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Abstract

The contradiction between the restriction of grating manufacturing technology and high-resolution measure-
ment requirements has been the focus of attention. The precision requirement of angle calculation during the
digital subdivision processing of a Moiré signal is focused on, the causes of errors in the solution of arcsine
function are analysed, and an improved coordinate rotation digital computer (CORDIC) with double-rotation
iteration is proposed by discussing the principle of the conventional CORDIC in detail herein. Because the
iterative number and data width of the improved CORDIC are limited by the finite digital circuit resources
and thus determine the calculation accuracy directly, subsequently the overall quantization error (OQE) of
the improved CORDIC is analysed. The approximate error and rounding error of the algorithm are deduced,
and the error models of iterative number and data width are established. The validity and application value
of the improved CORDIC are proved through simulations and experiments involving a subdividing circuit.
The corresponding relation between the approximate error, rounding error and iteration number, as well as
the bit width are proved by quantization. The error of subdivision with the improved CORDIC, obtained
through a calibration experiment, is within £0.5”” and the mean variance is 0.2””. The results of the research
can be applied directly to a digital subdivision system to guide the parameter setting in the iterative process,
which is of crucial importance in the quantitative analysis of error separation and error synthesis.

Keywords: grating, digital subdivision, coordinate rotation digital computer, double-rotation, overall quan-
tization error.
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1. Introduction

Grating is a typical linear displacement measurement sensor. The method consists in mea-
surement of linear displacement or rotation angle by the Moiré fringes formed by the relative
displacement between the main grating and the indicating grating. Grating presents significant
advantages of large scale and high resolution and has been widely used in various scientific
and industrial fields, such as incremental and absolute angular encoders, coordinate measuring
machines, angle-measuring standards, robots, CNC machines efc. [1-4].

Copyright © 2020. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, dis-
tribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or
adaptations are made.
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The measurement resolution of grating is determined by the size of grating pitch. Because of
the contradiction between the restriction of grating manufacturing technology and high-resolution
measurement requirements, the subdivision of a Moiré signal has become the focus of attention in
the grating application field. The subdivision methods of Moiré signals can be roughly classified
into two categories: based on the phase and based on the amplitude. The phase-based subdivision
methods mainly include phase-locked frequency multiplier method, carrier modulation method,
wavelet subdivision method efc. [5—7] while amongst the amplitude-based subdivision methods
there are quadruple frequency subdivision, resistance chain subdivision, triangle wave subdivision
and tangent subdivision methods [8—10]. From the perspective of ease of application, the latter
category is more flexible and therefore it is widely used.

In practice, the digital subdivision method, in which digital circuits are employed in the
amplitude-based subdivision method, have been widely used in subdivision systems because of
its simple mechanism, flexibility of parameter adjustment, and convenience of high integration
[11, 12]. The digital subdivision is accomplished based on the relationship between the measured
position and phase of a periodic signal. The accuracy and speed of phase angle calculation are of
crucial importance for digital subdivision [13, 14].

The coordinate rotation digital computer (CORDIC) algorithm, proposed by Jack E. Volder
in 1959 [15] and unified by Walther in 1971 [16], has been widely used in digital circuits for
angle calculation because of its obvious advantages of simple operation and great speed. The
conventional CORDIC can solve such functions as sine, cosine, tangent, arctangent, natural
logarithm, and square root. Meanwhile, a large calculation error exists with arcsine and arccosine
because of the excessive convergence rate of iteration and the inevitable misjudgement of rotation
direction [17].

Focusing on the calculation accuracy of CORDIC, Hu [18] proposed an error evaluation
model of the conventional CORDIC and quantified the error values of sine-cosine and arctangent
functions effectively but did not analyse the effectiveness and quantization error of the conven-
tional CORDIC in calculating the arcsine function. Xie [19] proposed a piecewise correction
formula to improve the calculation accuracy of the conventional CORDIC, but the introduced
division operation of correction formula is a serious constraint on the implementation of an al-
gorithmic circuit. Rajkumar [20] proposed a CORDIC error detection scheme for fixed rotation
angles that effectively evaluated noise. Mazenc [21] and Liu [22] improved the iterative structure
of the conventional CORDIC and calculated arcsine and arccosine functions by appropriate com-
pensation of the modulus correction factor. In the calculation, iteration required more resources,
and resource volume and quantitative error were not analysed.

