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Predictive modeling and machining performance
optimization during drilling of polymer nanocomposites

reinforced by graphene oxide/carbon fiber

This paper explores the parametric appraisal and machining performance opti-
mization during drilling of polymer nanocomposites reinforced by graphene oxide/-
carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and
weight% of graphene oxide onmachining responses, namely surface roughness, thrust
force, torque, delamination (In/Out) has been investigated. An integrated approach of
a Combined Quality Loss concept,Weighted Principal Component Analysis (WPCA),
and Taguchi theory is proposed for the evaluation of drilling efficiency. Response sur-
face methodology was employed for drilling of samples using the titanium aluminum
nitride tool. WPCA is used for aggregation of multi-response into a single objective
function. Analysis of variance reveals that cutting velocity is the most influential fac-
tor trailed by feed and weight % of graphene oxide. The proposed approach predicts
the outcomes of the developed model for an optimal set of parameters. It has been
validated by a confirmatory test, which shows a satisfactory agreement with the actual
data. The lower feed plays a vital role in surface finishing. At lower feed, the devel-
opment of the defect and cracks are found less with an improved surface finish. The
proposed module demonstrates the feasibility of controlling quality and productivity
factors.

Nomenclature

abbreviations:
ANN artificial neural network
ANOVA analysis of variance
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BBD Box-Behnken design
CFRP carbon fiber-reinforced polymer
CNC computer numerical control
CQL combined quality loss
DFA desirability function analysis
EDM electric discharge machining
FIS fuzzy interface system
GA genetic algorithm
GFs glass fibers
GO graphene oxide
GO/CF graphene oxide/carbon fiber
OA orthogonal array
PCA principal component analysis
PSO particle swarm optimization
RSM response surface methodology
SA simulation annealing
SEM spectroscopy electron microscopic
TOPSIS technique for order of preference by similarity to ideal solution
WPCA weightage principal component analysis
symbols:
In delamination at entry
F feed
Out delamination at exit
Ra surface roughness
Th thrust force
T torque
TiAlN titanium aluminum nitride
Vc cutting velocity
wt.% of GO weight % of graphene oxide

