
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 405-410

Manuscript received February 19, 2020; revised July, 2020. DOI: 10.24425/ijet.2020.131892

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Access logs may offer service providers a lot of

information about specific users. Depending on the type of the

service offers, the operator is capable of obtaining the user’s IP,

location, communication habits, device information and so on. In

this paper, we analyze a sample instant messenger service that is

operating for a certain period of time. In our sandbox, we gathered

enough data to correlate user communication habits with their

localization, and even contacts. We show how seriously metadata

may impact the user’s privacy and make some recommendations

about mitigating the quantity of data collected in connection with

this type of services.

Keywords—metadata, privacy, cybersecurity, instant

messaging, access logs

I. INTRODUCTION

ETADATA are providing information about other data.

Metadata serve a number of purposes - from describing

resources, to describing data structures to providing statistical

information about data processing. From the point of view of

user privacy, the last of the metadata types listed above has the

highest value, as it may identify the purpose of data, time and

date of their creation, author, location (via IP address), source

and the process used for their creation.

 According to [1], metadata are extensively being used by

governments as a great source of information about citizens’

activity. When it comes to analyzing the activity of employees,

especially at government agencies, the list of data types

collected is much longer. It is possible to recover information

about the activity of a given user in specific databases, to

analyze their search history, communication patterns, software

installed, telephone bills, etc. In cooperation with companies

such as Google, Twitter or Facebook, it is even possible to

disclose information about personal contacts, with their email

and physical addresses, phone numbers and history of their

payments. Metadata contains information about the time at

which the user has logged in to specific service, the time at

which their online activity began, and information about the

source IP address. Metadata may be also used for linking

different accounts used by the same user during a specific period

of time.

 Instant messenger services, such as Signal or WhatsApp, are

also collecting great amounts of metadata. Even if all

communications are encrypted, the service provider still collects

metadata about those encrypted messages and calls. Thus, the

service provider will have, at their possession, data about the

source and destination IP (location) of communicating parties,

their phone numbers, date and time of each communication,

This work was presented at the International Scientific Conference

Mathematical Cryptology & Cybersecurity (MC&C 2020), Warsaw, 16-

17.01.2020.

duration of each call, device identifiers, operating system

version, time of reading the message, etc. Usually, such a set of

data is sufficient to identify user habits, their contacts, places

they have visited, location of their home and office, and even to

define the probability of meeting them physically at a specific

location.

 Many papers have dealt with the privacy of instant messenger

service users. In [2], the authors focus on explicit policies for

protecting user privacy. [3] presents privacy concerns regarding

receipts confirming that messages have been read. The authors

of [4] discuss the impact of Snapchat’s disappearing messages,

from the perspective of acceptance of social media technologies.

However, no papers have been dedicated strictly to the

technological aspects of collecting and analyzing access logs,

and to identifying this specific type of user privacy-related risk.

In this paper, we present a model of an instant messaging

service that has been implemented for the purpose of collecting

user metadata. The amounts and types of data collected do not

differ from the actual practices relied upon by current market

leaders. This study focuses on the technical aspect of the data

analysis process, i.e. on the collection of data, their correlations,

and on obtaining extra information, such as user location - all

with the assistance of a dedicated analytical app. The results

gathered and their implications are discussed as well, thus

offering the service providers an opportunity to implement

changes required to guarantee the privacy of their service users.

II. INSTANT MESSAGING SERVICE MODEL

In order to collect sufficient amounts of metadata, a toy

version of an instant messaging service had to be created. In the

following chapters of this paper, the term TIMS (Toy Instant

Messaging Service) will be used to identify the service and the

apps that have been created. TIMS specification is similar to that

of such services as WhatsApp [5] or Viber [6], namely:

- Users are identified based on their phone number;

- All communications are end-to-end encrypted;

- Users are sending their messages via a central server;

- Users are making VoIP calls – this process requires

that metadata be sent to the central server;

- The central server is responsible for registering users

and for sending push notifications.

