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Abstract

Breath analysis has attracted human beings for centuries. It was one of the simplest methods to detect

various diseases by using human smell sense only. Advances in technology enable to use more reliable

and standardized methods, based on different gas sensing systems. Breath analysis requires the detection

of volatile organic compounds (VOCs) of the concentrations below individual ppm (parts per million).

Therefore, advanced detection methods have been proposed. Some of these methods use expensive and

bulky equipment (e.g. optical sensors, mass spectrometry – MS), and require time-consuming analysis. Less

accurate, but much cheaper, are resistive gas sensors. These sensors use porous materials and adsorption-

desorption processes, determining their physical parameters. We consider the problems of applying resistive

gas sensors to breath analysis. Recent advances were underlined, showing that these economical gas sensors

can be efficiently employed to analyse breath samples. General problems of applying resistive gas sensors are

considered and illustrated with examples, predominantly related to commercial sensors and their long-term

performance. A setup for collection of breath samples is considered and presented to point out the crucial

parts and problematic issues.
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1. Introduction

Resistive gas sensors were introduced more than 30 years ago and are commonly applied
in industry, safety, and food analysis systems because of numerous reasons. The sensors are

relatively fast, low-cost, and reliable elements. They require low power consumption and DC
resistance measurement as an output signal. The sensors may operate for a few years without

any specific maintenance. Periodical cleansing by pulse overheating is usually sufficient for their

continuous operation. Other gas sensing techniques can be more accurate and selective but are
often much more expensive and require bulky apparatus. An overview of various gas sensing

methods can be found elsewhere [1].

The sensors are made of porous metal-oxide material (e.g. SnO2, WO3, TiO2, ZnO, In2O3),
activated for gas sensing at elevated temperature, up to about 450◦C. The mechanism of gas
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sensing is based on the process of adsorption-desorption.Ambient gas replaces oxygen molecules
on the surface of porous material and changes its DC resistance between the terminals [2]. This

process depends on operating temperature and gas molecules present in ambient atmosphere.

It depends on the size of grains used in the porous sensing materials and can accelerate for
nanoparticle mono-sized grains [3]. Sensitivity and selectivity of the gas sensing layers depend

on the applied material, operating temperature and possible additives of noble metals to the
metal-oxide material [4]. Therefore, a change of the operating temperature is the simplest way

to modify the rate of the adsorption-desorption process for a detected ambient gas and, as a

result, to change sensitivity to the gas. Sensitivity can also be improved by applying a heat pulse
increasing temperature for a short time interval. A pace of dynamic changes of DC resistance

is characteristic for different gases. Another popular method applies additives of noble metals

to catalyse the adsorption-desorption process. The mentioned methods improve selectivity and
sensitivity of resistive gas sensors, but these parameters still require improvement.

Further enhancement may be done by considering low-frequency resistance fluctuations as
an additional source of information about the ambient atmosphere [5, 6]. Mechanisms of noise

generation are independent of the mechanisms determining DC resistance. Low-frequency noise

intensity depends on potential barrier fluctuations and requires less energy to be modified than
DC resistance [7]. Low-frequency noise intensity can be even a few hundred times more sensitive

to selected gases than DC resistance [3]. Moreover, the noise power spectrum is a vector and

can be more informative than a single value of DC resistance only. It detects even components
of a mixture of gases by an enhanced detection algorithm [8]. We can apply statistical functions

other than the power spectrum (e.g. bi-spectrum) to improvedetection by low-frequency resistance
fluctuations [9]. There is the experimental evidence that two-dimensional materials (e.g. graphene

flakes) can use low-frequency noise to improve gas sensitivity [10]. Voltage noise measurements

require a low-noise sensitive measurement setup. Commercial gas sensors, having DC resistance
up to hundreds of kΩ, can be applied in cheap and simplified electronic systems using this

method [11]. Higher DC resistances require a more complicated measurement setup, but can

be still used in practical applications. Similar units were used in a prototype breath analysis
system [12]. This system was applied to analysing samples collected by using an adsorbent,

preserving the VOCs for 2–3 months in a refrigerator, and further releasing them to a glass vial
by heating in an oven. The setup was also used to analyse the breath samples exhaled by patients

during a medical check-up.

