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Abstract

The possibilities to improve values of the satellite orbit elements by employing the pseudo-ranges and differ-
ences of carrier phase frequencies measured at many reference GPS stations are analysed. An improvement
of orbit ephemeris is achieved by solving an equation system of corrections of the pseudo-ranges and phase
differences with the least-squares method. Also, equations of space coordinates of satellite orbit points
expressed by ephemeris at fixed moments are used. The relation between the accuracy of the pseudo-ranges
and phase differences and the accuracy of the satellite ephemeris is analysed. Formulae for estimation of the
influence of the ephemeris on the measured pseudo-ranges and phase differences and for prediction of the
accuracy of the pseudo-ranges and phase differences were obtained. An influence of the covariance between
single orbit parameters on the accuracy of the pseudo-ranges and phase differences is detected.
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1. Introduction

The modernization and improvement of the Global Navigation Satellite Systems (GNSS) like
GPS, GLONASS, upcoming of COMPASS (BeiDou) and GALILEO, probably QZSS, create the
excellent presumptions to improve performance, safety and precision for geodetic and navigation
purposes in the near future [1–3]. Without any doubts the quality of the satellite ephemeris
and clock parameters plays a vital role ensuring positioning accuracy and integrity [4–11]. Some
authors performed wide practical analysis of signal-in-space ranging errors for all current satellite
navigation systems [12–18]. The satellites orbit errors and clock biases are the keys to precise
point positioning [19–26]. So increasing the positioning precision is the primary goal of GNSS
users.

In this paper the influence of the accuracy of the GPS satellites ephemeris on the accuracy
of the pseudo-range and phase observations from both theoretical and practical perspective will
be analysed. Usually ephemerides are corrected according to pseudo-range, phase and Doppler
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observations [27, 28]. These observations are processed by the least squares method solving a sys-
tem of equations of the pseudo-range and phase observations, when the coordinates of the points
of satellite orbit are expressed by the orbit parameters. Therefore, a correlation between the orbit
parameters occurs, and its influence should be taken into account in performing measurements
and estimating the accuracy of the pseudo-range and phase difference measurements [29–32]. The
stress will be put on the analysis of the influence of the satellite orbit parameters on the accuracy
of the pseudo-range and phase observations. Because different satellite orbit parameters influence
the accuracy of the pseudo-range and phase observations in different degree, it is purposeful to
choose optimal ratios of appropriate parameters. This is advisable in creating linear models of
GPS measurements [28, 33, 34].

2. Theoretical principles

Parametric equation systems based on the measurements of the pseudo-range and phase
differences of carrier oscillations and the number of Doppler cycles will be applied. The obtained
values are functions of the space coordinates of satellites and the points on the earth surface. The
coordinates of satellites at any fixed moment t can be expressed by orbit parameters, so they are
functions of the ephemeris [27, 28]. Following [28] the equations of the pseudo-ranges, phase
differences of carrier oscillations and the number of Doppler cycles can be written:

Rk
j (t) =

√(
Xk(t) − Xj

)2
+

(
Y k(t) − Yj

)2
+

(
Zk(t) − Z j

)2
+ cδt, (1)

λjΦ
k
j (t) =

√(
Xk (t) − Xj

)2
+

(
Y k(t) − Yj

)2
+

(
Zk(t) − Z j

)2
− λjN

k
j + c∆δ(t), (2)

λjN12 =

√(
Xk (t2) − Xj

)2
+

(
Y k(t2) − Yj

)2
+

(
Zk(t2) − Z j

)2
−

−

√(
Xk (t1) − Xj

)2
+

(
Y k(t1) − Yj

)2
+

(
Zk(t1) − Z j

)2
+

(
fj − f k

)
(t2 − t1) λj ,

(3)

where Rk
j
(t) – the pseudo-range between satellite k at a fixed moment t and a GPS receiver

on an earth point j; Xk (t), Yk(t), Zk(t) – coordinates of the satellite in the rectangular geo-
centric coordinate system; Xj , Yj , Z j – geocentric coordinates of the GPS receiver; c – the
speed of electromagnetic oscillations in vacuum; δt – correction of the GPS receiver clock,
∆δ(t) = δj (t) − δ

k(t), Φk
j
(t) – a phase difference at moment t of oscillations transmitted from

satellite k and received by GPS receiver on point j; Nk
j

– the initial number of round cycles;
λ – wavelength L1 or L2 of the carrier oscillations; N12 – the number of Doppler cycles during a
period (t2 − t1). Both equations should be defined for L1 and L2.