In this study, we analyse the requirements of angle calculation accuracy in the digital sub-
division of a grating Moiré signal; further, based on the conventional CORDIC, we propose
an improved CORDIC with a double-rotation iterative structure used for the solving of arcsine
function. An overall quantization error (OQE) model was established to analyse the factors in-
fluencing errors. The validity of the OQE model is verified by simulation and experiment and
the error of subdivision with the improved CORDIC is proved by a calibration experiment. The
improved CORDIC proposed herein can be used directly to calculate the phase of grating signal,
and the OQE model can be used to guide the parameter setting in the iterative process.

2. Conventional CORDIC algorithm

2.1. Digital subdivision of grating Moiré signal

The output of a grating sensor is a sine-cosine Moiré signal. The displacement of each grating
pitch corresponds to the period of a sine-cosine signal and the position in one grating pitch

52



\\\Memz.»nmﬂwm,\l? 2% 2620y Noiod; pp 15164
DOI: 10.2442 5.2020.131723

corresponds to the phase, ¢, of the sine-cosine signal. If the periodic subdivision number in one
grating pitch is M, the subdivision number of current position, m, is:

¥

%-M). )

m = int (

An ADC is used to sample the amplitude of the output signal of grating in the digital

subdivision system. The converted amplitude digital signal is calculated by the CORDIC algorithm

to obtain ¢ corresponding to the current measurement position. Subsequently, m is obtained by
(1). The digital subdivision flowchart is shown in Fig. 1.

Grating ADC Angle Calculation Digital
Sensor by CORDIC Subdivision

Fig. 1. A schematic of the digital subdivision flowchart.

According to Fig. 1 and (1), the angular calculation accuracy using the CORDIC algorithm
will directly affect the output accuracy of the digital subdivision system. Angle calculation by
CORDIC is the most basic and critical part of the digital subdivision system.

2.2. Principle of CORDIC

The angle calculation by the conventional CORDIC consists in approximating the target
process through a series of Givens rotations. In the Cartesian coordinate system, the vector (x, y)
to be solved by the unit circle is as follows:

X =cosf @)
y=sinf

The solution is obtaining the position of (x, y) on the unit circle. After the initial vector, v(0),
is rotated i times, the final vector, v(i), and the target vector, (x, y), coincide approximately. The
rotation approximation process is shown in Fig. 2.

0

Fig. 2. A schematic diagram of the principle of CORDIC.
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For the Givens rotation, the Cartesian coordinates of the vector before and after rotation can
be expressed as:

[ x; cosf;_1 —sinf;_; Xi—1
|« . 3)
L Vi sin®;—-;  cosf;_g Yi-1
For the convenience of digital circuit implementation, (3) is converted to:
x; | 1 —tan 6;_ X
[l =cos€,-_1[ ll] ll]. 4)
Vi | tan 6;_ 1 Vi-l

In the conventional CORDIC algorithm, the angle of each rotation is defined as:
g; = arctan27". 5

Because the rotation angles of the conventional CORDIC are quantified to a series of unequal,
constant angles, the angle calculation process by the conventional CORDIC is an approach using
fixed values. Each rotation causes a change in the vector module length. The extension factor, K;,

is definedas: ]

K = . 6
"7 cos 0; ©)
The rotation direction identifier is defined as d;, d; = —1 when the coordinates rotate clock-
wise, while d; = +1 when the coordinates rotate counter-clockwise. The i-th rotation can be
expressed as:
X 1 —d; 270 [ xie
=l VRS "
Yi d;2 1 Yi-1

2.3. Solving arcsine function by CORDIC

To solve the arcsine function for the digital subdivision, an appropriate starting position and
rotation direction judgment must be set in each iteration process. The calculation process is
described as:

onl/l_IlK[

i=

yo=0 , 3
20=0

d; = sign(Amp; — y;)

Amp is an amplitude of the Moiré signal sampled by the ADC in the grating subdivision
system. The direction of the next rotation is obtained by continuous comparing with the y
coordinate. After execution of the iteration process n times, the orientation vector, (x, y), can be
approximated with a small error; thus, the angle value of arcsine, 8, can be obtained by z,,. Fig. 3
shows the calculation error of arcsine function calculated by the conventional CORDIC, obtained
using MATLAB when n = 15. The calculation error is defined as the difference between the
arcsine angle value calculated by CORDIC algorithm and the theoretical phase value for a given
sine.

