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Introduction

In the case of manufacturing planning, a more
possible approach is to identify and address one or
some uncertainties within a model which can be used
to derive optimal solutions. This is the focus of this
study, and the objective is to reduce variable produc-
tion costs, in the case of seasonal demand.

Uncertainty; of one or more of the principal at-
tributes, often exists in discrete manufacturing sys-
tems. Consequently, the precision of production relies
to a significant degree on the accuracy of estimating
these uncertainties. Uncertainties are incorporated in
the four elements of manufacturing systems: demand,
processing, failure and maintenance time and cost

[1, 2]. These uncertainties increase the required prac-
tical production planning decisions. The incorpora-
tion of stochastic parameters in a system increases
the complexity of the system modeling and solution.
Hence, it is more appropriate to address the problem
using a stochastic programming approach [3].

A review of some existing literature on produc-
tion planning under uncertainty has been provid-
ed by [4]. Escudero et al. [5] presented a multi-
stage stochastic programming approach that was
used for addressing a multi-period multi-product
production planning model with random demand.
The authors introduced two scenario-based mod-
els for formalizing implementable policies. Similar-
ly, Bakir and Byrne [6] developed a linear program-
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ming (LP) model that depended on the two-stage
deterministic equal problem including demand un-
certainty in a multi-period multi-product (MPMP)
production planning model. In 2005, Alfieri and
Brandimarte [7] revised multi-stage stochastic mod-
els carried out in multi-period production and capac-
ity planning for manufacturing systems. They had
stressed the importance of proper model formulation
from two points of view: the first was building strong
mixed-integer formulations; while the second was
generating scenario trees to represent uncertainty.
Deterministic models are analyzed using optimiza-
tion techniques that are generally based on linear
programming (LP) or other mathematical program-
ming approaches (e.g. mixed-integer linear program-
ming and Non-linear programming). While uncer-
tain models include probabilistic approaches [8, 9].
Depending on a two-stage approach in case of un-
certain multi-period production planning Mahmuto-
gullar et al. [10] investigated a two-stage approach,
the plan for the whole multi-period planning horizon
is determined before the uncertainty is determined,
then an only restricted variety of resource changes
may then be taken into consideration. Alternatively,

a multi-stage approach permits revising the planning
decisions whenever further information regarding the
uncertainties is revealed. So, the multi-stage model is
a better description of the dynamic planning process
and supplies more flexibility than does the two-stage
model. Reviewing the previously mentioned research
work, stochastic programming models are classified
and exhibited in Table 1.

The major contributions of this paper that dis-
tinguish it from the above-mentioned literature can
be outlined as follows:

• The current work takes into consideration demand
seasonality and various trends at each stage of the
demand scenario tree as recommended by Kazemi
et al. [16].
• Manufacturing set up costs; that was ignored in

the models in previously developed models, is con-
sidered in the current proposed model.
• “Math works Matlab” R2015a is used to validate

the mathematical model while the results are ver-
ified using ANOVA statistical analysis.
• Focusing on the validation of the obtained results

is applied.

Table 1
Classification of stochastic Programming Models.

Researchers Year Stochastic Programming
Models Types

Solution method Software used

Bakir, Byrne [6] 1998 Two-Stage Stochastic Programming Discrete
approximation

SIMAN

Kazemi et al. [11] 2007 Two-Stage Stochastic Programming Sample Average
Approximation

OPL 3.7.1

Khor et al. [12] 2008 Two-Stage Stochastic Programming Markowitz’s MV
approach

GAMS

Kazemi et al. [13] 2008a Two-Stage Stochastic Programming Sample Average
Approximation

CPLEX 9

Kazemi et al. [14] 2008b Multi-Stage Stochastic Programming Sample Average
Approximation

CPLEX 10

Huang K., Shabbir A. [15] 2009 Multi-Stage Stochastic Programming L-Shaped
Decomposition

CPLEX 9.0

Kazemi et al. [16] 2010 Multi-Stage Stochastic Programming Sample Average
Approximation

CPLEX 10 OPL 5.1

Kazemi et al. [17] 2011 Two-Stage Stochastic Programming Sample Average
Approximation

CPLEX 9

Kazemi et al. [18] 2013 Multi-Stage Stochastic Programming Sample Average
Approximation

