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Abstract 

When high precision modelling is required, for example, with the estimation of suspended sediment load (SSL), data-
driven models are preferred over physically-based numerical models for their real-time, short-horizon prediction ability. 
The investigation of SSL, as an important index in engineering practices assessment, like design and operation of the hy-
draulic structures not only shows the hydrological behaviour of the river, but also illustrates the valuable information about 
the water quality deterioration, surface-groundwater interaction and land-use changes of the watershed. The following data-
driven methods were compared in order to predict SSL at the Seyra gauging station on the Karaj River in Iran: Fuzzy logic 
(FL), two adaptive neuro-fuzzy inference systems (i.e., ANFIS-GP and ANFIS-FCM models), an artificial neural network 
(ANN), and least squares support vector machine (LSSVM). Monthly average river flow and SSL data for 50 years were 
obtained from the Tehran Regional Water Authority (TRWA). The data was first divided into training, validation and test 
sets and the SSL was then predicted using the ANN, FL, ANFIS, and LSSVM models. The reliability of the applied models 
was evaluated by the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). The re-
sults showed that the ANFIS models outperformed the ANN, FL, and LSSVM models for predicting SSL using the given 
input and output data. Overall, the performances of the artificial intelligence models used in the present study were satisfac-
tory in predicting the non-linear behaviour of the SSL. 
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INTRODUCTION 

Anthropogenic influences along with multiple envi-
ronmental parameters can lead to sediment release result-
ing in a reduction in river water quality [REZAEI 2015]. 
Suspended sediment load (SSL) can be a critical factor for 
the management of water resources, especially in terms of 
designing reservoirs, dams, and channels, and protecting 
aquatic habitats [KISI, ZOUNEMAT-KERMAN 2016; VAFA-
KHAH 2013].  

Suspended sediment load (SSL) can be a critical factor 
for the management of water resources, especially in terms 
of designing reservoirs, dams, and channels, and protecting 
aquatic habitats [KISI, ZOUNEMAT-KERMAN 2016; VAFA-
KHAH 2013]. The downhill movement of eroded soil into 
water bodies can result in reservoir sedimentation, bridge 
scour, and reduced channel capacity [NOORI et al. 2016]. 

Large amounts of sediment can also be carried via suspen-
sion or bed load by river and stream flows. When the flow 
rate slows due to streambed flattening or when entering 
a pond or lake, the suspended load (i.e., the total amount of 
sand, silt, and clay-sized particles) then settles [BUYU-
KYILDIZ, KUMCU 2017]. SSL is affected by various factors, 
such as watershed area, vegetation, geology, and precipita-
tion intensity and duration [HEIDARNEJAD et al. 2006]. 
Anthropogenic influences along with multiple environmen-
tal parameters can lead to sediment release resulting in 
a reduction in river water quality [REZAEI 2015; VADIATI 
et al. 2013;]. 

