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Abstract The theory of generalized two-temperature thermoelasticity
is used to solve the boundary value problems between two elastic media
with two different types of temprature under the influence of gravity.The
classical dynamical coupled theory and Lord-Şhulman theory are used to
obtain the general solution of the governing equations and investigate the
effect of surface waves in an isotropic elastic medium subjected to gravity
field. The harmonic vibrations method is used to obtain the displacement
components, stress tensor and temperature distribution in the considerd
physical domain with comparison with the two theories. The obtained ana-
lytic solution of the problem is applied for special cases for which the effect
of two temperatures is studied. The conductive and dynamical tempera-
tures as well as stress and strain components are shown graphically for a
suitable material. Some comparisons are also introduced in the absence and
in the presence of gravity, and two-temperature parameter. The differences
in the obtained results between the two theories are considered.
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Nomenclature

a – two temperature parameter
Ce – specific heat at constant strain
e – cubical dilatation
eij – components of the strain tensor
−→
E – electric intensity
e – dilatation
−→
F – Lorentz’s body forces vector
−→
h – perturbed magnetic field over the constant primary magnetic field

vector
−→
H0 – primary magnetic field vector
−→
J – electric current density
K – thermal conductivity
P – initial stress
T – absolute temperature
T0 – temperature of the medium in its natural state assumed to be

|(T − T0) /T0| < 1
t – time
u, v – two components of the displacement
ux, uy , uz – components of the displacement vector
ui,j – differentiation of the displacement tensor
x, y – Cartesian coordinates

Greek symbols

αt – coefficient of linear thermal expansion
δij – Kronecker delta function
ε0 – electric permittivity
h – initial stress parameter
θ = T − T0 – thermodynamical temperature
λ, µ – Lame’s parameters
γ – the volume thermal expansion
µ0 – magnetic permeability
Π, Ψ – two scalar functions
ρ – density of the medium
σij – stress tensor
τ0 – thermal relaxation time
φ = φ0 − T – conductive temperature
ω – the complex time constant

1 Introduction

The study of influence of surface waves in microstructure materials such as
metals, polymers, composites, solids, rocks and concrete are very important
for earthquake engineering and seismologists . As the earth is made up of
different layers, the dynamical problems of propagation of surface waves
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in homogeneous and non-homogeneous elastic and thermoplastic media are
of considerable importance. The linear theory of micropolar elasticity is
adequate to represent the behavior of such materials. For ultrasonic waves,
especially when elastic vibrations are characterized by high frequencies and
small wavelengths, the influence of the microstructure material becomes
significant.

The classical coupled theory in thermoelasticity problems proposed by
Biot with the introduction of the strain-rate term in the Fourier heat con-
duction equation leads to a parabolic type of the heat conduction equation,
called the diffusion equation [1]. This theory predicts the finite propaga-
tion speed for elastic waves but an infinite speed for thermal disturbances,
and this result is not accepted physically. To overcome such absurdity, the
generalized thermoelasticity theories have been propounded by Lord and
Şhulman [2]. Green and Lindsay have advocated the existence of a finite
thermal wave speed in solids [3]. The generalized thermoelasticity theo-
ries have been developed by introducing one or two relaxation times in the
thermoelastic process, either by modifying Fourier′s heat conduction equa-
tion or by correcting the energy equation and Neuman-Duhamel relation
[4,5]. Because of its application to geophysical problems and certain topics
in optics and acoustics, the Maxwell electromagnetic field with the motion
of deformable solids is often considered by many investigators. A com-
prehensive review of earlier contributions to the subject can be found in
the study by Puri [6]. Among the authors who considered the general-
ized magneto-thermoelastic equations are Nayfeh and Nemat-Nasser who
studied the propagation of plane waves in a solid under the influence of an
electromagnetic field [7]. Roy Choudhuri extended these results to rotating
media [8]. Ezzat et al. have studied the problem of generalized magneto-
thermoelastic waves in two dimensions by considering a thermal shock in
a perfectly conducting half-space [9,10].