1. Introduction

From the last two decades, polymer composite plays a vivacious role in engi-
neering appliances due to elevated strength, creep endurance, and higher-yielding
points. The composites define the combination of two or more elements in chemi-
cally altered compounds, enhancing mechanical, electrical, and thermal properties.
Due to its complicated structure and behavior, industry and researchers are facing
critical challenges during the machining of polymers reinforced by carbon nano-
materials like carbon-nanorods/nanotubes/graphene/reduced graphene oxide, etc.
Graphene is considered as the most recent member of the carbon nanomaterials
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group. The tool life and balancing of cutting conditions for product manufacturing
is a complex task for the manufacturing sector and academia [1, 2]. The novelty of
this graphene material is characterized by high tensile strength, fatigue and creep
resistivity, also improved thermal properties as related to the neat epoxy material.
The basic properties of the graphene polymer composite are that its rigidity is
ten times higher than the glass fiber and density (1.8–2 g/cm−3) is half of glass
fibers (GFs) [3]. It has high thermal and electrical conductivity; lower rupture
as compare to GFs and aramids material. As a result, the composites are more
frequently used than the metals and their alloys owing to upgraded properties
such as module, and strength-to-weight ratios, optical permeability, surface area.
Drilling is considered as a primary machining processes in polymer manufac-
turing, in which one can analyze proper working conditions and tool design [4].
The operating environment of the tool materials and tool geometry should be
applied in such a way that minimum heat is generated there during machining
to achieve the desired performances, such like surface integrities, low tool wear,
and high cutting rates. This creates a significant challenge in machining during
the drilling procedure of polymer composites [5]. As per the concept, drilling is
the machining of the material to remove the metal and make a precise hole. It
is an ideal machining procedure on the plastic fabric for mechanical attachment
and installation of the parts in a structure. The hole’s quality is affected by the
parameters of the tool design and process parameters during the drilling operation
of the polymeric materials [6]. Various researchers focused on the relative aspect
of the machining of polymer composite materials. Recently, polymer materials
have played a highly active role in various engineering fields. Various renowned
scholars assessed the drilling issues of carbon fiber reinforced polymer (CFRP)
composite material regarding quality, precision, and delamination. The domain
of experiments covers drilling velocity, feed rate and drill diameter. A hybrid ap-
proach of weighted principal component analysis (PCA) and fuzzy interface system
(FIS) method was employed for aggregation of multiple quality and productivity
characteristics. The fuzzy concept has been fruitfully explored with various ex-
pert rules and opinions to determine the machining response behavior [7]. The
experiments were conducted on different set of input parameters. An optimization
method has been undertaken to take into account the machining factors such as
voltage, wire feed and welding velocity, etc. They outlined the Taguchi strategy
with the weightage principal component analysis (WPCA) module for eliminating
correlation reactions. The machining operation conducted using the L16 orthogo-
nal array and outcomes was verified through a confirmatory test [8]. The Taguchi
concept was applied to optimize the machining parameters of plasma arc cutting.
To conduct the experiments, the L27 orthogonal array was used, and the WPCA-
based Taguchi approach effectively utilized to transfer multiple responses into a
single objective function [9]. A response correlation study was done by using the
PCA coupled artificial neural network (ANN) techniques to determine the optimal
parametric combination [10]. The electric discharge machining (EDM) process
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was explored with the assistance of Taguchi’s strategy to optimize it by using the
WPCA techniques readily, also to describe the material structure behaviors [11].
A hybrid optimization tool was proposed to optimize the machining constraint
during the turning procedure [12]. The effects of carbon composites and graphite
weight percentage on the mechanical and tribological aspects was performed. First,
the composite wear rate reduced when the pitch coke content increased and then
decreased to a minimum [13]. Verma et al. [14] reported the optimised machining
parameter to improve the productivity and the quality using the utility concept-
based Taguchi approach by applying L16 orthogonal array (OA) experimental
array at four discrete levels of the variables. From the prior state of the art, it has
been found that eminent scholars extensively investigate the manufacturing and
machinability aspects of polymers composites. Palanikumar et al. [15] recognized
the mechanical properties and advantages of polymer composites and proposed
their applications in aerospace, defense, and transportation sectors. Drilling is the
primary indispensable manufacturing process in the polymer composites assembly.
In this work, the drilling-induced damages in the form of delamination and their
effect on the drilling efficiency of the fiber-reinforced composite were examined.
The investigations revealed that the impact of feed rate, drill speed, and tool ge-
ometry on the resultant delamination factor was investigated at different drill point
angle. Finally, the statistical regression model was suggested to envisage the de-
lamination. Faria et al. [16] scrutinized the effects of tool material, wear in tool, and
drilling constraints on the accuracy of the hole drilled in a polymer. The drilling
characteristics, such as thrust force and delamination of glass/epoxy composites,
were examined by using two types of drill bits, namely high-speed steel (HSS)
and cemented carbide (CC) drills. The outcomes of the drilling study revealed that
the HSS drill exhibited serious wear after drilling 1000 holes. Gaitonde et al. [17]
conducted an experimental analysis for drilling of unreinforced polyamide (PA6)
and glass fiber (30%)/polyamide (PA66-GF30) using a cemented carbide (K20)
tool. The experiments were performed using a full factorial design of operation
and the consequences of process constraints, namely, spindle speed, feed rate,
and point angle, were considered. The drilling hole quality was assessed in terms
of delamination and circularity error, thrust force, and a specific cutting coeffi-
cient. A similar principle of RSM tool was formulated by Niharika et al. [18] for
turning of titanium alloys. Tool wear, fiber pull out, matrix debonding, etc., were
studied by the researchers, who accordingly developed various robust optimiza-
tion modules such as ANN, fuzzy, genetic algorithm (GA), simulating annealing
(SA), and particle swarm optimization (PSO) algorithm [19, 20]. The influence of
constraints like feed, tool materials, cutting velocity on machining responses has
been investigated by the utility theory, the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS), the Desirability Function Analysis (DFA),
etc. Most of the studies have considered single modules of optimization; hence,
very limited studies is available on hybridization approaches [21, 22]. The work
is limited up to synthesis and characterization of graphene based polymeric com-
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posites. It is believed that appropriate parametric settings may fruitfully enhance
the machining characteristics by using hybridization modules. The experimental
investigation on the machining of polymeric composites was conducted by several
pioneer scholars [23, 24]. They obtained the preferred machining characteristics,
i.e., the lower value of thrust fore, surface roughness, torque, and a higher rate of
material removal. The productivity and quality of the manufactured component
are identified by the rate of material removal and surface finishing, respectively.
Finishing of machined hole is considered as an essential design characteristic for
a part subjected to creep and fatigue, to ensure accurate fit, tolerance, fastening of
role and rivets, and aesthetic properties [25–27]. Hence, the quality of machined
products is the primary aim of manufacturing science. For efficient machining en-
vironment, it is highly required to obtain optimal parametric setting and improved
machining performances. However, machining of graphene oxide and carbon fiber
(GO/CF) reinforced epoxy composites is still in an initial phase, even though these
composites possess wide range of application in bio-electronics, sensors, battery
application, automotive structure parts, aircraft fuselage components. The machin-
ing and machinability aspect of these novel polymer composites is not sufficiently
explored in the area of nanocomposites machining. To date, any intensive study was
proposed by any scholar using combined quality loss (CQL), WPCA and Taguchi
concept for machining of polymer nanocomposites reinforced by GO/CF. Hence,
this article highlights the optimization of graphene/CFRP drilling parameters by
considering the surface roughness, thrust force, torque, delamination In and Out
as the machining characteristics. The unified purpose of the analysis is to propose
robust optimization tools for conflicting machining characteristics and to explore
the machining feasibility of GO/CF reinforced polymer nanocomposites.