In recent years, artificial intelligence (AI) methods 
have played a key role in the forecasting of hydrological 
phenomena and the estimation of suspended sediment (SS) 
volumes. Numerous data-driven models have been used for 
estimating and modelling sediment load [JHA, BOM-
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BARDELLI 2011]. Black box data-driven models have been 
applied to problems related to water resources because of 
their relative robustness to solve nonlinear problems more 
simply and their ability to automatically calibrate the mod-
el parameters [KISI 2008; KISI, ZOUNEMAT-KERMANI 
2016]. The applications of AI models to predict SSL are 
categorized in Table 1. In this table, we have discussed 
selected examples among tested approaches and applica-
tions published around the world on the basis of the type of 
applied models, input variables and time interval. In a re-
search study in Bam city in southeast Iran, REZAEI et al. 
[2009] used feed-forward neural network and interpolation 
function models to predict the distribution of soil and sub-
surface sediments. Furthermore, SSL was assessed by JIE, 
YU [2011] using artificial neural network (ANN) and least 
squares support vector machine (LSSVM) models in the 
Kaoping River in southern Taiwan. Additionally, VAFA-
KHAH [2013] applied ANN, Adaptive Neuro Fuzzy Infer-
ence System (ANFIS), co-kriging, and ordinary kriging 
methods for SS prediction. HASSAN et al. [2015] used an 
ANN-based model for the estimation of weekly sediment 
and their results revealed that ANN was highly efficient at 
estimating sediment load values. GOYAL [2014] utilized 
wavelet regression and the M5 decision tree algorithm for 
sediment yield modelling and then compared them with 
ANN models. The applied methods (i.e., wavelet regres-
sion and M5 decision tree algorithm) were found to outper-
form the ANN model. Similarly, SHAMAEI, KAEDI [2016] 
evaluated a neuro-fuzzy and wavelet neuro-fuzzy approach 
alongside the conventional SRC for suspended sediment 
concentration prediction and found the hybrid model of 
wavelet and neuro-fuzzy performed best. Furthermore, 
NOURANI et al. [2016] presented a two-step modelling 
strategy for handling the spatiotemporal variation of SSL. 
SARI et al. [2017] explored the application of the ANN 
model to forecast SSC using turbidity and water level data 
related to 59 SSC values, collected from 2013 to 2015. 
KISI, YASEEN [2019] introduced a novel hybrid AI ap-
proach to predict SSC in the Eel River, California. Their 
results showed superiority of the proposed model over the 

other models. Based on Table 1, ANN was found to be the 
most frequently applied model. 

Despite a notable increase in the number of hydrologi-
cal studies using AI data-driven models in recent years, 
there is still a demand for a comprehensive comparisons of 
ANN, fuzzy logic (FL), ANFIS, and LSSVM models, for 
SSL prediction. This is due to a gap in the literature related 
to the assessment of: (1) the effects of monthly average 
river flow (Q) on the precision and accuracy of SSL predic-
tion, (2) the effects of model structure and parameter on 
the results of applied models, and (3) the efficiency of 
ANN, FL, ANFIS and LSSVM as practical models for re-
search applications. Therefore, the objective of this re-
search is to compare the performance of widely accepted 
AI models (i.e., ANN, FL, ANFIS and LSSVM) for SSL 
prediction. 

STUDY AREA AND METHODS 

DATABASE 

The paper considers SSL prediction using ANN, FL, 
ANFIS-GP, ASNFIS-FCM and LSSVM. Monthly average 
river flow and SSL data for 50 years was collected from 
Seyra gauging station on the Karaj River in order to illus-
trate the performance of the different AI models. The river 
flow and SSL data were monitored by Tehran Regional 
Water Authority on a monthly basis. Data from a 50-year 
period, April 1967 to March 2017, was used. The first 30 
years were used for the training step, the next ten years for 
the validation step, and the final ten years were used for 
the test step. 

STUDY AREA 

The Karaj River watershed (located between 52°2 and 
51°32’E and between 35°52 and 36°11’N) has an estimat-
ed area of 850 km2 and a boundary of 146 km along the 
southern slope of the Alborz mountain range. The highest 
and lowest points of the study area are 4200 and 1600 m, 
respectively. The Karaj River, one of the longest rivers in  

Table 1. Past applications of artificial intelligence models to predict suspended sediment 

References 
Models 

Input variables Time interval 
ANN FL ANFIS LSSVM 

KISI [2005] ✔  ✔  Qt, Qt-1, SSt-1 daily 
ALP and CIGIZOGLU [2007] ✔    Pt, Pt-1, Pt-2, Pt-3, Pt-4, Qt, Qt-1, Qt-2, Qt-3, Qt-4 daily 
KISI [2008] ✔    Qt, Qt-1, Qt-2, Qt-3, SSt, SSt-1, SSt-2, SSt-3 daily 
JIE and YU [2011] ✔   ✔ Qt-3, Qt-2, Qt-1, Qt, Qt+1, Qt+2, Qt+3 monthly 
NOURANI et al. [2012] ✔    Pt, Qt, Qt-1, Qt-2, Qt-3 daily 
VAFAKHAH [2013] ✔  ✔  Pt, Pt-1, Pt-2, Pt-3, Qt, Qt-1, Qt-2, Qt-3, Qt-4 daily 
HASSAN et al [2015] ✔    Qt, Tt, SSt weekly 
ZOUNEMAT-KERMANI et al. [2016] ✔   ✔ Qt, SSt daily 
NOURANI et al. [2016] ✔   ✔ Qt-1, Qt-12, SSt-1, SSt-2, SSt-12 monthly 
KISI and ZOUNEMAT-KERMANI [2016] ✔  ✔  Qt, Qt-1, Qt-2, Qt-3 daily 
BUYUKYILDIZ and KUMCU [2017] ✔  ✔ ✔ Qt, Qt-1, Qt-2, SSt-1, SSt-2 daily 
Current study ✔ ✔ ✔ ✔ Qt, Qt-1, Qt-2, Qt-3 monthly 