Most studies of the classical or generalized thermoelastic problems used
the displacement potential function approach. However, Bahar and Het-
narski outlined several disadvantages of the potential function approach
based on the fact that the boundary and initial conditions of the prob-
lem are not related directly to the potential function, as it has no physical
meaning explicitly [11,12]. More stringent assumptions must be made on
the behaviour of the potential functions than on the actual physical quanti-
ties. It was found that many integral representations of physical quantities
are convergent in the classical sense while their potential function repre-
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sentations only converge in the mean. To get rid of these difficulties, Bahar
and Hetnarski [13] introduced the state space formulation in thermoelastic
problems. This state space approach has been further developed by Sherief
to include the effect of heat sources [14]. Sherief and Anwar surveyed a two-
dimensional generalized thermoelasticity in an infinitely long cylinder [15].
Youssef and El-bary put forward an analysis for a generalized thermoelastic
infinite layer problem under three theories using the state space approach
[16]. State space formulation to the vibration of a gold nanobeam in fem-
tosecond scale was done by Elsibai and Youssef [17].

The theory of heat conduction in a deformable body, formulated by
Chen and Gurtin [18] and Chen et al. [19,20] depends on two different
temperatures, the conductive temperature and the thermo dynamical tem-
perature. Chen et al. have suggested that the difference between these
two temperatures is proportional to heat supply [21]. In absence of heat
supply, these two temperatures are identical for a time independent situa-
tion. However, for time dependent cases, particularly for problems related
to wave propagation, the two temperatures are in general different, re-
gardless of heat supply. The two-temperature thermoelasticity theory has
gained much attention of the researchers in the recent years. The existence,
structural stability, convergence and spatial behaviour of two temperature
thermoelasticity has been described by Quintanilla [22]. Youssef et al. have
developed various solutions of problems with a new model of generalized
thermoelasticity that depends on two temperatures: T and φ [23–29].

In the classical theory of elasticity, the gravity effect is generally ne-
glected. The gravity effect in the problem of wave propagations in solids,
particularly on an elastic globe, was first studied by Bromwich [30]. Love
considered the effect of gravity and showed that the velocity of Rayleigh
waves increased to a significant extent due to the gravitational field for large
wave lengths [31]. De and Sengupta studied the gravity effect on surface
waves, on the propagation of waves in an elastic layer and Lamb’s problem
on a plane [32–34]. Sengupta et al. studied the influence of gravity on
the propagation of waves in a thermoelastic layer [35–38]. Many authers
developed the generalized thermo-micro-stretch elastic medium in two di-
mensions with Rayleigh waves in a magnetoelastic medium and studied the
photo-thermal-elastic interaction for two-temperature problems with gravi-
tational effect and initial stress for different theories and other fileds [39–55].

In the present investigation, we shall formulate the two-dimensional
generalized thermoelasticity problem with two-temperature theory for two
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elastic isotropic semi-infinite solid media perfectly in contact. The govern-
ing equations under the influence of gravity of an infinite space weakened
by a finite linear opening are solved for the considered variables. The nor-
mal mode method is used to obtain the exact expressions for the considered
variables. The distributions of the considered variables have been discussed
and represented graphically using some particular cases.

2 Mathematical formulation of the problem

Let
∐

1and
∐

2 be two elastic isotropic semi-infinite solid media perfectly
welded in contact to prevent any relative motion or sliding before and after
the disturbances and that the continuity of displacement, stress etc. is held
across the common boundary surface. Further the mechanical properties of
∐

1 are different from those of
∐

2. These media extend to an infinite great
distance from the origin and are separated by a horizontal plane boundary.
Let

∐

2 be above
∐

1 and Oxyz be a set of orthogonal Cartesian coordinates
such that O be any point of the plane boundary and Oz – points vertically
downward to the medium

∐

1. Consider the plane waves travelling in Ox
direction such that the disturbance is largely confined to the neighborhood
of the boundary at any instant. Also assume that all particles parallel to
x-axis have equal displacements. These two assumptions confirm the neuter
of the considered waves, consequently the physical fields are independent
of z variable.
The heat conduction equation takes the form [23]