In previous research, it has been observed that machining of polymer com-
posites reinforced by carbon/glass/aramid was fruitfully explored by using vari-
ous multi-response optimization modules such as grey relation analysis (GRA),
Taguchi, coupled with PCA, etc. Recent literature shows that very limited work
exists on machining of GO/CF reinforced polymer composites. Also, the proposed
hybrid approach (WPCA-CQL) has not been used earlier by any scholars in re-
search on drilling of GO/CF reinforced polymer nanocomposites. Various studies,
as mentioned earlier, assume equal priority weight and negligible response during
aggregation of multiple responses. This leads to ambiguity, imprecision and errors
in the solution. These critical issues of drilling performance optimization are suc-
cessfully explored in present work by using the hybrid method. In this paper, an
effort has been made to overcome the drawback of the custom optimization tools
and to create a robust hybrid approach. RSM modeling was done to predict the
drilling characteristics of the proposed nanocomposites. The CQL concept allows
for a proper analysis, which is not efficiently possible by directly obtained data
from the RSM method because sometimes there might appear negative ratio re-
sults. The article presents the new approach to control the thrust force (Th), torque
(T), surface roughness (Ra), and delamination (In/Out).
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2. Experimentation

2.1. Sample preparation

The samples were fabricated by using graphene oxide, CFRP and epoxy resin
for drilling objectives. M/s. Platonic Pvt. Ltd. Jharkhand, India, has supplied the
graphene oxide. A microstructure investigation was done by performing the SEM
analysis of graphene oxide (GO) to check the quality of GO reinforcement, which
has shown a crumpled and rippled structure due to deformation upon the exfoliation
and restacking process marked by the white circles in Fig. 1. The sample has been
developed using the combination of epoxy resin-520, D-hardener, and graphene

Fig. 1. SEM analysis of GO

oxide. Composite materials are made-up by using the epoxy as a matrix and
graphene nanomaterial and carbonfiber as reinforcement.Graphene oxide enhances
the essential features of bulk parts and the resin improves the transfer of graphene
content into the matrix. The resin (whose density is 1.162 g/cm3) with a distinct
graphene weight ratio, such as 1, 2, and 3% was stirred up for 30 minutes at 60◦C.
A hardener-D with an equivalent ratio of 10:1 was added after 30 minutes and
the mixture was stirred for 24 hours at 27◦C. Finally, the mixture was laid on the
carbon fiber with layer by layer into a desired shape (100×100×10) mm3 with load
assigned using themethod of hot pressing (3 MPa, 170◦C, 200 min). The properties
of compositematerial are the following: interlaminar shear strength 46.5±0.8 MPa,
interlaminar flexural strength 93 ± 3.8 MPa, and tensile strength 130 GPa. Fig. 2
presents a schematic diagram for the development of nanocomposite samples.

A scanning electron microscopy (SEM) test was done to check uniformity
of distribution of graphene reinforcement in the epoxy matrix. The SEM image
(Fig. 3) clearly shows the uniform dispersion of the graphene content in the epoxy
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Fig. 2. Developed sample

Fig. 3. Graphene oxide dispersion

matrix. The uniform dispersion creates a better interface between the matrix and
reinforcement with a desired aspect ratio, which in turn, enhanced the mechanical
strength of the polymeric materials [28–30].

2.2. Machine specification

The experiments were carried out on a CNC vertical drilling machine Model
No. BMV35 TC20 to which a dynamometer tool, model number MLB-PML-300,
was attached using a TiAlN (SiC coated) drill bit (φ 5 mm). In Fig. 4, there is
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Fig. 4. Drill bit

shown a TiAlN-coated SiC drill tool having a diameter of 5 mm used for the
drilling experiments. The drill bit (tool No. K816005002A01) was supplied by the
M/s. Addison&Co., Ltd. Tamil Naidu, India. The interfaces between coating layers
give higher hardness and durability. With a point angle of 135 degrees and a helix
angle of 30 degrees, the drill bit was used to create a hole in the composite. An
appropriate CNC clamping setup was employed to fix the board in the machining
center. Fig. 5 represents the drilling setup with a proper clamping system used to
attach the workpiece at the center.

Fig. 5. Machining setup

The computerized dynamometer (Fig. 6) was used to obtain online data for
thrust force and torque. The attained signal has been transferred to the data ac-
quisition system through the analog-digital converter. The cutting forces (thrust
force and torque) are the predominant factors during the machining of polymers.
Both of them significantly affect the surface features, tool wear, interface tem-
perature, and tool replacement rate. The control of these factors can decide on
various machining damages such as delamination, fiber pullout, matrix debonding,
etc. [31, 32]. The existing data on the drilling operation of graphene oxide/carbon
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Fig. 6. Measurement of thrust force and torque

fiber polymer nanocomposites is passing through the initial phase, i.e., maximum
studies focus on the development and characterization of the polymer compos-
ites. Machining of the polymer composites is very complex and challenging due
to plastic deformation and the nonhomogeneous nature of the material. Besides,
the carbon fiber reinforced polymer composites have a very complex anisotropic
structure that causes uneven cutting behavior in the area of contact between the
tool and the workpiece, which results in increases in the cutting forces and high
tool wear [33, 34]. For a better understanding of these novel nanomaterial com-
posites, it is highly desired to develop an efficient machining model and determine
an optimal set of process parameters to control the effect of thrust force (Th) and
torque (T). The control of these factors can significantly improve the machinability
and machining aspects. The thrust force (Th) and torque (T) play an important role
in producing a high-quality machined product. They also ensure the machinability
of the polymer composites during drilling of GO reinforced unidirectional carbon
fiber epoxy composites.