Explanations: ANN = artificial neural network; FL = fuzzy logic; ANFIS = adaptive neuro fuzzy inference system; SVM = support vector machines; SS = 
suspended sediment; Q = river flow; P = precipitation, t = time, T = temperature. 
Source: own elaboration. 
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Iran, is roughly 66 km long and enters the Karaj Dam at 
the Seyra inlet station [HEIDARNEJAD et al. 2006]. The Ka-
raj River that provides the drinking water for Tehran, capi-
tal city of Iran, was chosen to test the performance of the 
developed models. The main precipitation in the Karaj 
River basin falls from November to May. Based on the 
Köppen–Geiger climate classification system, the local 
climate is cold semi-arid. Snowmelt is a cause of peak 
flows in the summer. Monthly average stream flow and 
SSL data were collected at the Seyra gauging station on the 
Karaj River (station number: 41-101). The station is con-
trolled by the Tehran Regional Water Authority (TRWA) 
and SSL is measured once or twice a month. Monthly aver-
age data for 50 years were obtained from the TRWA. The 
mean annual precipitation and temperature recorded at the 
station are 318 mm and 14.4°C, respectively. The station 
coordinates are described in Figure 1. 

 
Fig. 1. The location of the Seyra gauging station  
on the Karaj River, Iran; source: own elaboration 

ARTIFICIAL NEURAL NETWORKS (ANN) 

ANN is a modelling approach used for non-linear 
problems that was originally inspired by the function of the 
human brain. It can handle multifaceted mapping among 
input and output data approximating non-linear functions. 
Since the physically or quasi-physically-based models 
need more data to delineate the hydrological behaviour of 
SSL in the river, and we cannot extract the mathematical 
relationship between the hydrological and physiographical 
characteristics of the watershed with SSL, then we could 
rely on ANN models that solve nonlinear problems based 
on the stream flow and SSL data. The multilayer percep-
tron (MLP) ANN, is the most frequently used class of neu-
ral networks and was, therefore, selected for the present 
study. In its simplest form, MLP consists of one input, one 
output, and one or more hidden layers [ANDERSON 1993]. 

One hidden layer has been found to be sufficient for solv-
ing complex nonlinear functions in hydrology. Finding the 
hidden node size is a key step. Among the numerous pro-
posed methods for the recognition of the optimal number 
of neurons in the hidden layer, Eq. 1 was used to estimate 
the recommended upper limit of hidden nodes [MAIER, 
DANDY 2001]: 

 𝑁𝐻 = min �2𝑁
1+1; 𝑁𝑇𝑇

𝑁1+1
� (1) 

Where: NH, N1, and NTR are the size of hidden nodes, input, 
and the training sample, respectively.  

In the present study, the optimal size of hidden nodes 
was identified based on the widely used trial and error pro-
cedure. Tansigmoid and linear functions were selected as 
the transfer (i.e., activation) functions for the hidden and 
output nodes, respectively. It should be noted that the 
transfer function technically shows the ability of non-linear 
approximation of the ANN [KHALIL et al. 2015]. 