Kϕ,ii = (
∂

∂t
+ τ0

∂2

∂t2
)(ρCET + γT0ui,j) . (1)

The constitutive equation takes the form

σij = λekkδij + 2µeij − γ Tδij . (2)

The equation of motion without body force takes the form

ρüi = σij,j , (i, j = 1, 2, 3), (3)

where ’over-dots’ denote the second derivative with respect to time.
The relation between the heat conduction and the dynamical heat takes

the form

ϕ− T = aϕ,ii , (4)
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where a > 0 is two-temperature parameter.
Now, we will suppose elastic and homogenous half-space x ≥ 0 which

obeys Eqs. (1)–(4) and is initially quiescent where all the state functions
depend only on the dimensions x, y, and the time t.

The displacement components for two dimensionl medium have the form

ux = u(x, y, t), uy = v(x, y, t) and uz = 0 . (5)

The strain component takes the form

eij =
1

2
(ui,j + uj,i) . (6)

The heat conduction equation takes the form

K(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
) =

(

∂

∂t
+ τ0

∂2

∂t2

)

ρCET + γT0

(

∂

∂t
+ τ0

∂2

∂t2

)

(

∂u

∂x
+
∂v

∂y

)

. (7)

The constitutive equations take the form:

σxx = (2µ + λ)
∂u

∂ x
+ λ

∂v

∂ y
− γ T , (8)

σyy = (2µ + λ)
∂v

∂ y
+ λ

∂u

∂ x
− γ T , (9)

σxy = µ(
∂u

∂ y
+

∂v

∂ x
) . (10)

For a two dimensional problem (xy-plane) all quantities depend only on
space coordinates x, y, and time t too. The field equations and constitutive
relations in generalized linear thermoelasticity with the influence of gravity
and without body forces and heat sources are:

ρ

(

∂2u

∂t2
− g

∂v

∂x

)

= µ∇2u+ (µ+ λ)
∂e

∂x
− γ

∂T

∂x
, (11)

ρ

(

∂2v

∂t2
+ g

∂u

∂x

)

= µ∇2v + (µ+ λ)
∂e

∂y
− γ

∂T

∂y
. (12)
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The relation between the heat conduction and dynamical heat takes the
form

ϕ− T = a

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

. (13)

For simplicity, we will use the following non-dimensional variables:

(x′, y′, u′, v′) = c0η(x, y, u, v) , (t′, τ ′
0, υ

′
0) = c2

0η(t, τ0, υ0) ,

(θ′, ϕ′) =
(T,ϕ) − T0

T0
, σ′

ij =
σij

2µ + λ
, g′ = g

C0η
,

(14)

where

η =
ρCE

K
, C2

2 =
µ

ρ
, C2

0 =
2µ+ λ

ρ
.

Hence, we have (dropping primes for convenience)

∇2ϕ−
(

1 + τ0
∂

∂ t

)

∂θ

∂ t
− ε

(

1 + τ0
∂

∂ t

)

∂e

∂ t
= 0 , (15)

ϕ− θ = β

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

, (16)

and the equations of motion take the form:

∂2u

∂t2
= a∗

1∇2u+ a2
∂e

∂x
− a0

∂θ

∂x
+ a3

∂v

∂x
, (17)

∂2v

∂t2
= a∗

1∇2v + a2
∂e

∂y
− a0

∂θ

∂y
− a3

∂u

∂x
, (18)

where

ε =
γ

ρCE
, β = aη2c2

0, a∗
1 =

µ

ρC2
0

, a2 =
µ+ λ

ρC2
0

, a0 =
γT0

ρC2
0

, a3 =
g

C2
0

.