CPLEX 11

Zhengyang, Guiping [19] 2016 Two-Stage Stochastic Programming ————– GAMS

Hasany, Shafahi [20] 2017 Two-Stage Stochastic Programming L-Shaped
Decomposition

CPLEX 12.2

Damghania et al. [21] 2017 Two-Stage Stochastic Programming STEM LINGO

Maria et al. [22] 2017 Two-Stage Stochastic programming L-Shaped
Decomposition

GNU/Linux
CPLEX12.5.0.1

Mahmutogullarıet al. [10] 2019 Multi-Stage Stochastic Programming RH Approach CPLEX 12.6

32 Volume 11 • Number 1 • March 2020



Management and Production Engineering Review

Model development

In actual problems, some important steps should
be considered in the designing phase of the model.
Firstly, the collection of accurate data and various
parameters is highly important for demand forecasts
in the TSP model. Furthermore, appropriate season-

al forecasting methods that will provide minimum er-
ror between forecasted values and actual data should
be selected after that the TSP model can be formu-
lated considering: obtained data, assumptions, objec-
tives, parameters and constraints. Finally, the model
can be applied in a real industrial system. Figure 1
shows the steps of the proposed model development.

Fig. 1. Schematic flow chart of model development.
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Data collection and application
of multiplicative seasonal demand method

This phase of the model developed includes de-
termining required data such as unit costs of regular
time production, overtime production, and space re-
quirement for per unit product inventory, backorder,
hired/laid-off workers, time requirements for labor
and machine hours per unit product. Some required
data for planning periods can be gathered easily, but
some of them are difficult. In this model, the demand

values are not known as there are seasonality and
forecast by using the multiplicative demand method
[23, 24], see Appendix.

Two-Stag stochastic programming
(deterministic model)

In this study, the notations in the formulation will
be introduced. It has to be stated that all cost pa-
rameters are indicated in the Egyptian pound (L.E).
A summary of different indices, parameters, and de-
cision variables is presented in Tables 2a and 2b.

Table 2a
Notation summary of dependent variables.

Dependent variables
Xijt The number of units of a family i produced by department j in period t.
IFit Inventory of family i at the end of period t.
Rjt Regular time used by department j in period t.
Ojt Overtime used by department j in period t.
Wit Workforce level family i at the end of period t.
Bit Backorder of family i at the end of period t.
Zkitw A number of units of item k produced by department j in sub-period w of period t.
Ikitw Inventory of item k at the end sub-period w of period t.
RRlt Regular time used by resource l in period t.
ORlt Overtime used by resource l in period t.
Cijt Average Unit cost for producing one unit of family i by department j in period t.
Wit Workforce level for family i in period t.
Hit A worker hired of family i at the end of period t.
Lit Worker lay-off of family i at the end of period t.
rjt The average cost of one regular time unit for department j during period t.
ojt The average cost of one overtime unit for department j during period t.
wit The average labor cost of family i at the end of period t.
hit The average holding cost for family i in period t.
dit Demand for family i in period t.
bit Average backorder cost for family i in period t.
aij The average total time required to produce one unit of family i at department j.
BPij Setup cost for a family i in primary department j.
BSij Setup cost for a family i in secondary department j.
bpij Setup time for a family i in primary department j.
bsij Setup time for a family i in secondary department j.
Qijt Initial estimation of the lot of size of family i in department j in period t.
dktw Demand for item k in sub-period w of period t.
PRkl The average total time required to produce one unit of item k using resource l.
αlt The average proportion of time resource l is down in period t.

Table 2b
Notation summary of independent variables.

Independent variables
Pj Set of families in which their primary department is j.
FS(j) A feasible set of families assignable to department j.
TI(i) A set of items belonging to family i.
t n ∗ w, where n is an integer multiple.
R(j) Set of resources belonging to department j.
J A number of departments.
N A number of families.
K A number of items.
L A number of resources.
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The problem is presented in an analytic mod-
el (Non-linear, two-Stage stochastic programming as
appropriate). The objective function is to minimize
production cost (i.e. the sum of all costs; production,
cell setup, inventory holding, and regular capacity).
The formulation of the deterministic mathematical
model for the system is as follows:

The objective function is presented in Eq. (1).
The three classes of the suggested model constraints
for department loading are; families and items pro-
duction constraints, families and items inventory
constraints, and production capacity and resource
capacity constraints through the planning stage. The
constraints (2) and (6) are families and items inven-
tory constraints, both the amount of inventory left in
the stock at the end of each period and the amount
of inventory of the last period. The backorder is not
allowed. Constraint (7) shows the link between the
item and family inventory. Constraints (3) and (8)
are capacity feasibility constraints department and
resources.