Among the various learning algorithms such as feed-
forward back-propagation, RBF, gradient descent with 
momentum, and adaptive learning rate back propagation; 
Levenberg–Marquardt (LM), Bayesian regularization 
[ABRAHAM et al. 2003], the LM training algorithm was 
chosen as it is the most well-organized and powerful algo-
rithm for training ANNs [KHALIL et al. 2015]. It can be 
calculated using the following equation: 

 𝑦𝑖 = 𝑓 �∑ 𝑤𝑗𝑗𝑥𝑖𝑁
𝑖=1 + 𝑏𝑗� (2) 

Where: xi and yi are the ith and jth nodal value in the previ-
ous and present layers, respectively; bj is the bias of the jth 
node; wji is a weight connecting xi and yj; Ni is the number 
of nodes in the previous layer, and f is the activation func-
tion in the present layer. The general architecture of ANN 
is presented in Figure 2. 

FUZZY LOGIC (FL) 

Fuzzy set theory represents the uncertain information 
in mathematical form [ZADEH 1965] and is used for many 
purposes in the environmental sciences. A fuzzy set is de-
fined as a membership function (MF) that assigns a domain 
of interest for the interval [0, 1]. An MF represents each 
fuzzy set, which has unclear boundaries and gradual transi-
tions between the distinct sets, overcoming the inherent 
uncertainty [GRANDE et al. 2010]. This simple method can 
come up with a defined conclusion from ambiguous or 
imprecise information [KLIR, FOGER 1988]. Since FL is 
a promising tool to overcome the inherent uncertainty in 
different stages of measurement to the analysis of SSL, it is 
used in the present study to predict monthly river SSL in 
such a complex and uncertain environment. The member-
ship functions may have different shapes including 
a Gaussian curve function (gussmf), triangular-shaped 
function (trimf), generalized bell function (gbellmf) and 
trapezoidal curve function (trapmf). 

FL models are created using the Sugeno, Mamdani or 
Tsukamoto methods [MAMDANI, ASSILIAN 1975; VADIATI 
et al. 2019], all of which are commonly utilized in water 
resources studies. The main differences between these 
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Fig. 2. The general structure of an artificial neural network (ANN); source: own elaboration 

methods has to do with the aggregation and defuzzification 
processes used. In the case of this study, the Sugeno FL 
model was used for SSL prediction. Monthly average 
stream flow and SSL data were collected at Seyra gauging 
station on the Karaj River. Monthly average data for 50 
years were obtained from the TRWA MATLAB Software 
[MathWorks 2014] was used to develop the FL model.  

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 
(ANFIS) 

The data-driven model ANFIS incorporates the learn-
ing abilities of ANN and the reasoning capabilities of FIS. 
Any real continuous function can be approximated on 
a compact set with any grade of correctness [JANG et al. 
1997]. ANFIS, as a feed-forward network that maps input 
variables on an output space, extracts fuzzy rules from cer-
tain input-output data [ABRAHAM et al. 2003]. Figure 3 
represents the general architecture of ANFIS. 

A standard ANFIS model should have a first layer 
supplying the input data and membership functions for 
subsequent layers and a second layer providing the product 
output. The third layer, the rule layer, matches the fuzzy 
rules and normalizes the weights. In the fourth layer, every 
node adapts with a node function, representing the contri-
bution of the ith rule in the total output. In the fifth layer, 
each node is fixed, indicating the total output as the incom-
ing signal summation [JANG et al. 1997]. After that, the 
error signals spread backward. Premise parameter updating 
is done using a hybrid learning algorithm (i.e., the gradient 
descent and least-squares methods) introduced by JANG et 
al. [1997]. The Sugeno approach was used in the present 

study, to determine the values of the output variables. Sev-
eral Sugeno models may be developed using subtractive 
clustering (SC), grid partitioning (GP), and fuzzy C-mean 
clustering (FCM) methods. In the case of this study, the 
most widely utilized strategies, GP and FCM, were used to 
generate an initial inference system. The ability of the 
ANFIS model is governed by the predefined interior AN-
FIS factors, including the step size and the number and 
shape of the MFs [EL-SHAFIE et al. 2007]. A propagation 
algorithm and its hybrid form with a least squares method 
are usually applied in FIS training to define the improved 
spreading of the MFs. The hybrid learning algorithm cod-
ing and ANFIS model used in this study were prepared 
using MATLAB Software [MathWorks 2014]. 

