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Transient analysis of transversely functionally graded
Timoshenko beam (TFGTB) in conjunction with finite

element method

In this work, transient and free vibration analyses are illustrated for a functionally
graded Timoshenko beam (FGM) using finite element method. The governing equilib-
rium equations and boundary conditions (B-Cs) are derived according to the principle
of Hamilton. The materials constituents of the FG beam that vary smoothly along the
thickness of the beam (along beam thickness) are evaluated using the rule of mixture
method. Power law index, slenderness ratio, modulus of elasticity ratio, and bound-
ary conditions effect of the cantilever and simply supported beams on the dynamic
response of the beam are studied. Moreover, the influence of mass distribution and
continuous stiffness of the FGM beam are deeply investigated. Comparisons between
the current free vibration results (fundamental frequency) and other available studies
are performed to check the formulation of the current mathematical model. Good
results have been obtained. A significant effect is noticed in the transient response of
both simply supported and cantilever beams at the smaller values of the power index
and the modulus elasticity ratio.

1. Introduction

Recently, several studies have been accomplished about functionally graded
materials, which are considered as a novel type of composite and smart materials
that promise a great future formechanical and electrical engineering industries. The
functionally graded material is a non-homogeneous material. It generally consists
of two different types of materials and is manufactured in a specific way so that its
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properties vary continuously along different axis [1]. The mechanical and physical
properties of the functionally graded, continuous composite materials are improved
as they improve the required properties and diminish the undesirable ones [2]. The
common type of the functionally graded material is the composite of ceramic and
metal joined together to provide a novel product that has desirable strength and
thermal resistances as compared to a metal (high strength properties-low ther-
mal resistance) and ceramic (lower strength properties-higher thermal resistance)
only [3]. Further, the continuous distribution of the properties helps to get best
reliability of the FGM composite like an incongruity material properties problem
due to sudden changes in the material properties. These unique properties make
FGMs superior materials for many industries: aerospace, automobile, defense, and
nuclear [4]. Therefore, the characteristics of FGMs and their static and dynamic
response under different conditions have been considered as research projects. Hard
work for understanding both vibration and pre-post buckling of the FGM materi-
als have been indexed in several theoretical models. In addition, there have been
great tendency for extrudinge the performance of FGM structures [5]. For instance,
H.T. Thai et al. [6] studied static and free vibration of functionally graded beams
with different higher-order shear deformation beam theories in conjunction with
various boundary condition, and the equation of motion are derived by Hamilton’s
principle. M. Al-Shujairi et al. [7] investigated free vibration and buckling analysis
of sandwich FG micro beam with elastic foundation based on the different higher
order shear deformation beam theories. They used generalized differential quadra-
ture method to evaluate the fundamental frequencies and buckling load. M. Şimşek
et al, [8] presented bending and free vibration of FG sandwich beam subjected to
successive moving harmonic forces based on Timoshenko beam theory. M. Ay-
dogdu et al., [9] worked on free vibration of FG beam with simply supported
boundary condition. The equation of motion is derived by the Hamilton’s prin-
ciple and the natural frequency can be obtained by Navier type solution method.
M. Şimşek et al., [10] investigated the free and forced vibration of FG beam sub-
jected to the moving harmonic loads based on Euler–Bernoulli beam theory with
simply supported boundary condition. K. Pradhan et al., [11] studied free vibration
of functionally graded beamwith different boundary conditions based on Euler and
Timoshenko beam theories in conjunction with Rayleigh-Ritz method. Y. Yang et
al., [12] estimated free vibration of sandwich FG beam based on Timoshenko beam
theory with a meshfree boundary-domain integral equation method. L. Ke et al.,
[13] studied buckling analysis and free vibration of a cracked functionally graded
beam with Timoshenko beam theory in conjunction with different boundary con-
ditions. M. Şimşek [14] illustrated the free vibration of functionally graded beam
based on the first-order beam theory with various boundary conditions. M. Şimşek
[15] investigated the forced and free vibration of bi-directional functionally graded
beam subjected to moving load based on Timoshenko and Euler–Bernoulli beam
theories. J. Ying et al., [16] presented static and free vibration of FG beam resting
on elastic foundation with the two-dimensional theory of elasticity S. Kapuria et
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al., [17] studied the static and free vibration of FG beam based on the modified
rule of mixtures with Timoshenko beam theory. J. Yang et al., [18] studied the
free vibration and buckling analysis of cracked functionally graded beam based on
Euler–Bernoulli beam theory. The fundamental frequencies and buckling loads are
evaluated with various boundary conditions by analytical solutions. The transient
behavior and free vibration of functionally graded beam (FGB) under the action of
thermal loads based on the Reddy’s higher order shear deformation beam theory are
studied by A. Doroushi et al. [19]. Euler–Bernoulli beam theory and finite element
method are used to study the transient and model analyses of axially functionally
graded beam as estimated by M. Aubad et al. [20]. The properties of this material
change continuously and smoothly in the axial direction (x-direction) based on the
rule of mixture approach. Paper [21] presented the transient response and free vi-
bration of functionally graded curved beam for various BCs using first order-shear
deformation theory. Based on the Voigt’s rule of mixture, the mechanical proper-
ties of FG curved beam vary smoothly through the thickness direction. Work [22]
investigated the transient vibration of the electro elastic beam with clamed-free
boundary conditions based on the Timoshenko beam theory in conjunction with
finite element method. Article [23] studied transient vibration with nonlinear be-
havior of sandwich functionally graded curved shell with isotropic core using the
third-order deformation theory.Mixture rule is used to express properties variations
of the faces in the thickness direction. Galerkin method and Hamilton’s approach
are used for the derivation of the nonlinear differential equations of motion. Paper
[24] studied the transient vibration of functionally graded plate based on the hybrid
numerical method. Modulus of elastically and density changed in the plate trans-
verse direction. T. Yokoyama [25] studied the free vibration and transient analysis
of beams based on Timoshenko beam theory on elastic foundation with hinge-hinge
boundary condition by finite element method. The governing equilibrium equations
of the beams are mathematically formulated using Hamilton’s principle. E. Amal
[26] studied free vibration of FGM beam based on the Euler–Bernoulli beam the-
ory. Virtual work is used to derive the equations of motion and related boundary
conditions. The material constituents vary gradually in both x and z directions.
S. Taeprasartsit [27] illustrated nonlinear free vibration analysis and bending de-
formation of functionally graded beam using Euler–Bernoulli beam theory and
Karman nonlinearity. The material properties vary along the beam thickness and
the rule of mixture is used for that purpose. N. Pradhan et al. [28] illustrated
free vibration of functional graded beam using Timoshenko beam theory for the
formulation and finite element method at various B-Cs. The material properties
vary in z-direction according to the rule of mixture method. N. Fouda et al. [29]
studied bending, buckling and free vibration of functionally graded beam with
influence of porosity based on Euler–Bernoulli beams in conjunction with finite
element method. Li-long et al. [30] obtained natural frequencies and mode shapes
of FGMB using Timoshenko beam theory. The material constituents vary smoothly
across the thickness. The governing equations and the corresponding B-Cs are for-
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mulated based on Hamilton’s principle. Work [31] investigated the buckling and
free vibration analysis of FG beam. The refined deformation theory is used for the
mathematical modeling and solved numerically by finite element method.