The network communication process in TIMS is shown in

Fig. 1. The central server is storing user credentials required for

authentication (FCM/APN push tokens) and is responsible for

delivering messages between users. VoIP calls may be

established in two modes – peer-to-peer or via a proxy (central

server). Regardless of which type of communication is chosen,

the server has to send, to the users, push notifications with the

Michał Glet and Kamil Kaczyński are with Military University of
Technology, Faculty of Cybernetics, Institute of Mathematics and Cryptology

(e-mail: michal.glet@wat.edu.pl, kamil.kaczynski@wat.edu.pl).

Access Logs – Underestimated Privacy Risks
Michał Glet and Kamil Kaczyński

M

406 M. GLET, K. KACZYŃSKI

call’s metadata – such as caller ID, IP address and

communication port. If communications are based on the proxy

mode, then all encrypted voice packets exchanged between

users are sent through the proxy server.

The TIMS server collects access logs and other metadata,

containing information about the following:

- Sending message from user A to user B;

- Making a voice call between user A and B and

distinguishing between the caller and the recipient;

- Getting message from the server;

- Registration events;

- User IP address;

- Users’ phone numbers;

- Date and time of activity;

- User’s time zone.

Fig. 1. TIMS network communication diagram

TIMS relies on a mobile app for smartphones – in our case

for Android and iOS devices - and on a server application for

controlling the registration process, delivering push

notifications, exchanging messages and proxying or informing

the recipient about an incoming voice call. The server

application has no access to the content of messages and to voice

packets – these are encrypted at smartphone level with keys that

are not known to the server. The server application creates logs

with every activity performed. The TIMS server has no access

to those logs created at mobile endpoints.

III. DATA ANALYSIS METHODS

TIMS uses a nginx proxy server to distribute user requests

between different services (e.g. messaging service or phone

service). Nginx is also responsible for managing TLS sessions.

All logs analyzed are standard access logs created by the nginx

server. Access logs were turned on in the nginx.conf file, by the

following line of code:

access_log /var/log/nginx-access.log

Logs were created in the nginx-access.log file. An

application written in Java and a PostgreSQL database have

been relied upon to analyze those logs and to perform research-

related activities.

The main purposes of the Java application were as follows:
- Parsing nginx access logs files.
- Adding processed data to the PostgreSQL database.
- Retrieving location information based on IP addresses.
- Updating location data in the PostgreSQL database.
The main purposes of the PostgreSQL database were as
follows:
- Storing the processed access log data.
- Performing analysis queries to process access log data.
The data analysis process consisted of the following steps:
1. Collecting access logs (nginx server).
2. Parsing access logs and adding them, as records, to the

database (Java application).
3. Processing access log data using SQL queries

(PostgreSQL database).
4. Updating location information with access log

processing results (Java application).

A. Nginx access logs

In order to show how sensitive information may be
reconstructed from plain access logs, we have used the standard
nginx access log format, without any extraordinary tweaks
introduced for our research purposes. The default access log
format used by nginx consists of the following:
$remote_addr - $remote_user [$time_local] "$request" $status
$body_bytes_sent "$http_referer" "$http_user_agent"

where:
- $remote_addr is the IP address of a TIMS user,
- $remote_user is a user identification number (e.g. user

login in systems that rely on logins and passwords for
authentication purposes),

- $time_local is information about the time and date at
which the request was performed,

- $request is combined information about the request
protocol, request method and requested URI,

- $status is a status of the response to the user’s request,
- $body_bytes_sent is a number of bytes sent to the user

in response to the processed request,
- $http_referer is information about the request referrer,
- $http_user_agent is information about the user agent

that made the request (about the operating system,
Internet browser, etc.)

The sample access log records that have been analyzed

analysis had the following form:

- Record 1: 31.179.57.255 – USER_A

[10/Feb/2019:17:56:12 +0100] "PUT

/tims/tokens/tokens HTTP/1.1" 200 894 "-" "TIMS/1.15

(iPhone; iOS 12.1.2; Scale/3.00)"

- Record 2: 37.47.24.167 – USER_B

[23/Jun/2019:23:31:30 +0200] "GET

/tims/accounts/info/ HTTP/1.1" 200 49 "-"

"Dalvik/2.1.0 (Linux; U; Android 8.0.0; SM-A600FN

Build/R16NW)"

- Record 3: 89.66.210.147 – USER_C

[20/Nov/2019:17:11:17 +0100] "DELETE

/v1/messages/USER_C/1575216676287 HTTP/1.1"

204 0 "-" "okhttp/3.6.0"

Table I shows the results of parsing sample access log

records in accordance with the default nginx access log format.