Objective Function

Min Cost =
T∑

t=1

J∑
j=1

( ∑
i=FS(j)

CijtXijt

+
∑
i∈Pj

(BPij/Qijt) ·Xijt+
∑
i∈Sj

(BSij/Qijt) ·Xijt

+ojt ·Ojt + rjt ·Rjt

)
+

T∑
t=1

N∑
i=1

hit · IFit

+

T∑
t=1

N∑
i=1

bit ·Bit +

T∑
t=1

N∑
i=1

Wit · wit.

(1)

Subject to:
production, inventory and backorder equations for
each family

J∑
j=1

Xijt + IFi,t−1 +Bi,t−1 − IFit −Bit = dit,

for i = 1, 2, ..., N, t = 1, 2, ..., T

(2)

capacity restrictions for each cell∑
i∈FS(j)

aijXijt +
∑
i∈Pj

(bpij/Qijt) ·Xijt

+
∑
i∈Sj

(bsij/Qijt) ·Xijt −Ojt = Rjt,

for j = 1, 2, ...J, t = 1, 2, ..., T,

(3)

0 ≤ Rjt ≤ (upper limit) ∀ j, t, (4)

0 ≤ Ojt ≤ (upper limit) (5)

production and inventory balance equations for each
item t

J∑
j=1

Zkjtw + Ikt,w−1 − Iktw = dktw ∀ k ∈ TI(i), w, t

(6)
inventory consistency equations∑

k∈TI(i)

n∑
w=I

Iktw − IFit = 0 ∀ i, t, (7)

capacity restrictions for each resource∑
i∈FS(j)

∑
k∈TI(i)

(
PRkl

n∑
w=I

Zkjtw

)
−ORLT =RRLT

∀ L ∈ LR(j), j, t

(8)

0 ≤ RRLt ≤ (upper limit) (1− αLt) ∀ L, t (9)

0 ≤ ORLT ≤ (upper limit) (10)

resource consistency relations:∑
l∈LR(j)

RRLt−Rjt = 0 ∀ j, t (11)

∑
l∈LR(j)

ORLt −Ojt = 0 (12)

workforce balance:

Wit =Wi,t−1 +Hit − Lit

for i = 1, 2, ...,M, t = 1, 2, ..., T
(13)

non-negativity restrictions:

Xijt, IFit, Rjt, Zkjtw, Iktw, RRLt, Ojt, ORLt,

Wit, Hit, Lit, Bit ≥ 0

∀ i, j, k, L, t and w.

(14)

Scenario tree

A scenario tree is a computationally feasible
method of discretizing the underlying dynamic
stochastic records through dynamic stochastic da-
ta overtime in a problem [25, 26]. An illustration of
a scenario tree is presented in Fig. 2. In a scenario
tree, each stage denotes a period. Stages would pos-
sibly consist of some periods in the planning horizon.
The scenario tree consists of many nodes and arcs at
each stage. Each node n in the scenario tree intro-
duces a possible state concerned with a set of data
(stochastic demand, stochastic cost, and stochastic
yield. etc) in the identical stage. The root node of the
tree represents the present state. The arcs (branch-
es) in the scenario tree indicate the scenarios for the
following stage. A probability is associated with each
arc of the scenario tree, which marks the probability
of the corresponding scenario to that arc. It ought

Volume 11 • Number 1 • March 2020 35



Management and Production Engineering Review

to be stated that the probability of each node in
the scenario tree is calculated as the product of the
probability of the arcs from the root node to that
particular node. Moreover, the sum of the proba-
bilities of nodes at each stage must be equal to 1.
A direction from the root node to a given node n
describes one scenario of the stochastic process from
the current time to the period where node n appears.
A complete direction of the stochastic process over
the whole planning horizon is the direction from the
root node to a leaf node is called a scenario. Figure 2
introduces 2 stages, 9 scenarios for 3 products (p).
The probabilities are (0.2, 0.3, and 0.5).

Fig. 2. Scenario tree notations.