According to the presented literature survey, it can be seen that, relatively
very few investigations have studied dynamic (transient) analysis of Timoshenko
FG beam in conjunction with finite element method where the properties change
with beam thickness. In addition, more parametric studies need to be shown to
estimate the most sensitive parameters that control the dynamic response of this
beam. To the best of our knowledge, no similar work is reported. The current
research is expected to contribute in understanding dynamic characteristics by
bearing inmind the transient analysis of FGMTimoshenko beam, and the respective
reader can easily recognize the parameters that play a crucial role in the dynamic
response of functional graded material. In this study, transient analysis and modal
analysis of functionally graded (FG) beam are illustrated based on Timoshenko
beam theory (TBT) and finite element method with different B-Cs like (C-F and
S-S). The properties vary smoothly in the beam transverse direction. Effect of
several parameters: power index, BCs and modulus ratio on the frequencies and
dynamic response are explained. Some of the results are compared to other works
for mathematical modeling validation.

2. Theoretical concept

2.1. Material properties

The functionally graded beam is present in Fig. 1 with the length (L) in axial
x-direction, the width (b) in the y-direction, the thickness (h) in the z-direction
and the O(x y z) is chosen at the center point of the FG beam.

z(Em, ρm, vm)

(Ec, ρc, vc) L
b

x

Fig. 1. A functionally graded (FG) beam

The functionally graded beam is made of the metallic (m) and the ceramic (c)
components. The ceramic and metallic components are changing from the lower
surface to the upper surface, as shown in Fig. 1. The volume fraction of the ceramic
constitutive Vc (z) of FG beam can be consider as

Vc (z) =
(

z
h
+

1
2

)n
, (1)
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where (n) is an index parameter used to describe the material changing through
the z-direction direction (thickness) of the FGM beam. Modulus of elasticity (E),
Poisson’s ratio (ν) and density (ρ) that vary smoothly through the z direction can
be obtained according to the rule of mixture method. The relation between the
volume fractions of the metallic and the ceramic constituents is as follows

Vm(z) + Vc (z) = 1. (2)