Assuming the two scalar potential functions Π(x, y, t) and ψ(x, y, t)
defined by the relations in the non-dimensional form:

u =
∂Π

∂x
+

∂ ψ

∂ y
, v =

∂Π

∂y
− ∂ ψ

∂ x
, (19)

by using (19) and (14) in Eqs. (17) and (18), we obtain
[

∇2 − ∂2

∂t2

]

Π − a3
∂ψ

∂x
− a0θ = 0 , (20)
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(

∇2 − a1
∂2

∂t2

)

ψ + a4
∂Π

∂x
= 0 , (21)

where a4 = a3

a∗

1

, a1 = 1
a∗

1

, a∗
1 + a2 = 1. Also Eq. (15) takes the form

∇2ϕ−
(

1 + τ0
∂

∂ t

)

∂θ

∂ t
− ε

(

1 + τ0
∂

∂ t

)

∂

∂ t
∇2Π = 0 (15∗)

and similar relations are held in
∐

2 with ρ, λ, µ, α, γ replaced by ρ+, λ+,
µ+, α+, and γ+.

3 Soltuion of the problem

To solve Eqs. (20), (21), (15∗) and (16) assume the following:

[Π, ψ, ϕ, θ, σij ](x, y, t) = [Π∗(y), ψ∗(y), ϕ∗(y), θ∗(y), σ∗
ij(y)] exp iω(x− ct) ,

(22)
where u∗(x), ϕ∗(x), θ∗(x), and σ∗

ij(x) are the amplitude of the field quanti-
ties. Using Eqs. (22), (20), (21), (15)∗, and (16) we get a set differential
equations for medium

∐

1 as follows:

[D2 −A1] Π∗ − a∗
3ψ

∗ −A2θ
∗ = 0 , (23)

(

D2 − A4

)

ψ∗ + a∗
4Π∗ = 0 , (24)

[D2 −A3]ϕ∗ = −β∗θ∗ , (25)

(D2 − ω2)ϕ∗ −Aθ∗ −B(D2 − ω2)Π∗ = 0 , (26)

where A = icω(icωτ0 − 1) , B = εA, A1 = (1 − c2)ω2 , A2 = a0 ,
A3 = (βω2 + 1)/β , β∗ = 1

β , A4 = ω2(1 − a1c
2), a∗

3 = ia3ω ,

a∗
4 = ia4ω, D = d

dy .
Eliminating θ∗(x), Π∗(x), ψ∗(x) and ϕ∗(x) between Eqs. (23)–(26), we
obtain the partial differential equation satisfied by Π∗(x)

[D6 − ED4 + FD2 −G] Π∗(x) = 0 , (27)

where A5 = A7 +A2B, A6 = (β∗ω2 +AA3), A7 = (β∗ +A). Since

E = [(A1 +A4)A7 +A6 +A2B(A4 +A3 + ω2]/A5 , (28)

F = [(A1A4+a∗
3a

∗
4)A7+A2B(A3A4+ω2(A3+A4))+A6(A1+A4)]/A5 , (29)
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G = [(A1A4 + a∗
3a

∗
4)A6 +A2A3A4Bω

2]/A5 , (30)

in a similar manner, we get

[D6 − ED4 + FD2 −G] (θ∗, ϕ∗, ψ∗)(x) = 0 . (31)

The above equation can be factorized
(

D2 − k2
1

)(

D2 − k2
2

) (

D2 − k2
3

)

Π∗(x) = 0 , (32)

where, k2
n (n = 1 , 2, 3) are the roots of the following characteristic equation:

k6 − Ek4 + Fk2 −G = 0 . (33)

The solution of Eq. (32) which is bounded as y → ∞, is given by

Π∗(y) =
3
∑

n=1

Mn exp(−kny) . (34)

Similarly

θ∗(y) =
3
∑

n=1

M ′
n exp(−kny) , (35)

ψ∗(y) =
3
∑

n=1

M ′′
n exp(−kny) , (36)

ϕ∗(y) =
3
∑

n=1

M ′′′
n exp(−kny) , (37)

since,
u∗(y) = iωΠ∗ + Dψ∗ , (38)

v∗(y) = DΠ∗ − iω ψ∗ , (39)

e∗(y) = iωu∗ +Dv∗ . (40)