Two-stag stochastic programming model
(compact formulation)

TSP model (compact formulation) means the
combination between the deterministic model and
the result of the scenario tree. The main variables of
the deterministic model (inventory, backorder, regu-
lar time, and overtime variables) are affected by sea-
sonal demand. Hence, there are several assumptions

of the deterministic model to avoid demand uncer-
tainty, shown in Table 3. Applying the assumptions;
in Table 3, on the deterministic model the TSP mo-
del (compact formulation) is as follows:

Objective function

Min Cost =
∑

n∈Tree
p(n)

( tn∑
t=1

J∑
j=1

( ∑
i=FS(j)

CijtXijt

+
∑
i∈Pj

(BPij/Qijt) ·Xijt +
∑
i∈Sj

(BSij/Qijt) ·Xijt

+ojt ·Ojt(n) + rjt ·Rjt(n)

))

+
∑

n∈Tree
p(n)(

tn∑
t=1

N∑
i=1

hit · IFit(n)

+

tn∑
t=1

N∑
i=1

bit ·Bit(n)) +

tn∑
t=1

N∑
i=1

Wit · wit.

(15)
Subject to
production, inventory and backorder equations for
each family

J∑
j=1

Xijt + IFi,t−1(m) +Bi,t−1(m)− IFit(n)

−Bit(n) = dit(n),

for i = 1, 2, ..., N, t = 1, 2, ..., tn, n ∈ Tree,
(16)

Table 3
TSP model (compact formulation) assumptions.

Indices
Tree Scenario tree.
n, m The node of scenario tree.
a(n) Definition of node n in the scenario tree.
tn Set of periods corresponding to node n in the scenario tree.

Parameter
dit(n) Demand for family i in period t at node n of the scenario tree.
dktw(n) Demand for item k in sub-period w of period t at node n of the scenario tree.
P (n) Probability of node n of the scenario tree.

Decision variables
IFit(n) Inventory of family i at the end of period t at node n of the scenario tree.
Ikitw(n) Inventory of item k at the end sub-period w of period t at node n of the scenario

tree.
Bit(n) Backorder of family i at the end of period t at node n of the scenario tree.
Ojt(n) Overtime used by department j in period t at node n of the scenario tree.
Rjt(n) Regular time used by department j in period t at node n of the scenario tree.
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capacity restrictions for each cell∑
i∈FS(j)

aijXijt +
∑
i∈Pj

(bpij/Qijt) ·Xijt

+
∑
i∈Sj

(bsij/Qijt) ·Xijt −Ojt(n) = Rjt(n),

for j = 1, 2, ..., J, t = 1, 2, ..., tn,

(17)

m =

{
a(n), t− 1 /∈ tn
n, t− 1 ∈n

0 ≤ Rjt(n) ≤ (upper limit) ∀ j, t, n ∈ Tree, (18)

0 ≤ Ojt(n) ≤ (upper limit) (19)

production and inventory balance equations for each
item t

J∑
j=1

Zkjtw + Ikt,w−1(m)− Iktw(n) = dktw(n)

∀ k ∈ TI(i), w, t, n ∈ Tree,

(20)

inventory consistency equations∑
k∈TI(i)

n∑
w=I

Iktw(n)− IFit(n) = 0

∀ i, t, n ∈ Tree,

(21)

capacity restrictions for each resource

∑
i∈FS(j)

∑
k∈TI(i)

(
PRkl

n∑
w=I

Zkjtw

)
−ORLT = RRLT

∀ L ∈ LR(j), j, t
(22)

0 ≤ RRLt ≤ (upper limit) (1− αLt) ∀ L, t (23)

0 ≤ ORLT ≤ (upper limit) (24)

resource consistency relations:∑
l∈LR(j)

RRLt −Rjt(n) = 0 ∀ j, t, n ∈ Tree, (25)

∑
l∈LR(j)

ORLt −Ojt(n) = 0 (26)

workforce balance:

Wit =Wi,t−1 +Hit − Lit,

for i = 1, 2, ..., N, t = 1, 2, ..., tn
(27)

non-negativity restrictions:

Xijt, IFit(n), Rjt(n), Zkjtw, Iktw(n), RRLt

, Ojt(n), ORLt,Wit, Hit, Lit, Bit(n) ≥ 0

∀ i, j, k, L, tn, w, n ∈ Tree.