The properties of material H can be obtained as follows

H = Hm Vm + Hc Vc , (3)

where Hm and Hc are the properties of material of the metallic and ceramic con-
stituents, respectively. The Young’s modulus (EFGM) and Poisson’s ratio (νFGM),
shear modulus (GFGM) and mass density (ρFGM) can be obtained in the following
equations

EFGM =

(
z
h
+

1
2

)n
(Ec − Em) + Em , (4a)

νFGM =

(
z
h
+

1
2

)n
(νc − νm) + νm , (4b)

ρFGM =

(
z
h
+

1
2

)n
(ρc − ρm) + ρm , (4c)

GFGM =

(
z
h
+

1
2

)n
(Gc − Gm) + Gm . (4d)

Fig. 2 shows the variation of ceramic constituent volume fraction along the
beam thickness direction.

Fig. 2. Variation of the volume fraction of the ceramic constituent along the thickness
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2.2. Equation of motion

Based on Timoshenko beam theory (TBT), the displacement fields are [32],
as shown in Fig. 3

u(x, z) = zθ(x), (5a)

w(x, z) = w(x), (5b)

where (w) is the transverse displacement in z direction.

Fig. 3. Deformation of a Timoshenko beam

The formulation of the strain equations of TBT can be obtained as:

εx =
∂ux

∂x
= z

∂θ(x)
∂x

, (6a)

γxz =
∂u
∂z
+
∂w

∂x
= θ(x) +

∂w(x)
∂x

, (6b)

where (εx ) and (γxz ) are the axial and shear strain, respectively.
Eqs. (6a) and (6b) can be written in a matrix form

ε =



εx

γxz



=



−z 0
0 1



{
∂θ

∂x
∂w

∂x
+ θ

}T

. (6c)

The relation between the stress and strain of FGmaterials of beam obeys a Hooke’s
action. Therefore, the relation can be written as

σ =



σx

τxz



=



E 0
0 G






εx

γxz



. (7)
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Here E, G, σxx and τxz are the modulus, shear modulus of elasticity, stress and
shear stress, respectively.

The equation of motion is derived by Hamilton’s Principle, [32]

δΠ =

t2∫
t1

(δSE − δKE − δW ) dt = 0, (8)

where δSE , δKE and δW are the strain, kinetic energy and the work of external
forces.

The strain and kinetic energy are presented as:

SE =
1
2

L∫
0

∫
A

[σ]T [ε]d Adx, (9a)

KE =
1
2

L∫
0

∫
A

ρ



(
∂u
∂t

)2
+

(
∂w

∂t

)2
d Adx, (9b)

where A and L is the area and the length of the FG beam, respectively.
By substituting Eq. (6c) and Eg. (7) into Eq. (9a) we obtain the strain energy

SE =
1
2

L∫
0




∂θ

∂x
∂w

∂x
+ θ




T



EI 0
0 k AG






∂θ

∂x
∂w

∂x
+ θ




dx. (10a)

Then, substituting Eqs. (5a) and (5b) into Eq. (9b) we obtain the kinetic energy

KE =
1
2

L∫
0




∂w

∂t
∂θ

∂t




T



ρA 0
0 ρI






∂w

∂t
∂θ

∂t




dx, (10b)

where, A cross section area, I second moment of inertia and k shear correction
factor of cross section.

The work of the external load can be given as [32]:

W =

L∫
0




w

θ




T 

FDL

Mmoment


dx, (11)

where FDL and Mmoment, are the distributed load and moment along the length of
beam, while in this paper the external load, applied as a transient load in a short
time, is discussed in the next section.
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For functionally graded Timoshenko beam, the material with constant cross-
section area (bh) has properties varying along thickness. The modulus of elasticity,
rigidity and density from Eqs. (4a), (4c), (4d) will be substituted in equations of
strain and kinetic energy to obtain another form of equation for functionally graded
Timoshenko beam that can written as:

SE =
1
2

L∫
0




∂θ

∂x
∂w

∂x
+ θ




T



EFGMI 0
0 EFGM A






∂θ

∂x
∂w

∂x
+ θ




dx, (11a)

KE =
1
2

L∫
0




∂w

∂t
∂θ

∂t




T



ρFGM A 0
0 ρFGMI






∂w

∂t
∂θ

∂t




dx. (11b)

Eqs. (11a), (11b) and Eqs. (4a), (4c) (4d) are solved and can be written again
after some mathematical manipulations as

SE =
1
2

L/2∫
−L/2


Axx

(
∂w

∂x

)2
+ 2Bxx

(
∂w

∂x

) (
∂θ

∂x

)
+ ks Axz

(
∂w

∂x
+ θ

)2

+Dxx

(
∂θ

∂x

)2
dx, (12)

where

(Axx, Bxx, Dxx ) =
∫
A

EFGM
(
1, z, z2

)
d A, (13a)