Equations (38) and (39) can be rewritten in order to obtain the amplitude
of the displacement components u and v, which are bounded as x → ∞

u∗(y) = iω
3
∑

n=1

Mn exp(−kny) −
3
∑

n=1

knM
′′
n exp(−kny) , (41)

v∗(y) =
3
∑

n=1

−Mnkn exp(−kny) − iω
3
∑

n=1

M ′′
n exp(−kny) , (42)
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where Mn, M
′
n, M ′′

n , and M ′′′
n are some parameters depending on β, c,

and ω.
Substituting Eqs. (34)–(36) into Eqs. (23)–(26), we have

M ′
n = H1nMn , n = 1, 2, 3 , (43)

M ′′
n = H2nMn , n = 1, 2, 3 , (44)

where

H1n = −B(k2
n −A3)(k2

n − ω2)

A7k2
n −A6

, n = 1, 2, 3, (45)

H2n = − a∗
4

(k2
n −A4)

, n = 1, 2, 3., (46)

H3n =
−β∗H1n

k2
n −A3

, n = 1, 2, 3 . (47)

Thus, we have

θ∗(y) =
3
∑

n=1

H1nMn exp(−kny) , (48)

ψ∗(y) =
3
∑

n=1

H2nMn exp(−kny) , (49)

ϕ∗(y) =
3
∑

n=1

H3nMn exp(−kny) . (50)

Substitution of Eqs. (14), (22), (40), and (41) into Eqs. (8)–(10), we get

σ∗
xx =

3
∑

n=1

hnMn exp(−kny) , (51)

σ∗
yy =

3
∑

n=1

h′
n Mn exp(−kny) , (52)

σ∗
xy =

3
∑

n=1

h′′
nMn exp(−kny) , (53)

u∗(y) =
3
∑

n=1

(iω − knH2n)Mn exp(−kny) , (54)
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v∗(y) = −
3
∑

n=1

(kn + iωH2n)Mn exp(−kny) , (55)

where

hn =

[

iω(iω − knH2n) +
λkn(kn + iωH2n)

2µ+ λ
− γT0H1n

2µ + λ

]

, (56)

h′
n =

[

kn(kn + iωH2n) +
iλω(iω − knH2n)

2µ+ λ
− γT0H1n

2µ + λ

]

, (57)

h′′
n = −µ[kn(iω − knH2n) + iω(kn + iωH2n]

2µ+ λ
. (58)

It should be noted that Eqs. (22)–(58) are also satisfied for medium
∐

2,
therefore the plus sign is used for the physical quantities of medium

∐

2.

4 Applications

We consider the following set of boundary conditions:
I The displacement components are continuous:

(u, v)|∐
1

= (u, v)|∐
2

, at x = 0 . (59)

Using Eqs. (19), (54), and (55) we get:
[

3
∑

n=1

(iω − knH2n)Mn

]

∐

1

=

[

3
∑

n=1

(iω − knH2n)Mn

]

∐

2

, (60)

[

3
∑

n=1

(kn + iωH2n)Mn

]

∐

1

=

[

3
∑

n=1

(kn + iωH2n)Mn

]

∐

2

. (61)

II The stress components σxy, σxx, and σyy are continuous:

[σxy, σxx, σyy]
∐

1

= [σxy, σxx, σyy]
∐

2

, at x = 0 . (62)

Substituting from Eqs. (22), (51)–(53) we obtain:
[

3
∑

n=1

h′′
n Mn

]

∐

1

=

[

3
∑

n=1

h′′
nMn

]

∐

2

, (63)

[

3
∑

n=1

hnMn

]

∐

1

=

[

3
∑

n=1

hn Mn

]

∐

2

, (64)

[

3
∑

n=1

h′
nMn

]

∐

1

=

[

3
∑

n=1

h′
n Mn

]

∐

2

. (65)
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5 Thermal shock problem

To investigate the possibility of thermal shock problem in anisotropic elas-
tic media, we replace medium

∐

2 by a vacuum, in the proceeding problem.
Since the boundary x = 0 is adjacent to vacuum, it is free from surface
traction. In this section we determine the parameters, Mn (n = 1, 2, 3).