GRID PARTITION (GP) 

Grid partition changes the input space into rectangular 
subspaces using a number of local fuzzy regions. Each lin-
guistic variable can be divided by its values and represent-
ed by triangular/Gaussian MFs upon the input-output data. 
Consequently, grid partitions in feature space, resulting 
from fuzzy partitioning, are needed [HU 2007]. The least 
squares method was applied to calculate the fuzzy sets and 
parameters according to the partition and MF types. During 
the learning process, the fuzzy rules and functions were 
progressively trained [HU 2007]. The number of fuzzy 
rules is amplified as an exponential form by increasing the 
values of the input variables. For instance, if there are n 
input variables and m MFs for each rule, the total number 
of fuzzy rules equals m × n. Applying the grid partition 
requires small input variables [SANIKHANI, KISI 2012]. 

Output 

Output  
layer 

Bias 2 Bias 1 

Input  

Input  
layer 

Hidden  
layer 
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Fig. 3. The general structure of the adaptive neuro fuzzy inference system (ANFIS); source: own elaboration  

FUZZY C-MEANS CLUSTERING  

Clustering, as a training technique with several ap-
proaches, can be utilized for classifying data points into 
certain clusters. Fuzzy C-means clustering is a powerful 
technique introduced by JAIN and DUBESC [1988]. This 
technique categorizes the X data set into C groups and min-
imizes the errors regarding the weighted distance of each 
data point, Xi, toward all centroids of the C clusters. After-
ward, the algorithm minimizes the objective function char-
acterized as: 

 𝐽 𝐹𝐹𝐹 = ∑ ∑ 𝑈𝑖𝑖𝑚‖𝑋𝑖 − 𝑉𝑐‖2𝑁
𝑖=1

𝑐
𝑐=1  (3) 

Where: m (m > 1) is the fuzzifier exponent; N is the num-
ber of data points; and C, Uic, Xi, and V are the number of 
clusters, the degree of belonging of the ith data point to the 
cth cluster, the input data, and the center of clusters, respec-

tively. Uic can be calculated using Equation (4) [BEZDEK et 
al. 1984]. 

 𝑈𝑖𝑖 = 1
∑ (𝑑𝑖𝑖

2 /𝑑𝑖𝑖
2 )1/(𝑚−1)𝑐

𝑖=1
 (4) 

After initializing the center vectors, centers are recal-
culated as: 

 𝑣𝑐 =
∑ 𝑈𝑗𝑗

𝑝 𝑥𝑗
𝑁
𝑗=1

∑ 𝑈𝑗𝑗
𝑝𝑁

𝑗=1
 (5) 

LEAST SQUARES SUPPORT VECTOR MACHINE  

The support vector machine (SVM) model was devel-
oped based on statistical learning theory through the mini-
mization of structural risk theory resulting in a reduction of 
both the experimental risk and the confidence interval in 
order to, ultimately, attain an ideal generalization ability 
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[RAGHAVENDRA, DEKA 2014]. LSSVM is a special type of 
SVM that was originally developed by CORTES and VAP-
NIK [1995] and can be used for the prediction of SSL. Us-
ing this method for training data we have: {(𝑥𝑖 + 𝑑𝑖)}𝑖𝑁 
where. VAPNIK [2013] introduced the following optimiza-
tion problem with an e-insensitivity loss function: 

 minimize: 1
2
‖𝜔‖2 + 𝐶(∑ (𝜉𝑖 + 𝜉𝑖∗)𝑁

𝑖 ) (6) 

subject to�
𝜔𝑖 ∗ ∅(𝑥𝑖) + 𝑏𝑖 − 𝑑𝑖 ≤ 𝜖 + 𝜉𝑖∗,    𝑖 = 1,2, … ,𝑁 
𝑑𝑖 − 𝜔𝑖 ∗ ∅(𝑥𝑖) − 𝑏𝑖 ≤ 𝜖 + 𝜉𝑖 ,    𝑖 = 1,2, … ,𝑁

𝜉𝑖 , 𝜉𝑖∗,    𝑖 = 1,2,3, … ,𝑁 
 (7) 

Where: xi is the input vector, di is the desired value, and N 
is the total number of data patterns, ξi and ξi* are slack var-
iables that penalize training errors by the loss function over 
the error tolerance ξi and C is a positive adjustment factor 
that regulates the degree of the experimental error in opti-
mization problems. 