Some gas sensing layers exhibit the photocatalytic effect (e.g. WO3, TiO2) which can also
be used to modulate their physical properties, as the above-mentioned changes of operating

temperature. Additional energy of light irradiation can decrease operating temperature and induce

better gas selectivity when the energy level is adequately selected. The high-energy UV light was
often used for cleansing selected gas sensing layers [13]. The influence of UV light depends on the

morphology of gas sensing layer (its porosity determining a depth where UV light induces serious
changes of adsorption rate and spectral parameters, such as absorption or reflection). Therefore,

its application to enhanced gas sensing looks very promising. There are various UV LEDs of

different UV wavelengths which can improve selectivity of resistive gas sensing layers similarly
as dopants of noble metals. All mentioned problems limit possible applications of resistive gas

sensors to breath analysis. On the other hand, a significant decrease of production costs of such

commercial gas sensors and their sensitivity to some VOCs being markers of different diseases
(e.g. Ethanol, Ammonia, Acetone, CO, NOx, SOx, H2S, etc. [14, 15]) has improved the situation.

More than two thousands of different VOCs in exhaled breath have been identified by mass

spectrometry (MS) for various diseases [16, 17]. Composition of the identified VOCs for some

illnesses is a unique one and can be used to diagnose several diseases by less time-consuming
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methods than the MS method. Only tens of the emitted VOCs are indicative of selected illnesses.
A few papers published detailed research results based on data sets of up to a few hundreds of

patients [17, 18]. A new generation of resistive gas sensors is much cheaper, uses less gas sensing

material, and requires lower energy consumption. A few companies offer such sensors (e.g. SGX
Sensortech, Figaro, Micralyne, Bosch Sensortec, Sintef) [19]. Their cost of production is often

below 1$. The size of an array of gas sensors based on MEMS (micro-electro-mechanical systems)
technology is similar to a surface-mounted resistor and is usually offered with a necessary digital

interface to be connected to a computer system without any additional elements. A few tens of

mW is required for their continuous operation. Their gas sensing layer is only a few microns thick.
It means that the MEMS technology reduced even a thousand times the energy consumption of

commercial gas sensors and enabled their application in smartphones to air pollution monitoring.

These advantages should begin their massive applications, also if their measurement accuracy in
smartphone applications stays limited.

2. Methods and materials enhancing gas sensing

The layers of golden nanoparticles, functionalized with organic ligands [20, 21], are more

selective to different VOCs than the commercial gas sensors, made of metallic oxides. These new
resistive sensors can operate at room temperature. The golden nanoparticles provide conductivity.

The organic ligand provides sites for the sorption of the VOCs of interest and works as iden-

tification elements. It means that such sensors can selectively attract the VOCs, also with their
concentration below ppb level. This feature is desirable. Unfortunately, high selectivity immobi-

lizes the organic receptors occupied by the attracted VOCs. This effect often means permanent

capturing the detected VOCs and might poison the sensor or prolong its recovery time.

Numerous studies on other resistive nanomaterials are reported. Nanoparticles, silicon nano-

wires or carbon nanotubes are successfully used for gas sensing. These materials are expanded
and can be used to detect deficient concentrations of VOCs (e.g. by graphene flakes using flicker

noise [10]). Unfortunately, these materials are not available as commercial sensors.

The main drawbacks of resistive gas sensors are related to their specific behaviour.The sensors
exhibit drift of their DC resistance during their operation. This effect can be reduced by heat-

pulse cleansing (e.g. by applying higher voltage to the heater for at least a few seconds) or

considering only relative changes of DC resistance for gas detection. We have to calibrate the
sensors systematically if cleansing is not applied. Otherwise, by assuming a trend component in

the observed DC resistances, we can apply a method reducing this component as proposed for
slowly changing measurement results [22].