The surface roughness has been assessed by Mitutoyo SJ-400 surface tester,
as shown in Fig. 7. It is an apparatus for evaluating surface evenness with a stylus
navigated within the surface; its perpendicular motion can be transformed into an

Fig. 7. Surface roughness measurement setup
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electrical signal. TheRa value is obtained after the signal is filtered and displayed on
a digital-type meter. The arithmetic means of surface roughness (Ra) are calculated
to evaluate the quality features of surface roughness. The measurement stylus
moves across the machined surface in distinct places. The delamination value was
measured on a high-resolution (0.7×) vision setup (Model no. SDM -TRZ-3D),
as shown in Fig. 8. All the damages are gauged by the detection of several points
across the drilled hole at the entry and the exit side. The maximum diameter of

Fig. 8. Delamination measurement setup

delamination at the entry/exit of the hole has been taken as the delamination. The
drilling constraints, namely, cutting velocity (m/min), feed (mm/min) and wt.% of
GO and their levels are presented in Table 1. The observed data of the machining
responses is given in Table 2.

Table 1.
Process parameters

Parameters Notation (unit)
Level

Lower Medium Higher

Cutting velocity Vc (m/min) 12.56 25.12 37.68

Feed F (mm/min) 80 160 240

Graphene oxide GO (wt.%) 1 2 3
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Table 2.
L15 array and observed data

Exp. No.
Vc F GO Ra Th T DIn DOut

(m/min) (mm/min) (wt.%) (µm) (N) (Nm) (mm) (mm)

1 12.56 80 2 0.18 61 0.78 5.378 5.218

2 37.68 80 2 0.26 36.77 1.68 5.568 5.311

3 12.56 240 2 0.16 46.88 2.125 5.6 5.539

4 37.68 240 2 0.04 46.29 2.49 5.421 5.409

5 12.56 160 1 0.2 45.5 1.9 5.678 5.332

6 37.68 160 1 0.2 32.66 2.9 5.513 5.394

7 12.56 160 3 0.11 65.7 1.64 5.654 5.456

8 37.68 160 3 0.06 41.19 1.655 5.404 5.267

9 25.12 80 1 0.4 38.15 1.8 5.433 4.93

10 25.12 240 1 0.25 47.37 2.9 5.567 5.06

11 25.12 80 3 0.12 46.09 1.2 5.532 5.019

12 25.12 240 3 0.1 47.95 2.04 5.299 5.09

13 25.12 160 2 0.11 48.9 1.7 5.305 4.998

14 25.12 160 2 0.15 50.99 1.9 5.388 5.121

15 25.12 160 2 0.07 47.66 1.7 5.383 5.21

3. Methodology

3.1. Weighted Principal Component Analysis

WPCA procedure is effectively employed to recognize the correlation between
the responses and estimation of response weight during aggregation of various
outputs into a single objective function known as the Multiple Performance Index
(MPI) [35]. This is because aggregation of different output functions is not possible
by the traditional RSM techniques. It is possible through the exploration of the
principles of WPCA in this paper. In 1901, Karl Pearson [36] created the principal
component analysis (PCA) method, which consists of basic statistical techniques to
evaluate the major principal component (PC). The orthogonal transformation has
been used to change the set of linearly uncorrelated factors known as the principal
components (PCs) [37]. The initial step is to normalize the machining responses
from the range from zero to one.
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(1) The following equation has been used for normalizing the data responses
For lower the better (LB)

Xi (k) =
min Xi (k)

Xi (k)
, (1)

where: i = 1, 2, 3, 4, . . . , n, k = 1, 2, 3, 4, . . . , m, n – number of experiments
run, m – machining performance, Xi (k) – normalized response function of the k-th
element in the i-th order.

(2) Calculate the correlation coefficient

Rjl =
Cov {Xi ( j), Xi (l)}
σxi ( j) × σxi (l)

, (2)

where: j = 1, 2, 3, 4, . . . , m, l = 1, 2, 3, 4, . . . , n, Ri j – correlation coefficient, Xi ( j)
– normalized response, Cov {Xi ( j), Xi (l)} – covariance between the responses of
constraints j and l, σxi ( j), σxi (l) – standard deviation of constraints j and l.

(3) Determine the eigenvalue and eigenvector

(R − γk Im) × Vik , (3)

where: R – descision matrix, γk – eigen values, Im – identity matrix, Vik – eigen-
vector.

(4) Calculate PC values

PCmk =

n∑
i=1

Xm(i) × Vik . (4)

Here PC1, PC2, . . . , PCmk means first, second, etc., principal component.