Several algorithms have been recommended for solv-
ing the dual optimization problem related to the LSSVM 
[SHEVADE et al. 2000]. Conventional quadratic program-
ming algorithms require enormous amounts of memory for 
the kernel matrix calculation and have hitches in their ap-
plication that are not appropriate for complex problems. 
The sequential minimal optimization (SMO) algorithm, 
introduced by PLATT [1999], was employed in this study. It 
is an analytical solution of a subset, more details about 
SMO can be found in paper by PLATT [1999]. The optimal 
numbers of C and γ (i.e., kernel width parameters) are of-

ten determined via the trial and error approach. When the 
γ is very large, the input patterns tend to appear very simi-
lar, leading to the underfitting of the function. Contrarily, 
when γ is too small, overfitting may occur [CHANG et al. 
2005]. The C factor trades off between training error and 
model complexity (i.e., the weights of model size) [BASAK 
et al. 2007]. When C is too small, it implies that the fitting 
did not succeed, while an excessively large C will overfit 
the data as well as the noise [LENDASSE et al. 2005]. All 
LSSVM processes in this study were performed using the 
present programming codes in the Library for Support 
Vector Machines (LIBSVM) software [CHANG, LIN 2011]. 
Figure 4 presents the common construction of an LSSVM. 

MODEL DEVELOPMENT 

The monthly average river flow, Q (m3∙s–1), and SSL 
(Mg∙day–1) were combined in several ways for the predic-
tion of SSL for the Karaj River, Iran. SSLt, as the SSL at 
time t, and the Q (i.e., Qt, Qt-1 to Qt-3) are the input data. 
Generally, the data used in data-driven models should be 
equally normalized in order to all obtained data throughout 
the training phase. Equation (8) expresses a simple linear 
mapping formula for data normalization [NOURANI et al. 
2013]: 

 𝑟𝑖 =  𝐼𝑖−𝐼min
𝐼max−𝐼min

 (8) 

Where: Ii is the real value; Imax and Imin are the maximum 
and minimum values, respectively.  

 
Fig. 4. The common construction of a least squares support vector machine (LSSVM); source: own elaboration 

Table 2. The statistical parameters of the data set for the Seyra gauging station, the Karaj River, Iran 

Data set Data type Mean Standard  
deviation Skewness Max Min Max/Mean 

Training 
Q (m3∙s–1) 29.3 28.4 5.2 321 0.24 10.9 
SSL (Mg∙day–1) 6 563 19 699 8.01 245 565 0.37 37.4 

Validation 
Q (m3∙s–1) 12.75 11.72 1.65 54.40 2.82 4.27 
SSL (Mg∙day–1) 1 051 3 092 3.86 17 073 6.80 16.24 

Test 
Q (m3∙s–1) 18.67 20.67 2.03 102.19 0.52 5.47 
SSL (Mg∙day–1) 1 917 6 689 5.59 49 578 2.50 25.86 

Explanations: Q = monthly average river flow, SSL = suspended sediment load. 
Source: own study. 
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Thus, the following combinations of the present (Qt) 
and previous monthly average river flows (Qt-1, Qt-2, Qt-3), 
for SSL prediction, were selected based on the correlations 
among the inputs and output: 
(1) Qt; 
(2) Qt, Qt-1; 
(3) Qt, Qt-1, Qt-2; 
(4) Qt, Qt-1, Qt-2, Qt-3; 

Table 2 shows the statistical factors of stream current 
and sediment data.  

The Seyra gauging station on the Karaj River has high 
maximum-mean ratios (Xmax/Xmean) of sediment data. In the 
training, validation and test steps, the Xmax/Xmean data of the 
stations ranged from 0.37 to 245 565 Mg∙day–1 for the 
training step, 6.8 to 17 073 Mg∙day–1 for the validation 
step, and 2.5 to 49 578 Mg∙day–1 for the test step.  