ACCESS LOGS – UNDERESTIMATED PRIVACY RISKS 407

B. Java application

A Java application, known as AccessLogsAnalyzer, was

written with Java 1.8 SDK. It uses three external dependencies:

- com.google.code.gson:gson:2.8.5 – library for JSON

serialization and deserialization to/from Java Objects,

- io.ipgeolocation:ipgeolocation:1.0.11 – library with

SDK for location service,

- org.postgresql:postgresql:42.2.8 – JDBC driver for

PostgreSQL.

AccessLogsAnalyzer consisted of three classes:

- pl.edu.wat.accesslogsanalyzer.AccessLogsAnalyzer

- pl.edu.wat.accesslogsanalyzer,

AccessLogsAnalyzerAddLocalization,

- pl.edu.wat.accesslogsanalyzer.bean.LogData.

The pl.edu.wat.accesslogsanalyzer.bean.LogData class

was a standard java bean class (POJO). It was responsible for

parsing and storing the access log record data in object style. the

main part of class code is presented below:

public static String INSERT_SQL =

 "INSERT INTO access_log(" +

 "ip," +

 ……

 "agent) "

 + "VALUES(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)";

// create LogData object from line with one access log record

public static LogData parseLine(String line) throws Exception

{

 LogData logData = new LogData();

 ……

 String datas[] = line.split("\"");

 ……

 logData.setIp(datas1[0]);

 ……

 logData.setAgent(datas[5]);

 ……

 return logData;

}

The pl.edu.wat.accesslogsanalyzer.AccessLogsAnalyzer

class offered the main entry point for a program running in the

parsing mode. In this mode, the application read data from the

access log file, line by line. For each line that was read, the

application attempted to create a

pl.edu.wat.accesslogsanalyzer.bean.LogData object. Then, this

object was inserted into the PostgreSQL database. The main part

of class code is presented below:

pstmt =

connection.prepareStatement(LogData.INSERT_SQL);

 ……

LogData logData = LogData.parseLine(line);

 ……

pstmt.setString(1, logData.getIp());

 ……

pstmt.setString(15, logData.getAgent());

 ……

pstmt.executeBatch();

The pl.edu.wat.accesslogsanalyzer.AccessLogsAnalyzer

AddLocalization code offered the main entry point for a

program updating the location mode. In this mode, the

application read data from the PostgreSQL database. For each

database record that was read, the application attempted to

retrieve location information based on the IP address. Then, the

database record was updated and stored in the PostgreSQL

database. The main part of class code is presented below:

// update

pstmt = connection.prepareStatement("update " + tableName

+ " set localization = ? where id = ?");

 ……

// select

rs = st.executeQuery("select id, ip from " + tableName + "

where localization is NULL");

while (rs.next())

{

 ……

 String ip = rs.getString(2);

 String localization = getLocalization(ip);

 pstmt.setString(1, localization);

 ……

 pstmt.executeUpdate();

}

C. PostgreSQL database

For analysis purposes, the parsed access log data were

stored in the access_log table of the PostgreSQL database.

Definition of the access_log table is presented below:

create table if not exists access_log

(

 id serial not null

 constraint access_log_pk

 primary key,

 ip varchar(255),

 unused1 varchar(255),

 userid varchar(8192),

 datestring varchar(1024),

 date timestamp,

 requestdatastring varchar(8192),

 requestdatamethod varchar(1024),

 requestdatauri varchar(8192),

 requestdataprotocol varchar(1024),

 responsecodestring varchar(255),

TABLE I
PARSED LOG RECORDS

Data Record 1 Record 2

$remote_addr 31.179.57.255 37.47.24.167

$remote_user USER_A USER_B

$time_local [10/Feb/2019:17:56:1
2 +0100]

[23/Jun/2019:23:31:30
+0200]