The coordinates of a satellite in the rectangular geocentric coordinate system can be expressed
through orbital parameters as follows [34]:

Xk (t) = r (cos u cos L − sin u sin L cos i) = rφx

Y k(t) = r (cos u sin L + sin u cos L cos i) = rφy

Zk(t) = r sin u sin i = rφz




, (4)

where r – the geocentric satellite distance; u = ω+ v – the argument of latitude;ω – the argument
of perigee; v – the true anomaly; L = Ω − S – the longitude of the orbit ascension node; Ω – the
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rectascense of the ascension node; S – the Greenwich solar time; i – the angle between the planes
of the orbit and the Earth equator.

The geocentric satellite distance could be expressed as follows [28]:

r = a (1 − e cos E) , (5)

where a – the major semi-axis of the orbit; e – the eccentricity of the orbit; E – the eccentric
anomaly.

The eccentric anomaly E can be calculated from the Kepler equation, which is transcendent
and can be solved by the method of iterations:

E − e sin E = M, (6)

and further E1 = M , E2 = M + sin E1, E3 = M + e sin E2, where M – the average anomaly.
The average anomaly can be determined from the equation:

M =
2π

U0
(t − t0) =

√
GM0

a3
(t − t0), (7)

where U0 – the period of making a single orbit by the satellite; t0 – the moment of the satellite
crossing its perigee; G – the gravitational constant; M0 – the Earth mass.

Having pseudo-ranges, phase differences and numbers of Doppler cycles measured from a
number of GPS stations we can write the following system of correction equations:
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where V
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partial derivatives, calculated for a fixed moment t, when the transmitted values of parameters are
known; n – the number of GPS stations. The correction equations are written for a fixed moment
t and for an appropriate satellite k.

In each orbit 4 GPS satellites are flying, what leads to the condition that even in the best
case we can observe two satellites only. The correction equations of the pseudo-ranges and phase
differences of each satellite for a corresponding moment t can be solved by the least square
method independently from the measurements of the pseudo-ranges and phase differences of
other satellites and applying the data of observations obtained from many GPS sites.

The free members can be calculated according to the formulae:
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where Xk
0 , Y k

0 , Zk
0 – geodetic geocentric coordinates of a satellite, calculated according to the

transmitted ephemeris; Xj,0, Yj,0, Z j,0 – geodetic geocentric coordinates of a GPS station; δt – the
correction of GPS receiver clock, calculated from the measured pseudo-ranges.

3. Method

Applying formulae (1), (2), (4), the expressions to calculate the partial derivatives of the
pseudo-ranges and phase differences according to orbit parameters can be written. These calcu-
lations are executed for all moments. So we have:
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The values of partial derivatives of Doppler cycles according to orbit parameters can be
obtained from the formulae (for corresponding moments):
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where the values of coefficients aj1(ti), aj2(ti) for corresponding moments ti are obtained from
formulae (14)–(19). For these calculations approximate values of coordinates of the satellites and
GPS stations can be applied.
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The system of correction equations of the pseudo-ranges, phase differences and numbers of
Doppler cycles can be written In the form of matrixes as follows:

v = Aτ + b, (26)

Nτ + ω = 0, (27)

τ = −N−1ω, (28)

K
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= Kτ = σ

2
0 N−1, (29)

K
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= σ2

0 AN−1 AT, (30)

where A – a matrix of correction coefficients of corresponding systems of equations; N = ATPA

– a matrix of coefficients of normal equations; P – a matrix of weights of correspondingmembers;
τb – vectors of corrections and free parameters; ω = ATPb; K

T̃
, K

R̃
– matrixes of covariance of

the adjusted orbit parameters T̃ and corresponding adjusted members R̃; σ0 – standard deviation
of the measurement result, which weight is equal to unit.