Axz = ks

∫
A

GFGM d A, (13b)

and the kinetic energy of the functionally graded beam can be given as,

KE =
1
2

1/2∫
−1/2


IA

(
∂w

∂t

)2
+ 2IB

(
∂w

∂t

) (
∂θ

∂t

)
+ 2ID

(
∂θ

∂t

)2
dx, (14)

where

(IA, IB, ID) =
∫
A

ρFGM
(
1, z, z2

)
d A. (15)
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2.3. Finite element formulation

The steady-state equilibrium equation of Timoshenko beam in terms of the
displacement filed can be written as:

∂

∂x

(
∂w

∂x
+ θ

)
= 0,

∂2θ

∂x2 −
kGA
EI

(
∂w

∂x
+ θ

)
= 0.

(16)

A specific polynomial is assumed to achieve the continuity of the two-node
finite element, so that the shape function can be written as, [32]




w

θ



=



[Nw]

[Nθ]


{q} , (17)

[Nw]T =
1

8(1 + φz )



2 (ζ − 1)
(
ζ2 + ζ − 2 − 2φz

)
L

(
ζ2 − 1

) (
ζ − 1 − φz

)
−2 (ζ + 1)

(
ζ2 − ζ − 2 − 2φz

)
L

(
ζ2 − 1

) (
ζ + 1 + φz

)


, (18a)

[Nθ]T =
1

4L(1 + φz )



6
(
ζ2 − 1

)
L

(
ζ2 − 1

) (
3ζ + 1 − 2φz

)
−6

(
ζ2 − 1

)
L

(
ζ2 + 1

) (
3ζ − 1 + 2φz

)


, (18b)

where
(
φz

)
is the ratio of the beam bending stiffness to the shear stiffness given by

φz =
12

∫
EFGM z2 d z

L2k
∫

GFGM d z

with

φz =
12Dbending

L2k Dshearing
, Dbending = b

h/2∫
−h/2

EFGM z2 d z, Dshearing = b

h/2∫
−h/2

GFGM d z,

and the array of nodal displacements and rotations is given

{q}T = {w1, θ1, w2, θ2}
T . (19)

It is interesting to note the strong dependency the shape functions have upon
(θ), which is a ratio of the beam bending stiffness to the shear stiffness. The finite
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element representation of the equations of motion can be developed by substituting
the energies and work equations into Hamilton’s principle Eq. (8) and carrying out
the integration over the beam length as, [33]

[M] {q̈} + [C] {q̇} + [K] {q} = { f } = [N]T f0 , (20)

where: [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness
matrix, [N] is the shape function, f0 is the value of the concentrated load (transient
force), and {q}, {q̇} and {q̈} are displacement, velocity and acceleration vectors,
respectively.

Normally, the mass, stiffness and damping matrices are given as:

[K]e =



k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44



, (21)

where

k11 =
12Db

L3(H+1)2 +
k Ds H2

L(H+1)2 , k12 = k21 =
6Db

L2(H+1)2 +
k Ds H2

2(H+1)2 ,

k13 = k31 =
−12Db

L3(H+1)2 −
k Ds H2

L(H+1)2 , k14 = k41 =
6Db

L2(H+1)2 −
k Ds H2

2(H+1)2 ,

k22 =

(
Db

L
+

3Ds

L(H+1)2

)
+

kDsH2L
4(H+1)2 , k23 = k32 =

−6Db

L2(H+1)2 −
kDsH2

2(H+1)2 ,

k24 = k42 =

(
−Db

L
+

3Ds

L(H+1)2

)
+

kDsH2L
4(H+1)2 , k33 =

12Db

L3(H+1)2 +
kDsH2

L(H+1)2 ,

k34 = k43 =
−6Db

L2(H+1)2 −
k Ds H2

2(H+1)2 , k44 =
Db

L
+

3Db

L(H+1)2 +
k Ds H2 L
4(H+1)2 ,

[me] =



m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



, (22)

where

m11 =
6I22

5L(H + 1)2 +
I11L

(
70H2 + 147H + 78

)
210(H + 1)2 ,

m12 = m21 = −
I22(5H − 1)
10(H + 1)2 +

I11L2
(
35H2 + 77H + 44

)
840(H + 1)2 ,

m13 = m31 = −
6I22

5L(H + 1)2 +
I11L2

(
35H2 + 63H + 27

)
210(H + 1)2 ,



Transient analysis of transversely functionally graded Timoshenko beam (TFGTB) . . . 309