3.2. Combined Quality Loss (CQL)

CQL concept is described as the deviation of an individual PCs value from
its optimal value. The minimization of an absolute value (modulus), is regarded as
a single objective optimization function [38]. This objective function was used to
finds out the optimum combination/process setting. This setting is highly desired
for efficient machining performances [39, 40]. The combined approach of the
WPCA and quality loss concept exert a significant impact on quality control and
productivity concerns of manufacturing processes. Such an approach has been
introduced according to the flow chart of the proposed hybrid module, as detailed
in Fig. 9.
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Fig. 9. Flow chart of the proposed hybrid module

4. Result and discussion

In this article, machining of polymer nanocomposites reinforced by GO and
carbon fiber was analyzed. The consequence of drilling parameters, namely, cutting
velocity, feed and wt.% of GO has been investigated to achieve the desired machin-
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ing characteristics viz, surface roughness, thrust force, torque and delamination In
and Out. After conducting the drilling experiment and computation of machining
response, the next step is to analyze the observed data by using the WPCA tool.

4.1. Calculation of MPI and CQL

Initially, one performs normalization of all process responses in the range from
zero to one using Eq. (1), and the results are tabulated in Table 3. The next step is to
evaluate the correlation between machining performance characteristics by calcu-
lating the Pearson correlation coefficient. We calculate the correlation and tabulate
it in Table 4 using Eq. (2). The PCA study was carried out using Eqs. (3) and (4) and
the results are shown in Table 5. It contains the eigenvalue (EV), the eigenvector
(EV), accountability proportion (AP), and cumulative accountability proportion
(CAP). Accountability proportion for surface roughness, thrust, torque, delamina-
tion In and Out was found to be 0.342, 0.262, 0.253, 0.1, and 0.043, respectively,
and these will be considered as response weight during the MPI calculation. The
eigenvalue results from the estimation of the corresponding performance weights
characteristic of the principal component analysis.

Table 3.
Normalized (N) data

Exp. No N – Ra N – Th N – T N – In N – Out

Ideal 1 1 1 1 1

1 1 0.5354 0.2222 0.9853 0.9448

2 0.4642 0.8882 0.1538 0.9516 0.9282

3 0.3670 0.6966 0.25 0.9462 0.8900

4 0.3132 0.7055 1 0.9774 0.9114

5 0.4105 0.7178 0.2 0.9332 0.9246

6 0.2689 1 0.2 0.9611 0.9139

7 0.4756 0.4971 0.3636 0.9372 0.9035

8 0.4712 0.7929 0.6666 0.9805 0.9360

9 0.4333 0.8560 0.1 0.9753 1

10 0.2689 0.6894 0.16 0.9518 0.9743

11 0.65 0.7086 0.3333 0.9578 0.9822

12 0.3823 0.6811 0.4 1 0.9685

13 0.4588 0.6678 0.3636 0.9988 0.9863

14 0.4105 0.6405 0.2666 0.9834 0.9627

15 0.4588 0.6852 0.5714 0.9843 0.9462
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Table 4.
Correlation check

Correlation response Correlation coefficient Pearson value Remark P-Value

Th and Ra −0.453

Correlated

0.090

T and Ra −0.129 0.647

In and Ra 0.193 0.49

Out and Ra 0.161 0.567

T and Th −0.165 0.558

In and Th −0.07 0.805

Out and Th 0.009 0.973

In and T 0.35 0.201

Out and T −0.254 0.36

Out and In 0.514 0.05

Table 5.
Principal component analysis (PCA)

Φ1 Φ2 Φ3 Φ4 Φ5

Eigen Value 1.7114 1.3098 1.2633 0.5008 0.2148

0.5 −0.163 −0.5 −0.646 −0.236

−0.395 0.533 0.343 −0.639 −0.184

Eigen vector 0.113 −0.571 0.624 −0.062 −0.518

0.584 0.115 0.489 −0.179 0.612

0.489 0.592 0.06 0.372 −0.518

AP 0.342 0.262 0.253 0.1 0.043

CAP 0.342 0.604 0.857 0.957 1

The relationship between the values of PCs and the response is as follows:

Z1 = 0.5NRa − 0.395NTh + 0.113NT + 0.584NIn + 0.489NOut, (5)
Z2 = −0.163NRa + 0.533NTh − 0.571NT + 0.115NIn + 0.592NOut, (6)
Z3 = −0.5NRa + 0.343NTh + 0.624NT + 0.489NIn + 0.06NOut, (7)
Z4 = −0.646NRa − 0.639NTh − 0.062NT − 0.179NIn + 0.372NOut, (8)
Z5 = −0.236NRa − 0.184NTh − 0.518NT + 0.612NIn − 0.518NOut. (9)

Here Z1, Z2, Z3, Z4, Z5 are major principal component values, NRa, NTh, NT, NIn
and NOut are normalized surface roughness, thrust force, torque, delamination at
inlet and outlet, respectively.

Accountability proportion (AP) values of individual responses were taken as
priority weights for the calculation of the principal components using Eqs. (5)–(9)
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as shown in Table 6. Later, the Multi-Performance Index (MPI) was calculated
using Eq. (10) and tabulated in Table 7 [41].

