﬁfh)
(12)

2
s=p {—%Ko(ﬁqz) - K, (ﬂql)} (lo(Ba1Ko(Ba2)
= Io(Bq2)Ko(Bq1)}

2

T 5_1 [Ko(Bg2) To(Ban) Ko(Ba2) — To(Bga)Ko(Ba)}]

Y = - log(q1)Ko(Ba2) {Io(Ba) K1 (Bar) + 11 (Ba) Ko(Ba) |-
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The dimensionless velocity of the fluid at any point within region I, region II and
region III is given by Egs. (8), (9) and (10), respectively. Constants A;, A, By,
B, Cy and G, are given by (11). The graphical presentation of velocity profiles
fora = 5, @ < B and @ > B is given in Fig. 2. In the limiting case, when @ and
B — 0 (i.e., when permeability of the porous medium is infinite in all regions) in
Egs. (8), (9) and (10), we obtain

limu=-~——7
e =" 13
B=0

which is velocity profile for classical Hagen-Poiseuille flow of a clear fluid through
a cylindrical channel of radius ¢».
Region - II |
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Fig. 2. Variation of velocity u with radial distance r in the composite channel
for different values of @ and 8 when ¢; =2 and ¢ = 2.5

3.1. Rate of volume flow

The dimensionless rate of volume flow through cross-section of the inner
porous cylinder is given by

1
01 =2n f u(ryrdr. (14)
0
Substituting u(r) from Eq. (8) and after integration (ref. [20]), we obtain
R2raAi (@) + ]
a? ’

0= (15)

Similarly, the dimensionless rate of volume flow through cross-section of the clear
region II is given by
q1

0, = 27Tfu(r)rdr. (16)

1
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Substituting u(r) from Eq. (9) and after integration, we obtain

T

Q2=8

[47(8B1log g1 — 4B, + 8B, ) + 4B3 — 8B, — g + 1] (17)

and dimensionless rate of volume flow through cross-section of the outer porous
cylinder is given by
9

03 = 27rfv(r)rdr. (18)
q1

Substituting u(r) from Eq. (10) and after integration, we obtain

0; = % [01{2BC2K1 (Bar) — 2BC1 (B4} + 42{2BC111(Ban)
~2BC:K1(Bg) + @2} - 4| (19

where I; and K; are the modified Bessel functions of first kind of order one and
A1, Az, By, B, Cy and C; are given by Eq. (11). In the evaluation of the above
integrals the following identity (ref. [20]) has been used

1d " v A v—-m }
-—| {FA@} =24 ), (20)
zdz

withm = 1 and v = 1. A, denotes I, and "™ K,,.

The dimensionless rate of volume flow through the cross-section of the com-
posite channel is

Q=0+0:+05 (1)
or
0= i B CaAi(@) + 1) + 80X 2CK (Ba)
- 2BCIL(Bq)} + @A2BC1 I (Bg2) — 2BC2K1(Bq) + 2} — g7 )
+a’B*(q}(8B1logqy — 4By +8B,) +4B; -8B, - gf +1}] . (22)

The dimensionless volume flow rate Qg for clear fluid flow (when permeability is
infinite) can be obtained by taking limit @ and 8 — 0 in Eq. (22). We get

4
T
Qo=1lmQ="2 (23)
a—0 8
B—0

which is classical result for Poiseuille flow.
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3.2. Average velocity

The dimensionless average velocity of the flow is defined as

0
Mavg = 7r_q2 . (24)

Substituting Q from the Eq. (22) into the above Eq. (24), we get the average velocity
of the flow within the composite channel as

1
8q2a2ﬁ2
- 2BCI1L(Ba1)} + q2{2BC1 1 (Bg2) - 2BCK 1 (Bga) + q2} — 417}
+a’B*(q1(8B1log g1 — 4By +8B,) +4B; -8B, — g +1}],  (25)

Uayg = 8822 A1L (a) + 1} + 8a?{q1 {2BC2K1 (Bq1)

where constants Ay, By, By, C; and C; are given by Eq. (11). For clear fluid flow
average velocity of the flow is obtained by taking limit @ and 8 — 0 in Eq. (25).
We get

q4
. _ D
(1}1% Ugyg = 8_c]2 s (26)

B=0

which is well known average velocity for classical Hagen-Poiseuilli flow.