m14 = m41 = −
I22(5H − 1)
10(H + 1)2 −

I11L2
(
35H2 + 63H + 26

)
840(H + 1)2 ,

m22 =
I11L3

840(H + 1)2 +
I11L3

120
+

I22L
(
−5H2 + 5H + 1

)
30(H + 1)2 ,

m23 = m32 =
I22(5H − 1)
10(H + 1)2 +

I11L2
(
35H2 + 63H + 26

)
840(H + 1)2 ,

m24 = m42 =
I11L3

840(H + 1)2 −
I11L3

120
−

I22L
(
−5H2 + 5H + 1

)
30(H + 1)2 ,

m33 =
6I22

5L(H + 1)2 +
I11L

(
70H2 + 147H + 78

)
210(H + 1)2 ,

m34 = m43 =
I22(5H − 1)
10(H + 1)2 −

I11L2
(
35H2 + 77H + 44

)
840(H + 1)2 ,

m22 =
I11L3

120
+

I11L3

840(H + 1)2 +
I22L

(
10H2 + 5H + 4

)
30(H + 1)2 ,

where L is element length

H =
12Db

k Ds L2 ,

Db =

∫
A

z2E(z)d A, Ds =

∫
A

G(z)d A,

I11 =

∫
A

ρ(z)d A, I22 =

∫
A

z2ρ(z)d A,

d A = b d z

while the dampingmatrix [C] is Rayleigh-type damping [34] and can be represented
as a linear combination of mass and stiffness matrices as:

[C] = α [M] + β [K] , (23)

where α and β are proportionality factors which depend on the material types.

3. Free vibration analysis

Generally, the governing equation of the free vibration of the beam (no external
load) can be expressed as [34],

[M] {q̈} + [K] {q} = {0} . (24)
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The general dynamic response can be generally given by a sinusoidal form as:

{qi } = {ϕi } sinωit; i = 1, 2, . . . , k, (25)

where k, {ϕi } and ωi are the system total degrees of freedom, mode shape vector
of

{
ith
}
vibration mode, and the corresponding natural frequency, respectively(

[K] − ω2
i [M]

)
{ϕi } = {0} . (26)

4. Numerical results

4.1. Verification of the present results

The geometrical and mechanical property of the Timoshenko beam steel is
regrouped in Table 1. The results of the approaches of exact, finite element method
and spectral element analysis as Ref. [33] are regrouped in Table 2.

Table 1.
Properties of the beam [33]

L [m] b [m] h [m] ν E [MPa] G [MPa] ρ [kg/m3] k

1 0.05 0.15 0.305 207·109 79.3·109 76.5·103 5/6

Table 2 illustrates the first five fundamental frequencies obtained using exact,
FEM, and spectral element analyses for simply supported boundary condition. In
general, a good agreement has been noticed between frequencies of the present
study and the results from Ref [33].

Table 2.
First five frequencies using various methods (rad/s)

Mode 1 2 3 4 5

Ref. [33] 677.8829 2473.3231 4947.9316 7776.1021 10776.4430

Exact 677.8829 2473.3231 4947.9316 7776.1021 10776.4430

Present work 677.8900 2473.4021 4948.0000 7778.1021 10778.0065

4.2. Vibration modes

The beam is made of alumina (Al2O3) and steel metal. Their properties are
presented in Table 3. Three mode shapes of the FGM Timoshenko beam for a
simply supported and cantilever boundary conditions are illustrated in Fig. 4 and
Fig. 5. The results are produced using finite element method for (h/l = 0.15) and
5/6 for both slenderness ration and cross sectional shape factor, respectively. It is
noted that finite element method exactly predicts the mode shapes of the FGM
beam. The first mode shapes for both cases are simply bending modes and become
more complicated with increasing the mode number.
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Table 3.
Material properties of the functionally graded material beam constituent Ref. [32]

Material
Property

Young modulus (E) Density (ρ) Poisson’s ratio (ν)

Steel 210 GPa 7800 kg/m3 0.3

Alumina (Al2O3) 390 GPa 3960 kg/m3 0.3

Fig. 4. Transversal vibration of the first three modes for S-S beam

Fig. 5. Transversal vibration of the first three modes for C-F beam
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4.3. Transient analysis

In this section, transient response of the FGM beam is illustrated for different
values of gradient index (n) and slenderness ratio (L/h). For convenience, the
effects will be presented in separate sections.

4.3.1. Effect of power law index

Figs. 6–9 present the response of a cantilever beam at various power indices for
a step input force of 50 N. It is shown that the power index plays a critical function for
the assessment of the transient response of the cantilever FGM beam. It is observed
that the displacement response and the time required for steady state increased with

Fig. 6. Transient response of C-F beam with 50 N impulse force (n = 0)

Fig. 7. Transient response of C-F beam with 50 N impulse force (n = 0.5)
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Fig. 8. Transient response of C-F beam with 50 N impulse force (n = 1)

Fig. 9. Transient response of C-F beam with 50 N impulse force (n = 2)

the power law index (direct relationship). The smaller power law index, the smaller
displacement and time for steady-state response. The reason of this effect is the
dominance of Al2O3 properties for smaller values of the power index-over steel
properties (the respected reader is referred to effective stiffness equation). Al2O3
domination results in a higher structural stiffness of the FGM beam and hence
provides a stiffer beam and higher damped frequencies, as presented in Fig. 7.