As shown in Fig. 3, the conventional CORDIC exhibits a large calculation error in some angle
intervals. The primary reason is that in the iterative process the vector modulus length increases
gradually because of the extension factor K;, while the target vector modulus length is fixed. This
rotation iteration method causes a misjudgement of the rotation direction and results in a larger
calculation error.
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Fig. 3. A calculation error curve of the conventional CORDIC.

3. Improved CORDIC algorithm

When the arcsine function is resolved by the conventional CORDIC, it is impossible to
calculate the extension factor accurately, thus causing an error in angle calculation.

In the improved CORDIC algorithm, two rotation steps exist with the same angle in each
iterative process, called the double-rotation method. The rotation process is shown in Fig. 4.

)’T (x;, yi)

(xi-1, Yie1)
0 '

X

Fig. 4. A schematic diagram of the double-rotation process.

The double-rotation process is expressed as follows:

Xi _ COS 291’—1 —sin 29,'_1 Xi—1 (9)
Vi " | sin 260;_4 co0s20;_; viot |
With the equivalent transformation of a trigonometric function, (9) is converted to:
i 1 —tan® 6;_ —2tan6;_ i
Xi _ i—1 R i—1 Xi-1 ) (10)
Vi 2tan6;_, 1 —tan” 6;_; | | yi-1
The extension factor in the double-rotation method, Kp,, is defined as:
Kp, = 1/cos’6; . (11
The formula for Kp, is transformed to:
Kp. = L 4o (12)
L cos?; '
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Formula (12) shows that Kp, can be calculated using only shift and add operations, which is
extremely convenient in implementing it in digital circuits.

The formulae for calculating the angle of arcsine function with the improved CORDIC are
the following:

x1=0, y=Amp,, z1=n/2
d; = sign(y; — Amp;), zi > n/2
X1 = (1 =272+ d; - 27y
yier = (1 =27y, —d; - 2177 - x;
Ziv1 = 2 —d; - 20

Amp; 1 = Amp; - K;

13)

The rotation angle is 26; in each iterative process and Kp,, calculated accurately with (12),
is introduced simultaneously to compensate the change in modulus length caused by rotation.
Namely, Amp is amplified with the value of Kp,. The computation process can be executed by
only shift and add operations, which is convenient for implementation in hardware.

Using (13), the modulus length of the vector to be solved is invariable during rotation and
the problem of direction misjudgement is avoided. Fig. 5 shows the calculation error of arcsine
function calculated by the improved CORDIC, obtained using MATLAB when n = 15.

e x 107rad

0 /8 /4 3n/8 O,rad

Fig. 5. A calculation error curve for the improved CORDIC.

The error of the improved CORDIC algorithm is within +6 x 107> rad, which is much smaller
than that shown in Fig. 3.

4. OQE analysis

In the digital subdivision system of a grating Moiré signal, the improved CORDIC algorithm
is implemented in a digital circuit. The iterative number, n, and data width, b, of the CORDIC are
limited by the finite digital circuit resources and thus determine the calculation accuracy directly.
Therefore, it is particularly important to choose suitable n and b according to the precision
requirement of the digital subdivision system.

Two error sources are involved in the improved CORDIC algorithm. One error, called the
approximate error, is caused by using finite times of rotation approximation value as the calculation
result, the other, called the rounding error, is caused by a finite data width limited by the digital
circuit.
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4.1. Approximation error

Using the improved CORDIC algorithm to resolve the angle, the rotation angle value of each
iterative process is: _
a; = 20; =2 xarctan(27"). (14)

After n iterations, the angle value, A, is obtained by accumulation of the rotation angle. At
this time, the approximate error is assumed to be J, and A is expressed as:

n
A=91+Zdi*ai+6, (15)

i=1

where 6 is the initial angle.