3.3. Shearing stress on the impermeable surface of the channel

The dimensionless shearing stress at any point within inner porous cylinder is
given by,
du

dr’
Substituting u from Eq. (8) and differentiating the modified Bessel functions /, (ar)
d d
and K, (ar) with the use of the identity d—IO (r) = I;(r) and d—KO (r)y =-K1(r)
r r
(ref. [20]), we get

(27)

Tro(r) = -

T2 (r) = —aA ] (ra). (28)

Similarly, the dimensionless shearing stress at any point within clear region II is
given by,
du

E .

Substituting # from Eq. (9) in above equation and after differentiation we get,

(29)

T (r) = —

r? — 2B

2r (30)

T, (r) =
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and the dimensionless shearing stress at any point within outer porous cylinder is
given by,

du
Trz (1) =3 (31)
r
Substituting # from Eq. (10) in above equation and after differentiation we get,
T2 (r) = = [BCIL1(rB) = BC2K1(rB)], (32)

where I} and K; are modified Bessel function of order one. Shear stress on the
surface of inner and outer cylinder is obtained by putting r = g¢;, r = land r = ¢
in Egs. (28), (30) and (32), respectively and using the appropriate sign. Thus,

Tz (1) = —@ A 11 (@), (33)
2_2B
Talqn = L5 (34)
q
and
Tr2(q2) = = [BCi111(28) — BCKi(q28)] (35)

where Ay, By, By, C; and C, are given by Eq. (11). Dimensionless shearing stress
on the surface of outer porous cylinder for clear fluid flow (i.e., when @ and 8 = 0)
is obtained by taking limit @ and 8 — 0 in Eq. (35). We get
. q2
1 ==
lim 7,:(q2) = = (36)
B—0

which is the classical result for Poiseuille flow in a circular pipe.

4. Discussion

Fig. 2 shows the velocity profile within the composite channel computed from
Eqgs. (8), (9) and (10). The velocity profile is drawn for three different cases for fixed
value of g; = 2, g» = 2.5; (i) when permeability of inner porous region is equal to
that of outer porous region (@ = ), (ii) when permeability of inner porous region
is greater than that of outer region (@ > f), (iii) when permeability of inner porous
region is smaller than that of outer region (@ < ). Velocity increases as with r
from r = 0 to r = 1 and takes maximum in the clear region II after that it decreases
in region III and becomes zero on the impermeable outer surface of the channel
due to no slip condition there. Velocity profiles for @ = 3,4,6 and 8 = 3,4, 6 are
sketched. We observe that as @ increases velocity in region I decreases due to a
decrease in permeability of the region. Similarly, an increase in 8 causes a decrease
in velocity in the region III.

Figs. 3 and 4 represent the variation of volume flow rate with permeability
parameter « and . It is clear that with the increase of permeability parameter
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volume flow rate through the channel decreases in both the porous regions because
the increase in permeability parameter causes a decrease in permeability of the
porous medium.

Fig. 3. Variation of volume flow rate with « for different values of 3,
when g; =2 and ¢p = 2.5

0 2 4 6 8 10 12 14 B

Fig. 4. Variation of volume flow rate with S for different values of «,
when gy =2and ¢ = 2.5

Fig. 5 represents the variation of shear stress on the impermeable surface with
the permeability parameter « for different values of permeability parameter S and
fixed value of ¢, = 2.5, q; = 2. We observe that stress decreases with an increase
in the value of « i.e., a decrease in the permeability on inner region.

Fig. 6 represents the variation of shear stress on the impermeable surface with
the permeability parameter § for different values of permeability parameter @ and
fixed value of ¢; = 2, ¢ = 2.5. We observe that stress decreases with an increase
in the value of § i.e., a decrease in the permeability on outer region.
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Fig. 5. Variation of shear stress with permeability parameter o
for different values of 8, when ¢1 =2 and ¢ = 2.5

0 2 4 6 8 10 12 14 B

Fig. 6. Variation of shear stress on outer cylinder with permeability parameter 8
for different values of @ = 5 and @ = 10 (dash curve), when g; =2 and ¢, = 2.5

5. Conclusions

The flow of a viscous incompressible fluid within a composite porous cylin-
drical channel has been investigated using the Brinkman and Stokes equation. The
inner porous region and the outer porous region of the cylinder are of different
permeability. An analytical solution of the governing equations for the flow within
the channel has been obtained. The exact expressions for velocity, volume flow rate
and sheer stress on the cylinder are obtained. In the limiting case when permeability
of the porous regions tend to infinite, the obtained results reduce to the classical
results of clear fluid in the cylindrical channel. We found that variation of perme-
ability and gap parameter have a remarkable effect on the flow. The results obtained
are very useful in the application of extraction of oil and filtration industries.
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