Figs. 10–13 show the effect of power law index for both cantilever and simply
supported beam. It is noticed obviously that transient response increases as the
index increases due to the domination of the metal of the lower stiffness over the
one of the material of higher metal. Furthermore, it is important to notice that
the difference in the transient response with an increase in the power law index
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Fig. 10. Transient response of
S-S beam for (L/h = 0.06 and

n = 0.5, 1)

Fig. 11. Transient response of
S-S beam for (L/h = 0.06 and

n = 2, 5)

Fig. 12. Transient response of
C-F beam for (L/h = 0.06 and

n = 0.5, 1)
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Fig. 13. Transient response of C-F beam for (L/h = 0.06 and n = 2, 5)

increases for both beam boundary conditions. However, the trend of percentage
increase for the C-F beam is higher than that corresponding in S-S. In addition, the
simply supported FGM beam shows more stable response than the cantilever FGM
beam due to the beam constraint and the structural damping effect.

4.3.2. Effect of slenderness ratio

Figs. 14–17 present the effect of slenderness ratio on the transient analysis
and steady-state time response. It is noted that peak displacement and the time
required for the steady-state decreased with increasing the slenderness ratio due

Fig. 14. Transient response of C-F beam for (L/h = 0.03) with (n = 0)



316 Salwan Obaid Waheed Khafaji, Mohammed A. Al-Shujairi, Mohammed Jawad Aubad

Fig. 15. Transient response of
C-F beam for (L/h = 0.06)

with (n = 0)

Fig. 16. Transient response of
C-F beam for (L/h = 0.09)

with (n = 0)

Fig. 17. Transient response of
C-F beam for (L/h = 0.12)

with (n = 0))
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to the increase of the cross sectional area and the second moment of area of the
FGM beam, thereby, increasing the stiffness of the beam and getting a stiffer FGM.
In addition, the combined effect of increasing the stiffness and mass matrix, due
to the increase of the cross sectional area, is the main reason for increasing the
damped frequency and the steady state time.

For the simply supported FGM beam, lower transient response and steady state
time is noticed, as shown in Figs. 18–21, due to the support conditions which make
the FGM stiffer, thereby, minimum time response is noticed. While the increasing
in the slenderness ratio is constant (0.03 for each step), the rate of the transient

Fig. 18. Transient response of S-S beam for (L/h = 0.03) with (n = 0)

Fig. 19. Transient response of S-S beam for (L/h = 0.06) with (n = 0)
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Fig. 20. Transient response of S-S beam for (L/h = 0.09) with (n = 0)

Fig. 21. Transient response of S-S beam for (L/h = 0.12) with (n = 0)

response for both beams isn’t constant. In other words, the rate of reduction in
the response for the C-F beam is higher than that corresponding in the S-S beam,
which means that slenderness effect is predominant for the C-F beam.

5. Conclusions

In this study, transient analysis of Timoshenko Transversely Functional Graded
(TTFG) beam is studied and solved by finite element method along with Timo-
shenko beam theory. Classical mixture rule for description of the variation of the
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properties in the transverse direction of the beam is used. The effect of several
parameters on the transient response of the beams is studied and the results are
discussed. Some conclusions are drawn from the results, and the most important
ones can be showed as:

1. The transient response of the TTFG beam is well predicted by the FE
method for different B-Cs.

2. A significant effect is noticed in the transient response of both simply
support and cantilever beams at smaller values of the gradient index.

3. Although the increase in the power law index and slenderness ratio is
constant, step of 0.5 and 0.03, respectively, the percentage decrease and
increase in the transient response, respectively, are not constant.

4. While power law index and slenderness ratio exert a noticeable effect on
the peak response, the type of beam constraint plays the major impact in
that response. The response of the C-F beam is more sensitive on variations
of the above parameters.

Manuscript received by Editorial Board, December 23, 2019;
final version, July 06, 2020.

References

[1] B.V. Sankar. An elasticity solution for functionally graded beams. Composites Science and
Technology,61(5):689–96, 2001. doi: 10.1016/S0266-3538(01)00007-0.

[2] M. Şimşek. Static analysis of a functionally graded beam under a uniformly distributed load by
Ritz method. International Journal of Engineering and Applied Sciences, 1(3):1–11, 2009.

[3] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration
analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi:
10.1016/j.matdes.2008.05.015.