The vector after n rotations, (x,+1, Yn+1), is located in an interval [A — |6], A + |6]]. Because
the target vector location is random, the approximation error obeys a uniform distribution. The
approximation error value affects the solving accuracy of arcsine function directly. The maximum
approximation error, dmax, is expressed as:

Smax = 2 - arctan 27" < 217, (16)
When the value of iterative number is sufficiently large, (16) is transformed to:

Omax = lim 2-arctan2™ = 0. 17)

n—+oo

Formula (17) shows that increasing n can reduce the approximation error. The larger the
iterative number, the smaller the approximation error.

4.2. Rounding error

The rounding error of z; in the iterative process is only related to the calculation accuracy
of the angle, which can be determined directly according to the maximum permissible errors of
the angle. If e(i) = [ex(i), ey (i)] is the rounding error vector after the i-th iteration, the absolute
rounding error of x and y will be bounded by:

lex()| < &
{|ey(i)| <e& (18)

The magnitude of rounding error, ¢, is determined by the bit width of binary digits of the
internal registers in the calculation process. If the fixed point representation has “»” binary digits
while the sign bit is not taken into account, the rounding error is:

e=2"""1 (19)

Therefore, the upper bound of |e(i)] is:

le(i)| = Je2() + (i) < V2e. (20)

For the i-th double-rotation process, the transformed matrix of modulus is:

21

P(i) = Kp, - [cos d; - a;] —sin]d; - a,-]] .

sin[d; - a;] cos[d; - a;]
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The rounding error is introduced from two sources. One is the rounding error of the current
iteration and the other is the accumulated error before the current iteration. Set $(i) as the iteration
vector before rounding off the i-th iteration and v(i) as the iteration vector after rounding off.
Thus,

V(i) = v(i) + e(). (22)

Define Q[+] to be the cumulative error propagation operator; subsequently, P(i) Q[v(i)] is the
rounding error before the current iteration. Namely:

O +1)]=PHO[PGE)] +e(i +1). (23)
Define f(n) to be the total rounding error of v(n + 1) after n iterations:
Fo) = Qb+ D] =vin+ 1) =e(m)+ y {[_[ P(i)e(i)} : (24)
j=1 Ui=j
Based on the above formula, we obtain:
|f(n)] <=27"703- G(n)
Gy =1+ 3 [TIPGI =1+ % [1(1+27)

J=li=j j=li=j

(25)

According to (25), after n iterations the target vector is v(n + 1) = [x(n + 1), y(n + 1)]T
and Amp is amplified by the same extension factor; namely, the rounding error of y(n + 1) and
Amp are:

{sy — |f ()| = 27505 . G(n) - sin 6 o

Eamp < 270705 . G(n)
4.3. OQE model

Because of the rounding error of y(n + 1) after iteration, the solved value of arcsine function
is smaller than the target angle. Because the maximum deviation exists near /2, the maximum
absolute rounding error of solving arcsine function, emax, can be evaluated as:

Emax = [arcsin(sin 6 — gy) — 6] < /2 — arcsin(1 — 277797 - G(n)). (27)

Combining the approximation and rounding errors, the overall quantization error of solving
arcsine function with the double-rotation method, Aoqg, is:

AOOE = Smax + Emax < 217" — aresin (1 _b-05 G(n)) +71)2. (28)

As shown in (28), the magnitude of Agqr depends on n and b. For given n and b values, the
error of the improved CORDIC algorithm can be evaluated conveniently.

5. Experiment and analysis
The effectiveness of the improved CORDIC algorithm has been demonstrated by comparing

Fig. 3 with Fig. 5. Further, the OQE values have been verified experimentally and applied to the
digital subdivision system.
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5.1. Simulation experiments of approximate error and rounding error

The approximate error, J, is only related to the iteration order, n. The simulation results of
the relationship between 6.« and n aided by MATLAB are shown in Fig. 6.

8 m,xw‘3 rad

8 il

TTT™

\“‘\—-__4

0 s

§ 9 10 11 1 13

14 15 n

Fig. 6. The relationship between Smax and n.