Another drawback of resistive gas sensors is their non-linear response to crossing gases

(the gases present in ambient atmosphere of a gas sensor but beyond the need for detection).
The recorded DC resistance is a single value and can be modified by different gases of various

concentrations. A breath sample is a mixture of different compounds. Therefore, their response

depends on the presence of different gases. Resistive gas sensors are susceptible to humidity, and
their response can be modified by its changes in a similar way as by exhaled VOCs of gases.

The influence of moisture may be reduced by including its recorded values by an additional
sensor into the detection algorithm to be convinced about its limited effect. We can also remove

humidity before analysis of exhaled breath. It requires additional preparation of the breath sample

(e.g. by using an adsorbent that does not preserve moisture). The enumerated drawbacks limit the
accuracy of breath sample analysis, but the resistive gas sensors can be successfully applied for

this aim [23].
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The presented methods of enhancing gas sensing by resistive layers are quite constrained.
Therefore, we apply an array of resistive gas sensors of different, but again limited, selectivity

for given gases. The array requires parallel measurements of DC resistances, but they can be

performed with the use of the same measurement setup. The array of gas sensors can be prepared
using the MEMS technology with reduced energy consumption, as a tiny electronic chip (e.g.

MiCS-6814 produced by SGX Sensortech). A block diagram of the gas sensing system detecting
VOCs is presented in Fig. 1. A set of N independent gas sensors is used to identify the VOCs

of interest. Their sensitivity values to different VOCs overlap, but the applied data processing

reduces this effect. All sensors require a voltage bias and electronic units to modulate their
physical properties. The DC resistances can be preliminarily processed. It should minimize the

influence of other factors, like drift or humidity, on the sensor response. The most straightforward

processing requires evaluation of DC resistance difference, its relative value or normalization
(module or absolute value). The relation between gas concentration and DC resistance can be

approximated by an exponential function. Therefore, employing a logarithm of the measured DC
resistance is the simplest way to linearize the dependence of gas concentration on the measured

parameters.

Fig. 1. A block diagram of the gas sensing system using resistive gas sensors.

These new quantities, obtained from DC resistances after necessary preliminary processing,

form a data vector and are used for further processing as the input data vector (Fig. 2). Various

Fig. 2. Data processing applied to the array of resistive gas sensors.
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detection algorithms can be used to determine a medical diagnosis. It is necessary to build a model
by using the test data and a known medical diagnosis determined by a reference method (e.g. by a

red blood test). A decision about medical diagnosis is undertaken by comparing the results with

the results from the knowledge base.
A rate of correct medical diagnoses depends on the entire breath sampling process and a

selected detection algorithm. Our paper presents details of the breath sample collection, neces-
sary data processing, and detection algorithm. We conclude that the presented setup applying a

commercial MEMS resistive gas sensor can be used for an early medical check-up. Its further

improvement can be reached by introducing more selective gas sensors, based on nanomaterials.

3. Breath analysis setup

Breath samples have to be correctly collected to ensure as high as possible concentration
of VOCs, characteristic for the examined disease [12]. The simplest method of assuring high

concentration of VOCs is to use the tidal volume of exhaled breath when the squeezed bronchial

vesicles emit the VOCs. They can be collected automatically by measuring the pressure of the
blown air. The electronically controlled valve opens the gas chamber when the pressure drops, and

the micropump shifts the tidal volume to the gas chamber with an array of gas sensors (Fig. 3).

Such a system was proposed and built as a part of a smartphone (www.sniffphone.eu) to detect
gastric cancer, which has a specific set of VOCs of relatively high intensity. The presented solution

can be easily applied during a medical check-up by blowing, without any additional breath sample

preparation. Another method uses an adsorbent to preserve the exhaled VOCs. The analysis is
made after heating the adsorbent to 200◦C for 10–15 min. and then releasing the adsorbed VOCs.

A selected heating temperature does not affect the VOCs present in the breath sample.

Fig. 3. A block diagram of the breath sample analysis system.