[4] A. Chakrabarty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis
of functionally gradedmaterials. International Journal of Mechanical Sciences, 45(3):519–539,
2003. doi: 10.1016/S0020-7403(03)00058-4.

[5] M. Al-Shujairi and Ç. Mollamahmutoğlu. Dynamic stability of sandwich functionally graded
micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Struc-
tures, 201:1018–1030, 2018. doi: 10.1016/j.compstruct.2018.06.035.

[6] H.T. Thai and T.P. Vo. Bending and free vibration of functionally graded beams using various
higher-order shear deformation beam theories. International Journal of Mechanical Sciences,
62(1):57–66, 2012. doi: 10.1016/j.ijmecsci.2012.05.014.

[7] M. Al-Shujairi and Çağrı Mollamahmutoğlu. Buckling and free vibration analysis of func-
tionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain
gradient theory in conjunctionwith higher order shear theories under thermal effect.Composites
Part B: Engineering, 154:292–312, 2018. doi: 10.1016/j.compositesb.2018.08.103.

[8] M. Şimşek and M. Al Shujairi. Static, free and forced vibration of functionally graded (FG)
sandwich beams excited by two successive moving harmonic loads. Composites Part B:
Engineering,108:18–34, 2017. doi: 10.1016/j.compositesb.2016.09.098.

[9] M. Aydogdu and V. Taskin. Free vibration analysis of functionally graded beams
with simply supported edges. Materials & Design, 28(5):1651–1656, 2007. doi:
10.1016/j.matdes.2006.02.007.

https://doi.org/10.1016/S0266-3538(01)00007-0
https://doi.org/10.1016/j.matdes.2008.05.015
https://doi.org/10.1016/S0020-7403(03)00058-4
https://doi.org/10.1016/j.compstruct.2018.06.035
https://doi.org/10.1016/j.ijmecsci.2012.05.014
https://doi.org/10.1016/j.compositesb.2018.08.103
https://doi.org/10.1016/j.compositesb.2016.09.098
https://doi.org/10.1016/j.matdes.2006.02.007


320 Salwan Obaid Waheed Khafaji, Mohammed A. Al-Shujairi, Mohammed Jawad Aubad

[10] M. Şimşek and T. Kocatürk. Free and forced vibration of a functionally graded beam subjected
to a concentrated moving harmonic load. Composite Structures, 90(4):465–473, 2009. doi:
10.1016/j.compstruct.2009.04.024.

[11] K.K. Pradhan and S. Chakrabaty. Free vibration of Euler and Timoshenko functionally graded
beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51:175–184, 2013. doi:
10.1016/j.compositesb.2013.02.027.

[12] Y. Yang, C.C. Lam, K.P. Kou, and V.P. Iu. Free vibration analysis of the functionally graded
sandwich beams by a meshfree boundary-domain integral equation method. Composite Struc-
tures, 117:32–39, 2014. doi: 10.1016/j.compstruct.2014.06.016.

[13] L.L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of
a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced
Materials and Structures, 16(6):488–502, 2009. doi: 10.1080/15376490902781175.

[14] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different
higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi:
10.1016/j.nucengdes.2009.12.013.

[15] M. Şimşek.Bi-directional functionally gradedmaterials (BDFGMs) for free and forced vibration
of Timoshenko beams with various boundary conditions. Composite Structures, 133:968–78,
2015. doi: 10.1016/j.compstruct.2015.08.021.

[16] J. Yang, Y. Chen, Y. Xiang, and X.L. Jia. Free and forced vibration of cracked inhomogeneous
beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1–2):166–
181, 2008. doi: 10.1016/j.jsv.2007.10.034.

[17] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of layered
functionally graded beams: a theoretical model and its experimental validation. Composite
Structures, 82(3):390–402, 2008. doi: 10.1016/j.compstruct.2007.01.019.

[18] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with
edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.

[19] A. Doroushi, M.R. Eslami, and A. Komeili. Vibration analysis and transient response of an
FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation
theory. Journal of Intelligent Material Systems and Structures, 22(3):231–243, 2011. doi:
10.1177/1045389X11398162.

[20] M.J. Aubad, S.O.W. Khafaji, M.T. Hussein, and M.A. Al-Shujairi. Modal analysis and transient
response of axially functionally graded (AFG) beam using finite element method. Materials
Research Express, 6(10):1065g4, 2019. doi: 10.1088/2053-1591/ab4234.

[21] Z. Su, G. Jin, and T. Ye. Vibration analysis and transient response of a functionally graded
piezoelectric curved beam with general boundary conditions. Smart Materials and Structures,
25(6):065003, 2016. doi: 10.1088/0964-1726/25/6/065003.