$request PUT

/tims/tokens/tokens
HTTP/1.1

GET

/tims/accounts/info/
HTTP/1.1

$status 200 200

$body_bytes_sent
$http_referer

894
-

49
-

$http_user_agent TIMS/1.15 (iPhone;
iOS 12.1.2;

Scale/3.00)

Dalvik/2.1.0 (Linux;
U; Android 8.0.0; SM-

A600FN

Build/R16NW)

408 M. GLET, K. KACZYŃSKI

 responsecode integer,

 resposebytesstring varchar(255),

 resposebytes integer,

 unused2 varchar(255),

 agent varchar(8192)

);

D. SQL queries

The access log analysis was carried out with SQL queries

executed by the PostgreSQL database engine. Three SQL

queries had been created for the purpose of the analysis:

- ip_mettings,

- ip_network_count,

- ip_network_list.

The ip_mettings query was used to identify all users with

the same IP addresses (three first IP v4 sub-groups) reported

within this same period of time (limited to 30 minutes). The

SQL query is presented below:

-- query ip_mettings

select distinct sub.a1_user, sub.a2_user, sub.ip, sub.date

from

(

select a1.userid as "a1_user",

 a2.userid as "a2_user",

 regexp_replace(a1.ip, '\.\d+$', '.0') as "ip",

 a1.date as "a1_date",

 a2.date as "a2_date",

 DATE(a1.date) as date

from access_log a1 inner join access_log a2 on

regexp_replace(a1.ip, '\.\d+$', '.0') = regexp_replace(a2.ip,

'\.\d+$', '.0')

where a1.userid in

 (

 'USER_A’,

 ……

 'USER_G’

)

and a2.userid in

 (

 'USER_A’,

 ……

 'USER_G’

)

and a1.ip != TIMS_SERVER_IP and a1.userid != a2.userid

and a1.date >= a2.date and a1.date - a2.date < '30 minutes'

) as sub

order by sub.date asc;

Results of the ip_mettings query were stored in the

ip_mettings database table. The definition of the ip_mettings

table is presented below:

create table if not exists ip_mettings

(

 id serial not null

 constraint ip_mettings_pk

 primary key,

 user1 varchar(255),

 user2 varchar(255),

 ip varchar(255),

 date date,

 localization varchar(8192)

);

The ip_network_count query was used to find locations that

were most frequently visited by a given user. The SQL query is

presented below:

-- query ip_network_count

select count(sub.ip), sub.ip

from

(

select regexp_replace(a1.ip, '\.\d+$', '.0') as ip,

 DATE(a1.date) as date

from access_log a1

where a1.userid = 'USER A'

and a1.ip != TIMS_SERVER_IP

order by a1.date asc

) as sub

group by sub.ip

order by count(sub.ip) desc;

Results of the ip_network_count query were stored in the

ip_network_count database table. Definition of the

ip_network_count table is presented below:

create table if not exists ip_network_count

(

 id serial not null

 constraint ip_network_count_pk

 primary key,

 ip varchar(255),

 count integer,

 localization varchar(8192)

);

The ip_network_list query was used to find locations that

were most frequently visited by a given user. The SQL query is

presented below:

-- query ip_network_list

select distinct sub.ip, sub.date

from

(

select regexp_replace(a1.ip, '\.\d+$', '.0') as ip,

 DATE(a1.date) as date

from access_log a1

where a1.userid = 'USER A'

and a1.ip != TIMS_SERVER_IP

) as sub

order by sub.date asc;

Results of the ip_network_list query were stored in the

ip_network_list database table. Definition of the

ip_network_list table is presented below:

create table if not exists ip_network_list

(

 id serial not null

 constraint ip_network_list_pk

 primary key,

 ip varchar(255),

 date date,

 localization varchar(8192)

);

ACCESS LOGS – UNDERESTIMATED PRIVACY RISKS 409

E. Execution environment

All analyses were carried out on a MacBook Pro (2017

model with an Intel Core i5 3.1GHz processor and 8GB RAM)

running macOS Mojave 10.14.6. IntelliJ IDEA CE 2019.3,

DataGrip 2019.2.6, JDK 1.8.0_161 and PostgreSQL 10.2 were

used. The AccessLogsAnalyzer application was lunched directly

from IntelliJ IDEA CE. Database tables and SQL queries were

written and executed in DataGrip. ip_mettings was the longest

running query, taking over 1 hour and 12 minutes to complete.