MPI = 0.342Z1 + 0.262Z2 + 0.253Z3 + 0.1Z4 + 0.043Z5 . (10)

Table 6.
PCs values

Exp. No. Z1 Z2 Z3 Z4 Z5

Ideal 1.291 0.506 1.016 −1.154 −0.844

1 1.3510 0.6681 0.3608 −0.8268 −0.3360

2 0.9083 0.9688 0.6895 −0.7020 −0.2511

3 0.9244 0.8044 0.7275 −0.5360 −0.2262

4 1.0074 0.4059 1.2420 −0.5511 −0.5956

5 0.9414 0.8561 0.6775 −0.5593 −0.2403

6 0.7703 1.0265 0.8581 −0.6572 −0.2362

7 1.0717 0.6225 0.6721 −0.4790 −0.2865

8 1.0281 0.6320 0.9879 −0.6797 −0.4872

9 0.9484 1.0327 0.6763 −0.6357 −0.2326

10 0.9125 0.9185 0.7257 −0.4321 −0.1953

11 1.1224 0.7730 0.6533 −0.6994 −0.3790

12 1.0249 0.7607 0.8391 −0.5257 −0.3124

13 1.0723 0.7723 0.7742 −0.5575 −0.3191

14 1.0275 0.8052 0.7195 −0.5089 −0.2496

15 1.0609 0.6375 0.9003 −0.5939 −0.4180

The main effects of the process parameters are given in Table 8, and used
to evaluate the importance of performance measures of input process variables in
every process. The cutting velocity has the highest value of 0.1238, and it is the
most prominent parameter, followed by feed (0.0164) and GO (0.0070).

The effect plot has been designed by using LB criteria and this plot shows the
optimum parametric settings (Fig. 10), which corresponds to Vc = 37.68 m/min,
F = 160 mm/min and GO% = 2%. It has been found that optimal parametric
setting significantly improved the desired quality and productivity characteristics.

It shows that the delamination factor at the same filler level (2 percent), feed
(160 mm/min), and cutting velocity (37.68 m/min) was low. A higher cutting ve-
locity leads to an increase in the temperature during the drilling process, which
softens the matrix and reduces the induced delamination [42, 43]. However, by
adding the GO content, one can control the delamination factor by crystallizing
the content of filler. It is evident that the required wt.% of GO content reduces
the delamination factor; due to GO content, the materials produce high bonding
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Table 7.
MPI, CQL and corresponding S/N ratio computation

Exp. No. MPI CQL S/N ratio

Ideal 0.6794 0 0

1 0.6312 0.0481 26.3418

2 0.6579 0.0214 33.3606

3 0.6476 0.0317 29.9553

4 0.6844 −0.0049 46.0303

5 0.6514 0.0279 31.0588

6 0.6736 0.0057 44.7444

7 0.6394 0.0400 27.9578

8 0.6782 0.0012 58.3890

9 0.6924 −0.0130 37.7176

10 0.6847 −0.0053 45.5201

11 0.6655 0.0139 37.1110

12 0.6961 −0.0166 35.5507

13 0.6955 −0.0160 35.8868

14 0.6827 −0.0033 49.5320

15 0.6802 −0.0008 61.4884

Table 8.
Response Table for CQL

Level Vc F GO

1 0.1179 0.0176 0.0038

2 −0.0058 0.0078 0.0108

3 0.0058 0.0012 0.0096

Delta 0.1238 0.0164 0.0070

Rank 1 2 3

and shear strength [44]. However, the cutting velocity had a prominent effect on
delamination during previously reported works [45, 46]. The delamination factor
was also increased by increasing the feed due to the thrust force generated between
the tool and the workpiece during the machining interface [47, 48]. The feed forces
of a higher value of cause that the drilling tool is pushed inside the layer rather
than to cut it. Hence, a higher rate of feed raises the thrust force and torque. Most
of the related investigations demonstrate that the feed is the most prominent factor
affecting the machinability of the polymer composites [48, 49]. The impact on the
cutting tool edges is very high against the laminated composite; in turn, the resis-
tance force rises, i.e., the rubbing of drill tool interfaces against the inner surface
of the hole increases. It is mainly due to an increased thrust force [50, 51].
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4.2. Variance analysis for CQL

ANOVA is mainly directed to evaluate the impact of drilling factors on re-
sponses [52, 53]. Here, the model adequacy is justified with the P-value (< 0.05
with 95% confidence level) and the Fisher’s test (F) (with higher value of F)
acceptable. If the P-value is lower than 0.05, the value is acceptable and signifi-
cant. The same applies to the Fisher’s test, if the F higher value is acceptable and
significant [39, 54–56]. The assessment was done at a level of α = 0.05 (95% con-
fidence interval) and Fisher’s F-test was used to determine the situation in which
the composite drilling parameter affects various performance aspects [57–59]. The
analysis of variance examines the influence of control factors on response effect and
allows one to develop a prediction model. Furthermore, in terms of these factors,
the final regression for WPCA-based combined quality loss (CQL) was proposed.
The objective function ofWPCA-CQLwas defined according to ANOVA as shown
in Table 9, which illustrates the nonlinear model and confirms that cutting velocity
(32.03%) is the most significant parameter and the following one is feed (8.95%,).
The conclusion from this study is that the feed significantly affects the drilling
responses and its lower value is preferential for an improved surface feature and
minimum damages during the drilling process [39, 60, 61]. The model adequacy
(96.83%) shows the satisfactory performance of the developed module in terms of
R2, R2 adjustable [52].