As shown in Fig. 6, with an increase of n, dax converges rapidly. The value of 6,y,xdecreases
by approximately half for every increment of n by 1 and the simulation result is in agreement

with (17).
The rounding error, enayx, affected by n and b, w

ill decrease as b increases according to

(27). The simulation results, aided by MATLAB, of the relationship between emax, 7 and b for

n=12-16 and b = 16-32 are shown in Fig. 7.

s % 10>rad
max

——n=10
——p=12
—+n=14

N
=

—“-n=16

o,

h&

%O 22 24 26 2

8 30

Fig. 7. The relationship between &nax and b.

As shown in Fig. 7, the rounding error converge
attenuation curve trend is the same for different value

s rapidly with an increase in b and the
s of n. When b is increased to a certain

extent, the rounding error of different iterations is approximately equal.
The values of n and b can be determined according to the simulation results. In hardware

implementation as well as in software design, the mi

nimum values of n and b to satisfy the

precision requirement of the subdivision can be selected conveniently. There can be considered
both hardware resource occupation and subdivision accuracy.
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5.2. Circuit experiments of OQE

To verity the effectiveness of the improved CORDIC in solving arcsine function, the simulation
values and circuit experimental results are compared and analysed in this section.

According to (28), the simulation values of OQE, defined as Aoqgs, for n = 13, 14, 15 and
b = 26, 28, 30, 32, are simulated and shown in Table 1.

Table 1. Values of AOQEs and AOQEp (x10™* rad).

n=13 n=14 n=15
AOQEs AOQEp AOQEs AOQEp AOQEs AOQEp
b=26 6.80733 3.12919 5.82284 1.90849 5.43715 1.29813
b=28 4.62437 2.45193 3.52177 1.40353 3.02375 1.14327
b=30 3.53289 2.44758 237124 1.22688 1.81705 0.94804
b=32 2.98715 2.43569 1.79597 1.21499 1.21370 0.61007

Circuit experiments were performed using a homemade electronic board, as shown in Fig. 8.
The arcsine function was solved with the improved CORDIC, and the grating signal was subdi-
vided in an FPGA chip.

Signal Preprocessing

Fig. 8. The experimental homemade electronic board.

Affected by such factors as grating adjustment error, photoelectric device position offset,
photosensitive element nonlinearity and environment temperature, the Moiré signals usually have
unequal amplitude, DC drift, non-orthogonality and harmonic components. Focusing on the
effect of CORDIC algorithm on subdivision, the above noise should be abandoned, so that a
signal generator (RIGOL DG4162) was selected as the signal source to simulate a sinusoidal
signal with a frequency of 10 K. In the homemade electronic board, there are used a 16-bit ADC
and a sampling rate 40 MSa/s. An EPACE115F29C7 chip of Altera Company was employed as
the FPGA.

Setting the same values of n and b as the simulation values, namely n = 13, 14, 15 and b = 26,
28, 30, 32, the angle values of arcsine function were solved with the circuit, while the theoretical
angle values were calculated in MATLAB using the sampling amplitude of the input signal of the
circuit. During the calculation process by the circuit and MATLAB, n and b are both represented
as fixed point, signed numbers. The maximum difference of two angle values used as the circuit
experiment values of OQE, defined as Apqgp, is shown in Table 1.
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As shown in Table 1:

1. Because (28) is the maximum error model and Apqgs is the value when each error reaches
the maximum simultaneously, Appes > Aoqgp always exists for different » and b values.

2. For different b values, both Aoggs and Aoqgp Will decrease gradually when the n value is
changed from small to large. The change trend coincides with the curve of Fig. 6.

3. For different n values, both Agggs and Aoqgp Will decrease gradually when changing the b
value from small to large. The change trend coincides with the curve of Fig. 7.

5.3. Grating digital subdivision experiment

We verified the effect of the improved CORDIC algorithm in the grating digital subdivision
circuit. We set M = 256, 512, 1024, and used the conventional CORDIC and improved CORDIC
separately in the digital subdivision circuit. The subdivision of the achieved results for three
different values of n and b is shown in Table 2.

Table 2. Completion of subdivision with conventional CORDIC and improved CORDIC.