The remaining queries took no longer than 2 minutes to

complete.

IV. RESULTS

A. Data collected

The TIMS service was deployed and used by a limited

number of users – the authors of the paper and their family

members. All data was collected between 12 February 2019 and

20 November 2019. For the purpose of this paper, the real phone

numbers of the users will not be revealed – we will use such

terms as User A (or USER_A), User B (or USER_B), etc.

During the period of time referred to above, we managed to

collect 372,340 access log records. According to Table II, there

were 209,498 access logs for USER_A, 60,850 access logs for

USER_B, 56,716 access logs for USER_C, 25,904 access logs

for USER_D, 8,079 access logs for USER_E, 6,267 access logs

for USER_F, and 5,026 access logs for USER_G. Each log was

related to a voice call made/received or a text message

sent/received. From each log, we were able to get the following:

- Date and time of event;

- Identifiers of the communicating users;

- Type of event (sending/receiving text message,

making/receiving voice call);

- User IP address;

- Device metadata – OS version.

The data were originally stored in nginx access log files.

Therefore, for further analysis, it was necessary to parse the data

into the database. Parsing and analysis processes were

performed with the use of tools and procedures described in

section III. All steps of the analysis process were performed

with the use of data from the database created.

The collected IP addresses were geolocated using the

ipgeolocation.io [7] API service. With that service, we were

able to get location information about each IP address,

including, inter alia, the following:

- Country name;

- State/province;

- City;

- District;

- Postal code;

- Latitude and longitude;

Geolocation data were added to the database, for further

analysis of user habits. The geolocation data were stored in the

JSON format. The location data obtained from API were

analyzed to identify user habits and their location over time.

B. Geolocation analysis

The geolocation data acquired from API enabled us to come

up with several statistics regarding TIMS users. These included,

inter alia, the following:

- Determine the most frequent location of a user over a

specific period of time– data acquired by the

ip_network_count query;

- Determine all IP addresses and locations of the users –

data acquired by the ip_network_list query;

- Predict a probable physical meeting place and time for

two or more users – data acquired by the ip_mettings

query.

Fig. 2. Top places visited by User A

All locations were predicted based on IP data. The
accuracy of that data allows us to visualize the location with a
specific city district. 128 most frequently visited locations were
chosen for User A. The Locations were visualized using Google
Maps and they may be seen in Fig. 2. Each pin depicts one place
that was visited. The map does not show the frequency of visits,
but it is possible to derive that information from the database
and to generate an appropriate report. No summary of all user
locations has been presented in a graphic form, as it is similar to
the map presenting the most frequently visited locations. It
consists of much larger data set, e.g. for User A it has 1,011
entries identified during the period of the experiment.

We have also drawn up a report predicting the probable
physical meeting places and times for two or more users. While
creating that report, we assumed that two users were able to
meet if the first 24 bits of their IP (version 4) addresses were
equal and if their log times were the same (with the accuracy of
30 minutes). We identified 1,011 potential meeting locations
over the entire duration of the experiment. Figure 3 presents the
user meeting locations, globally. Each pin informs us about the
users being present at a specific location, e.g. A B means a
meeting of User A with User B.

TABLE II
NUMBER OF LOG ENTRIES COLLECTED

User Access log records

USER_A 209,498

USER_B 60,850

USER_C 56,716
USER_D 25,904

USER_E 8,079

USER_F 6,267
USER_G 5,026

410 M. GLET, K. KACZYŃSKI

Fig. 3. Physical meetings of the TIMS users

Figure 4 presents the users’ meeting locations in Warsaw.

The accuracy of the API geolocation service enables us to

identify user meeting locations in several city districts. More

accurate data can be collected from telecom operators.

Therefore, the level of accuracy may be easily increased to

specific street names.