The model shows that the error of model adequacy is very low (3.17%) and the
corresponding Lack-of-Fit (F = 0.29, P = 0.831) is insignificant. The adequacy
of the model is 96.83% which shows good agreement between prediction through
the linear model and experimentally observed results [62].

Regression equation for the combined quality loss is

CQL = 0.0857 − 0.00014Vc + 0.000029F + 0.0Vc2 − 0.00012F GO. (11)
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Table 9.
Variance analysis

Source DF Seq SS Contribution Adj SS Adj MS F-Value P-Value Mark

Model 9 0.00585 96.83% 0.00585 0.000651 16.95 0.003 Significant

Vc 1 0.00193 32.03% 0.00193 0.001937 50.47 0.001 Significant

F 1 0.00054 8.95% 0.00054 0.000541 14.10 0.013 Significant

GO 1 0.00006 1.09% 0.00006 0.000066 1.72 0.247

Vc2 1 0.00278 46.10% 0.00277 0.002779 72.40 0.000 Significant

F2 1 0.00004 0.78% 0.00004 0.000043 1.13 0.337

GO2 1 0.00001 0.23% 0.00001 0.000014 0.36 0.574

Vc × F 1 0.00002 0.42% 0.00002 0.000025 0.66 0.453

Vc × GO 1 0.00006 1.14% 0.00006 0.000069 1.79 0.238

F × GO 1 0.00036 6.08% 0.00036 0.000368 9.58 0.027 Significant

Error 5 0.00019 3.17% 0.00019 0.000038

Lack-of-Fit 3 0.00005 0.97% 0.00005 0.000020 0.29 0.831

Pure Error 2 0.00013 2.20% 0.00013 0.000067

Total 14 0.00604 100.00%

S = 0.0061954, R-sq = 96.83%, R-sq(adj) = 91.11%

CQL residual plots show the residual plot versus fitted values in Fig. 11. It
shows that all points on the ANOVA plot are near the straight line (mean line)
and it indicates that the distribution of data is normal and the deviation from

Fig. 11. ANOVA plot for CQL 

105-5

99

95
90
80
70
60
50
40
30
20
10
5

1

A Vc (m/min)
B F (mm/min)
C GO (wt.%)

Factor Name

0 
Standardized Effect

Pe
rc

en
t

Not Significant
Significant

Effect Type

BC

AA

B

A

Normal Plot of the Standardized Effects
(response is CQL, α = 0.05)

Fig. 11. ANOVA plot for CQL



248 Jogendra Kumar, Rajesh Kumar Verma, Arpan Kumar Mondal

the standard is small. Also, it has been noticed that the CQL function does not
contain any noticeable pattern or uncommon structure. The plot shows a mild non-
normality bias; however, there is no abnormality in the plots of these residuals, and
no undesirable effect indicates residual versus fitted value.

4.3. Surface plots for process parameters

One can notice that the cutting velocity and feed are the most significant
interaction effects, followed by feed and wt. percent of graphene oxide. Fig. 12
displays the contour diagram of interactions between these parameters. From these
surface plots, the effect of process parameters on machining responses can be
evaluated. The optimal machining parameters leading to a minimum CQL value
can be obtained by examining the 3D surface plots. Two parameters for each graph
are varied, whereas the third parameter is kept constant [63]. The cutting velocity
(Vc) and feed effect on CQL are depicted in Fig. 12a. When cutting velocity is
37.68 m/min and feed is 160 mm/min, it is observed that minimum CQL can be
reached. It is also visible that the cutting velocity effect on the CQL is higher than
that of the feed. The result of cutting velocity (Vc) and wt.% graphene oxide on
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CQL is presented in Fig. 12b. The minimum CQL is observed when the speed is
37.68 m/min and 2% wt. % of GO. The effect of speed on CQL is also found to be
more important than the wt.% of GO. By analyzing Fig. 12b one can notice that
the CQL value is the highest when wt.% of GO is 2%. Fig. 12c shows the effect
of feed (F) and wt.% and GO on CQL. In this work, it is observed that at GO 2%
by weight and feed at 160 mm/min. gives the lower value of CQL. The feed also
substantially affects the CQL value.

4.4. Confirmatory test

The confirmatory test was done in optimal condition (Vc37.68F160GO%2)
of the objective function value, as indicated in Table 10. The validated results
show a significant improvement in machining performances. The value of Ra, Th,
T , and delamination In/Out reduced from 0.18 to 0.05 µm, 0.78 to 0.75 N, 61 to
30.04 Nm, and 5.378 to 5.172 mm and 5.218 to 5.015 mm, respectively.