M (n,b) Conventional CORDIC Improved CORDIC

(8,16) not achieved achieved

256 9,18) not achieved achieved
(10, 20) not achieved achieved
(8,16) not achieved not achieved

512 9,18) not achieved achieved
(10, 20) not achieved achieved
(8,16) not achieved not achieved

1024 9,18) not achieved not achieved
(10, 20) not achieved achieved

As shown in Table 2:

1. Owing to the principle error, the conventional CORDIC cannot easily satisfy the accuracy
requirements of the digital subdivision. Even for the conditions of n = 10 and b = 20,
M = 256 still cannot be achieved. Instead, the implementation results of the improved
CORDIC algorithm are much better.

2. With the improved CORDIC algorithm, M = 256 can be achieved in all three operating
conditions. As the periodic subdivision number, M, becomes larger, the accuracy require-
ments of the digital subdivision become higher. It is difficult to ensure the subdividing
function of higher M for smaller values of (n, b). The values of (n, b) must be increased to
satisfy the requirement of higher precision.

5.4. Calibration experiment of grating digital subdivision

In order to quantify the subdivision error of the subdivision method with the improved
CORDIC, an experimental calibration system was constructed, as shown in Fig. 9.

The grating code disk is installed on the bearing platform through a coupling while grating
reading head is installed on the reading head stand. The position of the laser interferometer
is adjusted by the lift table, so that it is located at the same horizontal line with the angle
interferoscope and angle reflector.
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Grating reading head ~ Angle reflector Angle interferoscope
C‘E’“E —_ — | Laser
Grating code disc interferometer
<
—

Rotary table Lift table

Fig. 9. A schematic of the experimental calibration device.

While the rotary table rotates, the reading head outputs Moiré signals. Then the signals
are subdivided 1024 times with the homemade electronic board with the improved CORDIC.
Furthermore, the measurement results are calibrated by a Renishaw XL-80 laser interferometer.
The real experiment setup is shown in Fig. 10 and the specifications of the main instruments used
in the experiments are shown in Table 3.

Angle reflector Angle laser
Grating  interferoscope  interferometer

Fig. 10. The experiment setup.

Table 3. Specifications of the main instruments.

Instrument Model (manufacturer) Specification

Measuring range:
XL-80/150 mm (RENISHAW) From —1° to +1°
U; =0.05" (k =2)

The laser Interferometer
angle standard

Rotary glass scales R10851 (MicroE system) 16384 CPR grating pitch: 20 um

Reading Head Mercury’s sensor (MicroE system) Rotary: Up to £2.1” (arc sec)

In a range of 160" (a little bigger than 2 grating pitch), we have obtained test data with
a 0.2” displacement in each step. The angle measurement results of the laser interferometer
and homemade electronic board are synchronously obtained with the improved CORDIC and
the calibration errors, defined as the difference between two measurement results of angular
displacement, are shown in Fig. 11.

As shown in Fig. 11, the calibration error can be within +0.5"” and the mean variance is
0.2”. Here, the angular resolution of the grating grid is 79.1”, and the relative calibration error is
+0.632%. Limited to the stability of optical systems and turntable structures, there is still some
deviation from the theoretical subdivision results. The difference between them may be caused by
the cumulative errors of the grating period and a slight misalignment between the reading head
and the scale grating.
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Fig. 11. Experiment results of calibration error.

6. Conclusions

In accordance with the accuracy requirement in the digital subdivision of the grating signal,
we first studied the principle of the conventional CORDIC herein. By analysing the problem
where the principle error of the conventional algorithm is extremely large in solving arcsine
signal, an improved CORDIC with double-rotation iteration was proposed and the principle error
of the angle solution was reduced. Next, the OQE of the improved CORDIC was analysed and
the approximate error and rounding error of the improved algorithm were deduced; subsequently,
the error models of the iterative number and data width were established. Finally, simulations and
circuit experiments were performed to verify the improved CORDIC, the rationality of overall
quantization error, and the application value in the actual grating signal digital subdivision. The
results of the research can be applied directly to the grating digital subdivision system, which is
crucial to the quantitative analysis of error separation and error synthesis.
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