(28)

Solution procedure using sampling
average approximation

SAA [27–29] is a sampling-based method that can
be used to solve the TSP. The SAA method is ap-
plied to control and solve the stochastic model which
presents an effective scope for identifying and statis-
tically testing a set of selected production plans. The
resulting SAA problem has then solved the usage of
deterministic optimization techniques.

In the SAA method, a random sample of n sce-
narios of the random vector ζ and the anticipation is
as follows:∑
n∈Tree

p(n)

(
tn∑
t=1

N∑
i=1

hitIFit(n) +

tn∑
t=1

N∑
i=1

bitBit(n)

)
.

This is approximated by the following sample aver-
age function:

1

n

[ ∑
n∈Tree

p(n)

(
tn∑
t=1

N∑
i=1

hitIFit(n)

+

tn∑
t=1

N∑
i=1

bitBit(n)

)]
.

Using SAA, the true “objective function” is given by
Eq. (29):

MinẐ =
∑

n∈Tree
p(n)

(
tn∑
t=1

J∑
j=1

∑
i=FS(j)

CijtXijt

+
∑
i∈Pj

(BPij/Qijt)Xijt +
∑
i∈Sj

(BSij/Qijt)Xijt

+ ojt ·Ojt(n) + rjt ·Rjt(n)

)

+
1

n

[ ∑
n∈Tree

p(n)

(
tn∑
t=1

N∑
i=1

hitIFit(n)

+

tn∑
t=1

N∑
i=1

bitBit(n)

)]
+

tn∑
t=1

N∑
i=1

Witwit.

(29)
Using SAA method, the solution of the mathe-

matical model must be repeated with independent
samples. Solution quality relies on the statistical con-
fidence interval. Using SAA method, there could be
an optimality gap (OG); that is defined as the differ-
ence between right objective value and true optimal
solution. In this study, normal distribution is used
to obtain the optimality gap (OG) confidence inter-
val which gives the sample mean and variance. This
approach is presented as follows:

Step (1): Create ng consider as independent iden-
tically distributed of samples batches of size n from
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the normal distribution of ζie. {ζ1y, ζ2y, ζ3y, ..., ζny},
for y = 1, ..., ng for each sample. Solve the SAA
Eq. (29). Let Ẑy

n optimal objective value.
Step (2): Calculate

Z n,ng =
1

ng

ng∑
y=1

Ẑy
n, (30)

S2
Ẑn,ng

=
1

ng(ng − 1)

ng∑
y=1

(
Ẑy
n − Z n,ng

)
. (31)

In this approach, it should be regarded that the val-
ue of Ẑn is less than or equal to the optimal value
of Z∗ the problem as E

[
Z n,ng

]
≤ Z∗. Therefore,

Z n,ng
introduces a lower statistical bound value for

the optimal value Z∗ of the problem, while S2

Z n,ng

is

the variance of the estimator E
[
Z n,ng

]
.

Implementation of the proposed model

Case study data

An explanatory real case study is introduced to
demonstrate the model application. The model is ap-
plied in General Manufacturing Company (GMC)
which produces three main product groups: fully-
automatic washing machine, gas cooker and electri-
cal water heater (EWH) with volumes of (30, 40, 50,
80, 100 Liter). In this study different types of cost,
parameters are used in the computational study.
EWH family was selected for the case study and rel-
evant data is collected. The company produces three
families of the EWH; 50L, 80L and 100L. The data
comprise; seven manufacturing departments, three
planning horizon period (12 weeks), five produc-
tion resources (machine, manpower, material, main-
tenance (spare parts) and energy), 65 (parts) items.
The included assumptions are:

P1 is a set of families at the primary de-
partment (1), FS(1), ..., FS(7) = {family1, 2, 3},
where TI(1) is a set of items to family (1)
LR(1) = LR(2), ..., LR(7) = {resource1, 2, 3, 4, 5},
where LR(1) is a set of resources belonging to de-
partment (1).

Overtime is allowed while the backorder is not.
Variable parameters of the system are summa-

rized in Table 5, where UN∼ [a, b] represents a uni-
formly distributed random variable in the interval
[a, b]. It must be mentioned that most of the values
of these parameters are constant during the plan-
ning horizon. Also, the processing time of each item
at each feasible resource (PRkl) and the number of
operations for each item is fixed.

Table 5
Data collection (fixed parameters).