Fig. 4. Physical meetings of TIMS users in Warsaw, Poland

C. Result improvements and future work

The maps presented in Fig. 2, Fig. 3 and Fig. 4 were created

using geolocation data acquired from ipgeolocation.io. No

information about accuracy of the service is available, but our

experimental data confirms that the users were physically

present at individual locations at the time in question. Some

interesting results of research focusing on improving the

accuracy of geolocation data are presented in [8]. Good results

may also be achieved by testing other API geolocation services,

especially those dedicated to the specific region of interest.

Geolocation data may be also more accurate if TIMS collects

some more metadata, e.g. latency of communication.

Other analyses may take into account logs generated by

dedicated TIMS services, such as telephone or messaging

services. This will provide additional information about user

calls and messaging and will enable to identify, for instance,

when and for how long selected users where talking on the

phone.
A sample analysis, focusing on the users’ location only, has

been presented in this paper. In future work, we plan to build the

users’ contact network, analyze relations between users and
define the shortest path between them. That type of analysis
requires larger amounts of data and a larger set of users. We
estimate, according to [9], that at least 10,000 users will be
required. In order to collect a sufficient amount of data, the
service will have to be operated for at least 6 months.

CONCLUSION

Access logs are capable of revealing a lot of information

about instant messenger users. Even small amounts of data –

date, time, IP address, phone number and communication

method - allowed us to identify the users’ location, habits and

contacts. The set of data collected by TIMS is the minimum

logging level for that type of service, so one can assume that

commercial services collect more data and are capable of

obtaining even more accurate results in profiling their users.

This seems to be a serious issue affecting the privacy of instant

messenger service users. Whenever possible, they should be

using applications from privacy-friendly developers who

guarantee that no access logs are collected and analyzed.

However, it is extremely difficult to determine what is being

collected on the server side in a production environment,

because the users are not able to access any production reports.

They should rely on information published by privacy-focused

foundations and independent journalists.

There are also other ways of ensuring privacy for instant

messenger users. If they have to provide their phone number in

order to register, they may provide a phone number that is

different than the one they are using on a daily basis. This

information is only used for the purpose of initial registration –

afterwards, communications is established fully independently

of that number. The privacy of location may be protected by

using VPN services – especially those of the self-hosted variety.

This ensures that the service provider does not know the current

IP address of the user, rendering IP-based tracking impossible.

REFERENCES

[1] M. Lee, “The metadata trap,” [Online]. Available:

https://theintercept.com/2019/08/04/whistleblowers-surveillance-fbi-
trump/ [Accessed: 03-Dec-2019]

[2] I. K. W. Lai, G. Shi, “The impact of privacy concerns on the intention for

continued use of an integrated mobile instant messaging and social

network platform” International Journal of Mobile Communications, vol.

13(6), 2015, pp. 641–669 [Conference, 2016, pp. 300-307].

[3] R. Hoyle, S. Das, A. Kapadia, A. J. Lee, K. Vaniea, “Was my message
read?: Privacy and Signaling on Facebook Messenger.” Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems (pp.

3838-3842). ACM, May 2017.
[4] D. Lemay, T. Doleck, P. Bazelais, “Passion and concern for privacy” as

factors affecting snapchat use: A situated perspective on technology

acceptance.” Computers in Human Behavior, vol. 75, 2017, pp. 264-271.
[5] WhatsApp “Frequently Asked Questions” [Online]. Available:

https://faq.whatsapp.com/en/general/ [Accessed: 05-Dec-2019]

[6] Viber Support Portal [Online]. Available: https://support.viber.com
[Accessed: 05-Dec-2019]

[7] IP Geolocation [Online] Available: https://ipgeolocation.io [Accessed 04-

Dec-2019]
[8] O. Dan, V. Parikh, B. D. Davison, “Improving IP Geolocation using Query

Logs”, Proceedings of the Ninth ACM International Conference on Web

Search and Data Mining, ACM, 2016, pp. 347-356
[9] J. Lin, L. Zhang, M. He, H. Zhang, G. Liu, X. Chen, Z. Chen, “Multi-path

relationship preserved social network embedding”, IEEE Access, 2019,

pp. 26507-26518