In the physical problem, we should suppress the positive exponentials
that are unbounded at infinity. The constants M1 , M2 , and M3 must be
chosen such that the boundary conditions on the surface at x = 0 take the
form:

1) The surface of the half-space is subjected to thermal shock (thermal
boundary conditions)

θ(0, y, t) = f(0, y, t) . (66)

2) The surface of the half-space is traction free (mechanical boundary
condition):

σyy(0, y, t) = 0 , (67)

σxy(0, y, t) = 0 . (68)

Applying the boundary conditions we obtain the following equations:

3
∑

n=1

H1nMn(b, β∗, ω) = f∗ , (69)

3
∑

n=1

hn Mn(b, β, ω) = 0 , (70)

3
∑

n=1

h′′
n Mn(b, β, ω) = 0 , (71)

where
f(x, y, t) = f∗(y) exp iω(x− ct) . (72)

Invoking the boundary conditions at the surface, x = 0 of the plate, we
obtain a homogeneous system of algebraic equations. Applying the inverse
matrix method, we get three constants Mj, j = 1, 2, 3 and therefore, we
obtain the expressions of displacements, temperature distribution and all
other physical quantities of the plate.
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Rayleigh waves

To investigate the occurrence of Rayleigh waves in anisotropic fibre-reinforced
elastic media, we replace medium

∐

2 by a vacuum in the proceeding prob-
lem. So the stress boundary condition in this case may be expressed as
σxy = σxz = σyy = 0.

Stoneley waves

It is the generalized form of Rayleigh waves in which we assume that the
waves are propagated along the common boundary of two semi-infinite
media

∐

1and
∐

2. Therefore Eqs. (63)–(65) determine the wave velocity
equation for Stoneley waves in a solid elastic media under the influence of
gravity.

Clearly from Eqs. (63)–(65) , the wave velocity of the Stoneley waves
depends upon the parameters of the two-temperature material medium,
gravity and densities of both media. Thus, the wave velocity in Eqs. (63)–
(65) for Stoneley waves under the present circumstances depends on the
particular value of ω and creates a dispersion of a general wave form.

6 Numerical results and discussions

In this section we consider the copper material as a numerical example to
illustrate the analytical procedure presented earlier. The results of this
example depict the variation of temperature, displacement and stress fields
in the context of two theories, all computations are carried out at time
t = 0.1.

The physical constants for copper material are:
λ = 7.59 × 109 N/m2, µ = 3.86 × 1010 kg/ms2, CE = 383.1 J/(kgK),
α = −1.28×109 N/m2, ρ = 7800 kg/m2, K = 386 N/Ks, τ0 = 0.02,
f∗ = 1,αt = 1.78 × 10−5 N/m2, a = 1, T0 = 293 K, ω = ω0 + iξ,
ω0 = 2, ξ = 1, η = 8886.73 m/s2, ε = 0.0168.
The used numerical technique concentrated on the study of distribution of
the real part of thermal temperature θ and φ, the displacement components
(u, v), and the stress (σxx, σyy, σxy) distribution for the problem. The field
quantities, temperature, displacement components and stress components
depend not only on space x and time t but also on the thermal relaxation
time τ0. Here, all variables are taken in non dimensional forms.
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Figure 1 shows the comparisom between classical dynamical (CD)
and Lord-Shulman LS models by considering variation of thermodynamical
heat θ, displacement u, normal stress σyy and shear stresses σxy with respect
to x. It can be noticed that θ and u take large values for the CD theory
comparing with its corresponding values for the LS theory for various values
of x, while σyy takes a large value for CD at x ∈ [0, 0.01) comparing with
the LS model while its behavior is inversed at x ∈ [0.01, 0.06]. Also, it is
seen that σxy takes small values for the CD theory at x ∈ [0, 0.05) compar-
ing with the LS model but assumes an inverse behavior at x ∈ [0.05, 0.06].