Parameters Set of values

Total number of items, k 65

Total number of resources, L 5

No of periods, T 12 weeks

Probability distribution p(n) (0.5, 0.3, 0.2)

No of sub periods, w 4 weeks

Cost of production, Cijt [2000,2250]

Cost of regular time, rjt [320,400]

Inventory Holding Cost, hit [40,48]

Setup cost for the families, BPij [200,260]

Processing time, PRkl [0.07,0.075]

No of operation per part 130

Setup time, bpij [0.361,0.331]

Total time required to produce one
unit of family i at department j, aij

[3.37,4.5]

Computational results

The mathematical model (Eqs (15)–(28)) that
represents the SAA method of the TSP is solved opti-
mally with the commercial Non-linear programming
solver LINGO 16.0 (LINDO Systems Inc.). All ex-
perimental runs were conducted using an Intel Core
(TM) i5-2450M CPU (2.50 GHz) and 6.0 GB RAM,
working under Windows. The numerical results from
LINGO 16.0 are validated using Mathworks Matlab
R2015a (64-Bit), Appendix.

To examine the stability and robustness of the
proposed stochastic model considering seasonality,
an analysis of the investigated scenarios are intro-
duced. In this analysis, three typical demand values
of each product (per period) with different probabil-
ity distributions (0.5, 0.3, and 0.2) are introduced.
Therefore, three interest trees (DT1, DT2, and DT3)
and an aggregate of three test problems are consid-
ered as shown in Table 6, and Fig. 3.

Table 6
Total product cost Z with different probability distribution.

Total
product
cost Z

(L.E/Month)

DT1(P=0.2) DT2(P=0.3) DT3(P=0.5)

EWH (50L) 0.9122E+10 1.08E+10 1.47E+10

EWH (80L) 1.10E+10 1.98E+09 3.40E+09

EWH (100L) 3.09E+09 3.25E+09 3.52E+09

From Fig. 3, it is clear that the minimum produc-
tion cost of the three EWH sizes (50, 80, and 100L)
is related to DT2 of probability distribution P = 0.3.
While the maximum cost for 100L, EWH is that of
DT3 (P = 0.5) and for the 80L EWH the maximum
cost is related to DT1 (P = 0.2). The production cost
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of the EWH 100L is almost the same for the three
investigated probability distributions.

Fig. 3. Scenarios of the total product cost with different
probability distributions of EWH.

Generally, a mathematical model states a system
with a set of variables and a set of equations that
express the relationships between the variables. In
this work, using MINITAB 17 statistical software,
a mathematical model was introduced using multiple
regression methods. ANOVA test is usually used to
analyze the results obtained from the experimenta-
tion of a full set of system configurations to reach sig-
nificant observations. Interaction plots are also very
indicative illustrations [30]. Hence, ANOVA analysis
specializing in statistical validation of the acquired
outcomes has been applied.

Table 7 exhibits data used for ANOVA Analy-
sis [30–32] the main variables (inventory IF , regular
time R, overtime O, and probability distribution val-
ues p(n)), that are affected by seasonal demand are
analyzed. Table 8 exhibits an analysis of variance re-
sults for the min total production cost.

It could be noticed in table 8 which the analysis
is considered for a level of significance of 5%, with
95%confidence levels that there is a significant effect

of P (n), IF , R and O but IF , and O are signifi-
cant factors than P (n) as P -values less than 0.0500.
F test was calculated for that factor analysis (IF , O)
equals 3812.91 and 819.51 respectively. It was noted
that higher value than other factors, this result shows
also that factors have a significant effect on z (min
total production cost).

Table 7
Data used for ANOVA analysis.

Factor Type Levels Values

P (n) Fixed 3 0.2,0.3,0.5

IF Fixed 3 1.73,1.9,2.0

R Fixed 3 2000,2100,2500

O Fixed 3 1.1,1.5,2.0

Figure 4 illustrates the probability plot diagram
to visualize the normality of the data, while Fig. 5
represents the main effects plot of data means on Z.

Fig. 4. Normal probability plot diagram for Z (min total
production cost).

Table 8
Analysis of variance for Z (min total production cost).