[22] A. Daga, N. Ganesan, and K. Shankar. Transient dynamic response of cantilever magneto-
electro-elastic beam using finite elements. International Journal for Computational Methods in
Engineering Science and Mechanics, 10(3):173–185, 2009. doi: 10.1080/15502280902797207.

[23] Z.N. Li, Y.X. Hao, W. Zhang, and J.H. Zhang. Nonlinear transient response of functionally
graded material sandwich doubly curved shallow shell using new displacement field. Acta
Mechanica Solida Sinica, 31(1):108–126, 2018. doi: 10.1007/s10338-018-0008-8.

[24] Y. Huang and Y. Huang. A real-time transient analysis of a functionally graded material plate
using reduced-basis methods.Advances in Linear Algebra & Matrix Theory, 5(3):98–108, 2015.
doi: 10.4236/alamt.2015.53010.

[25] T. Yokoyama. Vibrations and transient response of Timoshenko beams resting on elastic foun-
dation. Ingenieur Archiv, 57:81–90, 1987. doi: 10.1007/BF00541382.

[26] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud. Free vibration characteristics of a function-
ally graded beam by finite element method. Applied Mathematical Modelling, 35(1):412–425,
2011. doi: 10.1016/j.apm.2010.07.006.

https://doi.org/10.1016/j.compstruct.2009.04.024
https://doi.org/10.1016/j.compositesb.2013.02.027
https://doi.org/10.1016/j.compstruct.2014.06.016
https://doi.org/10.1080/15376490902781175
https://doi.org/10.1016/j.nucengdes.2009.12.013
https://doi.org/10.1016/j.compstruct.2015.08.021
https://doi.org/10.1016/j.jsv.2007.10.034
https://doi.org/10.1016/j.compstruct.2007.01.019
https://doi.org/10.1016/j.compstruct.2007.03.006
https://doi.org/10.1177/1045389X11398162
https://doi.org/10.1088/2053-1591/ab4234
https://doi.org/10.1088/0964-1726/25/6/065003
https://doi.org/10.1080/15502280902797207
https://doi.org/10.1007/s10338-018-0008-8
https://doi.org/10.4236/alamt.2015.53010
https://doi.org/10.1007/BF00541382
https://doi.org/10.1016/j.apm.2010.07.006


Transient analysis of transversely functionally graded Timoshenko beam (TFGTB) . . . 321

[27] S. Taeprasartsit. Nonlinear free vibration of thin functionally graded beams using the
finite element method. Journal of Vibration and Control, 21(1):29–46, 2015. doi:
10.1177/1077546313484506.

[28] N. Pradhan and S.K. Sarangi. Free vibration analysis of functionally graded beams by finite
element method. IOP Conference Series: Materials Science and Engineering, 377:012211,
2018. doi: 10.1088/1757-899X/377/1/012211.

[29] N. Fouda, T. El-Midany, and A.M. Sadoun. Bending, buckling and vibration of a functionally
graded porous beam using finite elements. Journal of Applied and Computational Mechanics,
3(4):274–282, 2017. doi: 10.22055/jacm.2017.21924.1121.

[30] L.L. Jing, P.J. Ming, W.P. Zhang, L.R. Fu, and Y.P. Cao. Static and free vibration analysis
of functionally graded beams by combination Timoshenko theory and finite volume method.
Composite Structures, 138:192–213, 2016. doi: 10.1016/j.compstruct.2015.11.027.

[31] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded
beams based on the first-order shear deformation theory. Composites Part B: Engineering,
109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.

[32] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibra-
tion analysis of functionally graded beams. Composite Structures, 106:854–862, 2013. doi:
10.1016/j.compstruct.2013.06.029.

[33] Z. Friedman and J.B. Kosmatka. An improved two-node Timoshenko beam finite element.
Computers & Structures, 47(3):473–481, 1993. doi: 10.1016/0045-7949(93)90243-7.

[34] Y.H. Lin. Vibration analysis of Timoshenko beams traversed by moving loads. Journal of
Marine Science and Technology. 2(1):25–35, 1994.

https://doi.org/10.1177/1077546313484506
https://doi.org/10.1088/1757-899X/377/1/012211
https://doi.org/10.22055/jacm.2017.21924.1121
https://doi.org/10.1016/j.compstruct.2015.11.027
https://doi.org/10.1016/j.compositesb.2016.10.039
https://doi.org/10.1016/j.compstruct.2013.06.029
https://doi.org/10.1016/0045-7949(93)90243-7

	Introduction
	Theoretical concept
	Material properties
	Equation of motion
	Finite element formulation

	Free vibration analysis
	Numerical results
	Verification of the present results
	Vibration modes
	Transient analysis
	Effect of power law index
	Effect of slenderness ratio


	Conclusions