Figure 2 shows the gravity effect on thermodynamical heat θ, displace-
ment u, shear stresses σxy and normal stress σxx with respect to x. It can be
noticed that the thermodynamical heat θ starts from unity at the interface
surface (i.e., x = 0) and tends to zero at x → ∞, while the displacement
component u, the shear stresses σxy and the normal stress σxx start from
zero at the interface surface and tend to unity when x tends to infinity. It
is also noted that, the gravity has a positive effect on the thermodynamical
heat θ but a negative effect on σxx. Also, it is shown that gravity g affects
increasingly the displacement component u at x ∈ [0, 0.003), but decreas-
ingly at x ∈ [0.003, 0.01] and vise-versa with respect to σxy.

Figure 3 shows influence of β on thermodynamical heat θ, displacement
u, normal stress σxx and shear stresses σxy with respect to x. It noted that
θ, u and σxx increase with an increasing of β = { 0, 0.1} but σxy decreases.

Three-dimensional grafs for heat distribution φ, stress σxx and σyy with
respect to x and y axis are presented in Figs. 4–6. All these quantities
increase and decrease periodically tending to zero as x tends to infinity.
Also, with an increasing y all of them decrease.

Figure 7 shows the effect of variation of gravity and phase velocity on
the secular function. It clearly decreases and increases tending to zero as
g and c tend to infinity.

Figure 8 exhibits the effect of variation of gravity and phase velocity on
Stoneley waves. It is clear that the Stoneley wave velocity decreases and
increases periodically tending to unity as c tends to infinity, but decreases
and increases with an increasing gravity field.
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Figure 1: Comparisom between CD and LS models on variation of thermodynamical heat
θ, displacement u, normal stress σyy and shear stresses σxy with respect to x.

The effect of variation of gravity and phase velocity on the attenuation
coefficient is illustrated in Fig. 9. The attenuation coefficient starts to
increase from its minimum value and tends to zero as g tends to infinity,
but increases with an increasing gravity and phase velocity.

Figure 10 shows the effect of variation of gravity and phase velocity on
the secular function for Rayleigh waves. It is shown that it decreases and
increases periodically tends to unity as c tends to infinity but decreases and
increases with an increasing of gravity.
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Figure 2: Variation of gravity on thermodynamical heat θ, displacement u, shear stresses
σxy and normal stress σxx with respect to x.



Wave propagation in 2D between two elastic media. . . 235

Figure 3: Variation of β on thermodynamical heat θ, displacement u, normal stress σxx

and shear stresses σxy with respect to x.
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Figure 4: 3D variation of conductive heat distribution φ with the distance (x,y).

Figure 5: 3D variation of normal stress σxx (x,y) with the distance (x, y).
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Figure 6: 3D variation of shear stress σxy with the distance (x, y).

Figure 7: 3D variation of secular function with g and c.
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Figure 8: 3D variation of Stoneley wave velocity with g and c.

Figure 9: 3D variation of attenuation coefficient with g and c.
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Figure 10: 3D Variation of the secular function for Rayleigh waves with varies values of
g and c.

7 Conclusion

Based on the obtaind results, we concluded that:

1. The curves of physical quantities obtained from the CD theory in
most figures have lower values in comparison with those of the LS
theory due to the external effects parameters and the difference in
the relaxation time.

2. The theory of two-temperatures generalized thermoelasticity gives
a better description of behavior of the elastic body particles than
the theory of one-temperature generalized thermoelasticity .

3. All physical quantities converge to zero as the non-dimensional dis-
tance x increases , therefore all functions are continuous and damped
as the distance increses.

4. The deformation of the body depends on the nature of the applied
force as well as on the type of boundary conditions and gravity.

5. The time parameter, relaxation time, gravity and phase velocity have
a significant effect on all results obtained, including the displace-
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ment, temperature, stresses, secular function, Rayleigh waves, Stone-
ley wave velocity and attenuation coefficient.

Received 10 September 2017, in revised form 21 February 2019
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