The applied gas chamber was of 20 ml volume, and the gas sensor required about 400 s to
saturate its resistance. It means that performing a medical diagnosis should be possible after

a few minutes. The gas chamber started to be ventilated by room air after about 850 s from

the beginning of the measurement. The sensor recovered to its original conditions after about
additional 1000 s. The example presents the data (Fig. 4) collected in a hospital in Cucuta,

Colombia, at room temperature of 30◦C and relative humidity of 60%. A noticeable difference

between two patients (the healthy one and the infected one with dengue fever) was observed.
The exhaled breaths induced different responses and recovery times, and relative changes of DC

resistance. Similar differences were observed for the examined series of patients. Only some of the
applied commercial resistive gas sensors responded to the VOCs induced by the examined illness.

This result is significant because it is very promising for developing a fast medical diagnosis done

at limited costs.
All differences can be utilized by detection algorithm to give correct diagnoses. The presented

time series can be considered as common examples for the resistive gas sensors. We can allege
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that the differences between the experimental data relate only to the shapes of the recorded time
series (on and off slopes, area, peak height, etc.).

DC resistance of each gas sensor is measured and saved for further processing. We can propose
different detection algorithms of various computational complexity. The simplest methods can

employ a tiny processor controlling the measurement setup, but of a limited computing power.
The up-to-date technology can use cloud computing of the recorded data after necessary pre-

processing, reducing the number of data samples transmitted to the cloud.

4. Data processing methods

Data processing is carried out by analysing the recorded time series of DC resistances. An

example of time series of relative values of the recorded DC resistances of an MiCS 6814 sensor
(NH3 sensor, SGX Sensortech Limited, UK) is shown in Fig. 4. The moment of recording the

tidal volume is marked as “Sample injection”.

Fig. 4. An example of responses of a resistive gas sensor exposed to exhaled breath samples.

Various methods of the recorded data processing for medical diagnosis can be used. A review
of the most popular methods can be found elsewhere [24]. Some ways are available in MATLAB

software, statistics and machine learning toolbox. The toolbox helps select the most promising

method by analysing the introduced data and determining the way that gives the best results.
Unfortunately, we generally cannot determine which algorithm is the optimal one. We have some

overall suggestions about pre-processing to ensure acceptable detection results. Some of the

suggested methods are presented in Fig. 2, but we have to consider others as well. In general,
the recorded time series of DC resistances can include additive noise or interference (periodic

or random pulses) which should be filtered out before further processing. Different filtering
methods can be applied, like low-pass filtering, moving average filtering, Kalman filtering, or

Savitzky-Golay filtering.

Except for DC resistances, we should extract other features characterizing the recorded time

series (Fig. 2). These features can non-linearly depend on gas concentration . Therefore, the
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linearization of the extracted data is very efficient for the applied detection algorithms. A non-
linear function (e.g. logarithmic, square root) linearize the input data. The pre-processed data

are collected from different gas sensors, and therefore should be distributed differently. Thus, the

operation of scaling is applied to standardize the distribution and mean value of the recorded
parameters. Next, the dimension of the formed data vector should be reduced to expose the most

informative parameters or their linear combination.

Two techniques are used to extract the most informative parameters:

– Principal Components Analysis (PCA), based on obtaining the most varying parameters or

their linear combination by applying the linear transformation of the analyzed data into a

new coordinate system of lower dimensionality;

– Fisher’s Linear Discriminant (LDA), based on classification and finding the maximum
separation between the means of the projected classes.

Both methods assume the unimodal Gaussian density distribution of the sets of parameters.

Finally, the parameters have to be classified to detect (or not) a disease. There are numer-
ous classification algorithms. Neural networks or algorithms considering the distance between

the distributed samples are often used for classification. An overview of popular classification

algorithms for chemical sensing can be found elsewhere [25]. The algorithms require parameter
adjustment and should be carefully selected when a limited dataset is used to build a model.

There is a risk of model overfitting in a similar way as approximation of a dataset by a too high

polynomial.

5. Conclusions

The research problems related to medical diagnosis by exhaled breath analysis are still chal-
lenging. One of the main reasons is a lack of resistive gas sensors with long-term stability, as well

as low concentrations of the detected VOCs. Therefore, the exhaled breath has to be collected

appropriately. Next, the pre-processing and detection methods should be attentively selected to
reduce the stability problems of sensors and an impact of unavoidable environmental changes

during the data collection. These issues were presented in the paper.
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