Table 10.
Confirmatory test

Condition

Response Orthogonal Optimal Confirmatory

Vc2F3GO3 Vc3F2GO2 Vc3F2GO2

Ra 0.18 0.05

Th 0.78 0.75

T 61 30.04

DIn 5.378 5.172

DOut 5.218 5.015

Assessed value 0.0481 −0.0215 −0.0037

The optimal setting (Vc3F2GO%2) suggests that lower value of feed plays a
vital role in improving surface finishing because, at lower feed, the development
of the defect and cracks are observed less frequently. Also, decreasing the feed
reduced the cutting force, surface roughness and enhanced the MRR. The weight
percentage also plays a crucial role in the quality of the machined component.
The higher value of wt.% can increase the agglomeration, which can decrease the
strength of the machined sample [64]. The objective function value demonstrates
the feasibility of the proposed hybridization approach.

The optimal condition can be predicted by taking the most significant factors
at their best levels. In the current investigation, cutting velocity and feed are the
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most significant factors at Vc2 and F3 levels from Table 8.

µVc2F3 = Vc2 + F3 − CQLavg ,

µVc2F3 = −0.0058 + 0.0012 − 0.0086,

µVc2F2 = −0.0133

where: µVc2F3 – optimum value, Vc2 – minimum value of speed at level, F3 –
minimum value at level

CI =

√
DF, 95%, df error × Adj MS error

γeff
.

Here, CI – confidence interval, γeff =
N

1 + dof
, where N – total trial of experiments,

dof – degree of freedom,

γeff =
15

1 + 1 + 1
= 5, CI =

√
5 × 0.000067

5
= 0.0081.

The optimum range µVc2F3 − CI 6 µVc2F3 > µVc2F3 + CI,

−0.0215 6 µVc2F3 > −0.0051.

The optimization module used in this paper covers various correlated response that
is totally neglected in traditional optimizationmodules. All the correlated responses
become independent. i.e., uncorrelated responses were computed by using the
WPCA method. It is considered as a statistical tool to solve critical issues during
multi-criteria decision making (MCDM). As specified in state of the art, there
are different modules and formulas for the combination of several characteristics
to calculate the MPI. This research investigates the correlation among machining
responses and the aggregation of multiple conflicting functions. The CQL concept
incapacitates the issue of calculation when MPI delivers negative results. The
idea of MPI-CQL coupling provides practical feasibility and an effective way
to solve complex optimization issues. The scanning electron micrograph (MEV)
test for the walls of holes generated by drills was done to evaluate the surface
features and damages. The C-scan result shows the quality of the hole developed
by applying a different set of response surface methodology based on parametric
conditions, as depicted in Fig. 13 and Fig. 14. A similar method was used by the
pioneer researchers in previous works [46, 49, 65, 66]. Three different weights
% of graphene oxide were used for the comparative study of machined quality a
different case of the same C-scan analysis of drilled hole [46, 50]. The lower value
of the feed plays an important role in improving surface finishing, and decreasing
the feed can lower the cutting force, surface roughness, and delamination.
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Fig. 13. Delamination effect using C-scan images of 1%, 2% and 3% of GO doped CFRP
nanocomposite at inlet
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Fig. 14. Delamination effect using C-scan images of 1%, 2% and 3% of GO doped CFRP
nanocomposite at exit
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5. Conclusions

The present article highlights the machining (drilling) aspects of graphene/
CFRP reinforced-epoxy composite. The multi-objective optimization of drilling
indices, such as thrust surface roughness (Ra), force (Th), torque (T ), delamination
In and Out, have been carried out by applying the proposed hybrid approach. The
following conclusions can be drawn from this paper:

• Identification of the correlation coefficient between the machining responses
and elimination of correlation among the responses has been done by using
the PCA tool. AP is intended for assigning weights to machining responses,
in a different way to most of the studies where equal response weight is
assumed, which creates ambiguity, inaccuracy and error in the results.

• ANOVA results for CQL have shown that cutting velocity is the most dom-
inant factor followed by feed and wt.% of graphene oxide, and demonstrate
the capability of the established model.

• The CQL concept allows for a proper analysis, which is not efficiently pos-
sible by applying the outcomes directly obtained from the RSM technique,
as sometimes negative ratio results may be there.

• The lower value of the feed plays a critical role in improving surface finishing,
and decreasing the feed can lower the cutting force, surface roughness and
enhance the MRR.

• The optimum parametric combination through the CQL effect is found as Vc
– 37.68 m/min, F – 160 mm/min, and GO% – 2, which has been validated
by a confirmatory test that shows a satisfactory performance of the proposed
hybrid approach.

• The hybridization approach can be implemented in various polymer manu-
facturing sectors for online and offline control of process/product.

This article efficiently explores the machining aspects of graphene oxide modi-
fied epoxy in CFRP nanocomposites. The proposed optimization modules are used
to formulate a generalized method that can be adapted for other machining proce-
dures, such as turning,milling, etc., and can be used in other complex case studies of
multiple conflicting responses. The other factors, such as tool-material, geometry,
mechanics of material removal, etc., can be considered in future scope of work for
the understanding of machining behavior of these novel polymer nanocomposites.
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