Let us estimate the accuracy of the measured pseudo-ranges and phase differences in depen-
dence on the accuracy of the orbit parameters. The expression of the pseudo-ranges and phase
differences looks like:
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where σ2
R

, σ2
u – symbols of dispersions of corresponding parameters; K(e, a), K(e, E), K(a, E) –

symbols of covariance between corresponding parameters.
There is no correlation between parameters u, λ and i, whereas between parameters a, e, E

a functioning correlation exists. Let us determine the expressions for the covariance values.
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where M – a symbol of mean (expected value), δe, δa – random errors.
A covariance K(e, E):
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The standard deviations of eccentricity e and eccentric anomaly E can be calculated from the
formulae:
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The covariance K(a, E) can be calculated according to the formula:
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4. Results

As an example we will use the data of a GPS station VLNS of the Europe Permanent Network
[35, 36]. The illustration of some data in the form of time series of geodetic geocentric coordinates
is shown in Fig. 1.

Fig. 1. Time series of geodetic geocentric coordinates during the last decade.

For calculations it was assumed that the geodetic geocentric coordinates of the VLNS sta-
tion are:

Xj,0 = 3343600.974 m,

Yj,0 = 1580417.579 m,

Z j,0 = 5179337.091 m.
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Applying the fixed coordinates of a GPS satellite for a single moment according to formulae
(31)–(37) the covariance values will be:

K(e, a) = 8.08 · 10−10,

K(e, E) = 4.38 · 10−15,

K(a, E) = 5.42 · 10−10

and the standard deviations

σe = 8.08 · 10−8,

σE = 5.42 · 10−8,

where:

σa = 0.01 m,

σu = σL = σi = 0.5 · 10−5 rad.

The values of correlation coefficients between orbit elements will be equal to unit, i.e.
r(e, a) = r(e, E) = r(a, E) = 1.0.

The influence of errors of the single-orbit parameters u, L and i on the accuracy of the
pseudo-ranges R and phase differences λΦ is presented in Table 1.

Table 1. Standard deviations of the pseudo-ranges and phase differences due to the influence of the errors of orbit elements.

Standard deviations of the pseudo-ranges and phase differences
Value, mdue to the influence of the errors of orbit elements

Due to the argument of latitude – σRu 0.0002031

Due to the longitude of the orbit ascension node – σRL 0.0003130

Due to the angle between planes of the orbit and the Earth equator – σRi 0.0000030

Due to the orbit major semi-axis – σRa 0.0051905

Due to the orbit eccentricity –σRe 0.0000082

Due to the orbit eccentric anomaly σRE 0.0000000

The influence of the sum of errors of orbit parameters u, L and i on the accuracy of the
pseudo-ranges R, phase differences λΦ and numbers of Doppler cycles λN12 is presented in
Table 2.

Table 2. Standard deviations of the pseudo-ranges, phase differences and numbers of Doppler cycles due to the influence
of the sum of errors of orbit elements.

Standard deviations of the pseudo-ranges, phase differences and numbers
Value, mof Doppler cycles due to the influence of the sum of errors of orbit elements

Due to the sum of orbit element errors (without covariance values) on the pseudo-range – σRp 0.00520

Due to the sum of covariance values on the pseudo-range – σRk 0.00029

Due to the sum of all errors and covariance values on the pseudo-range – σR 0.00521

Due to the sum of orbit element errors (without covariance values) on the number of Doppler cycles – σNp 0.01101

Due to the sum of covariance values on the number of Doppler cycles – σNk 0.00066

Due to the sum of all errors and covariance values on the number of Doppler cycles – σN 0.01103
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Further, having at the same time the measurement results of the pseudo-ranges and phase
differences of the same satellite and many GPS stations, we can construct a system of correction
equations. Solving this system by the least squares method we will receive the most reliable values
of the pseudo-ranges, phase differences and orbit elements.

5. Conclusions

The accuracy of the measured pseudo-ranges and phase differences significantly depends on
the precision of the satellite ephemeris. To estimate this accuracy the formulae (31) to (37) were
derived.

It was proved that the covariance between single-satellite orbit elements has an insignificant
influence on the accuracy of the measured pseudo-ranges, phase differences and numbers of
Doppler cycles.

The biggest influence on the accuracy of the measured pseudo-ranges, phase differences
and numbers of Doppler cycles comes from the errors of the orbit semi-axis a, approaching
σRa = 0.0052 m. The influence of the errors of the argument of latitude u and the longitude
of the orbit ascension node L is by about one order less, equalling to σRu = 0.0002 m and
σRL = 0.003 m. The optimal set of standard deviations of the orbit parameters is as follows:
σu = σλ = σi = 0.25 · 10−5 rad (≈ 0.5′′), σa = 0.001 m, σE = 10−8 rad (≈ 0.002′′).
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