Source DF SS (L.E ) MS (L.E ) F P

P(n) 2 5.61602E+20 2.80801E+20 0.01 0.995

IF (Ratio) 2 5.37363E+17 2.68681E+17 819.51 0.000

R (Min) 2 1.20705E+20 6.03524E+19 3.65 0.031

O (Hr) 2 7.88888E+14 3.94444E+14 3812.91 0.000

Error 72 5.30242E+18 7.36447E+16

Total 80 6.88147E+20

S=271375590 L.E R-Sq = 99.23% R-Sq (adj) = 99.14%

Notes: SS is the Sum of squares, MS is the Mean of squares, DF is the Degrees
of freedom, F and P-value: test statistics.
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Fig. 5. The main effects plot of data means on Z (min
total production cost).

In Fig. 4, the adequacy of the model is also inves-
tigated by the examination of residuals. The resid-
uals, which are the difference between the respec-
tive, observe responses are examined using the nor-
mal probability plots of the residuals. If the mod-
el is adequate, the points on the normal probabili-
ty plots of the residuals should form a straight line.
Figure 4 illustrates the normal probability plot for
testing Z (min total production cost) with the cumu-
lative distributions of the residuals. The error distri-
butions seem to be normal. The residual is around
± 1.0 E+09. From Fig. 5 it can be noted that IF ,
and O are the most effective factors on the optimal
solution of z.

Conclusion

This model successfully solved the problems of
production planning for the following purposes:
1) the model can solve problems in case of season-

al demand as no previous research was included,
where it’s recommendations of Kazemi et al. [16],

2) the developed analytical model (Non-linear, two-
Stage stochastic programming) to into considera-
tion manufacturing set up costs ignored in previ-
ously developed models,

3) an advantage of the proposed model is that it is
verified using Mathworks Matlab R2015a,

4) using ANOVA indicated the most significant fac-
tors affected by seasonal demand that are; inven-
tory, and overtime.

Appendix

We are used for solving proposed model LINGO
16.0 software and validation through Matlab, and
the result is the same sound as illustrated in Ap-
pendix. A program screen (code) and table presented
this validation. It introduced the results (Min Z) of
LINGO 16.0 and Matlab is 9.1*10E+9 L.E/Month,
9.8 *10E+9 L.E/Month, respectively with probabili-
ty distributions (0.2) for EWH (50L). As there is no
difference gap between results.

LINGO 16 EWH
(50L), p(0.2)

Min z=9.1*10E9 L.E/Month

Matlab EWH
(50L), p(0.2)

Min z=9.8*10E9 L.E/Month

Lingo (16) Solution report for EWE (50L)
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Matlab Solution report for EWE (50L)

Table
Multiplicative seasonal method EWH (50L).

t
week

2016
Seasonal
factor
(1)

t
week

2017
Seasonal
factor
(2)

t
week

2018
Seasonal
factor
(3)

t
week

2019
Seasonal
factor
(4)

t
week

Average
seasonal
factor

Estimation
of 2020

Weekly
forecasted
(product)

1 1350 0.99 1 2055 1.54 1 1485 1.39 1 1200 0.78 1 1.17 1637

2 760 0.56 2 1988 1.49 2 2358 2.20 2 999 0.65 2 1.22 2041

3 666 0.49 3 1485 1.11 3 605 0.57 3 789 0.51 3 0.67 1116

4 889 0.65 4 2358 1.77 4 1374 1.28 4 1012 0.66 4 1.09 1816

5 2000 1.47 5 1374 1.03 5 950 0.89 5 2555 1.66 5 1.26 2100

6 2003 1.47 6 950 0.71 6 814 0.76 6 3005 1.95 6 1.22 2037

7 1350 0.99 7 814 0.61 7 654 0.61 7 2100 1.36 7 0.89 1489

8 1450 1.06 8 1386 1.04 8 1386 1.30 8 835 0.54 8 0.98 1641

9 1878 1.38 9 520 0.39 9 762 0.71 9 2055 1.33 9 0.95 1588

10 1999 1.46 10 890 0.67 10 810 0.76 10 1566 1.02 10 0.98 1627

11 1050 0.77 11 990 0.74 11 750 0.70 11 1988 1.29 11 0.88 1459

12 985 0.72 12 1200 0.90 12 894 0.84 12 396 0.26 12 0.68 1131

Total 16380 Total 16010 Total 12842 Total 18500 Total 16731

The authors wish to offer their thanks to the staff
of the (GMC) Company in Egypt, for their valuable
assistance during this study.
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