EFFICIENCY CRITERIA 

To evaluate the performance of the prepared model, 
statistical criteria including the mean absolute error (MAE), 
the root mean square error (RMSE), and correlation coeffi-
cient (R) were used as follows: 

 𝑀𝑀𝑀 =  1
𝑁
∑ |𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑂𝑂|𝑁
𝑖=1   (9) 

 𝑅𝑅𝑅𝑅 =  �∑ (𝑆𝑆𝑆𝑆−𝑆𝑆𝑂𝑂)2𝑁
𝑖=1

𝑁
 (10) 

 𝑅 =  (∑ (𝑆𝑆𝑂𝑂−𝑆𝑆𝑂)(𝑆𝑆𝑆𝑆−𝑆𝑆𝑆)𝑁
𝑖=1 )2

∑ (𝑆𝑆𝑂𝑂−𝑆𝑆𝑂)2𝑁
𝑖=1 ∑ (𝑆𝑆𝑆𝑆−𝑆𝑆𝑆)2𝑁

𝑖=1
 (11) 

Where: 𝑆𝑆𝑂𝑂 , 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑂, 𝑆𝑆, and N are the observed sus-
pended sediment load (SSL) of the ith data, simulated SSL 
of the ith data, the mean of observed SSL, the mean of esti-
mated SSL, and the number of observations, respectively.  

RESULTS AND DISCUSSION 

ARTIFICIAL NEURAL NETWORK (ANN) MODEL 

Different input combinations for the ANN model (i.e., 
one to four) were evaluated based on the SSL in the Karaj 
River, Iran, in training, validation and test data sets. The 
results of several combinations are presented in Table 3. 
The ANN model using combination 2 (i.e., Qt and Qt-1) as 
the input had the lowest RMSE and MAE and the highest R 
in the validation and test steps. It was therefore selected as 
the best-fit model for SSL prediction for the present study. 
The number of neurons in the hidden layer was determined 
based on trial and error, as in previous studies [KHALIL et 
al. 2015]. The number of nodes was changed from 1 to 10 
until the model no longer showed significant performance 
improvements. For instance, the best architecture of ANN 
for combination 4, was recognized as 4-2-1, indicating 
4 input, 2 hidden, and 1 output nodes (Tab. 3). Figure 5 
presents the observed and simulated SSL values using the 
prepared ANN for the four input combinations. 

FUZZY LOGIC (FL) MODEL 

The FL model was also evaluated based on the SSL of 
the Karaj River using different input combinations. The 
performance results are shown in Table 4.  

The parameter radius used in FL model development 
was chosen from 0.2 to 0.9, resulting in the outcomes giv-
en in Table 4. Since combination 1 showed the best RMSE, 
MAE, and R in both the training and test sets, it was select-
ed as the best-fit model. The parameter radius for combina-
tion 1 was selected as 0.5 (Tab. 4). Figure 6 presents the 
observed and simulated SSL values, using the FL model. 

 

Table 3. The performance results of the different input combinations for artificial neural network in the validation and test steps and us-
ing data from the Seyra gauging station, the Karaj River, Iran 

Input combination Structure 
Validation Test 

RMSE (Mg∙day–1) R MAE RMSE (Mg∙day–1) R MAE 
Qt (1,1,1) 3 321.3 0.64 1 786.2 8 526.9 0.63 4 201.8 
Qt, Qt-1 (2,2,1) 3 210.1 0.65 1 671.3 8 202.4 0.64 3 900.3 
Qt, Qt-1, Qt-2 (3,2,1) 3 632.5 0.61 1 856.3 9 266.8 0.60 4 429.0 
Qt, Qt-1, Qt-2, Qt-3 (4,2,1) 3 487.1 0.63 1 973.5 7 820.5 0.70 4 061.5 
Explanations: Q = river flow, RMSE = the root mean square error, R = correlation coefficient, MAE = mean absolute error. 
Source: own study. 

        
Fig. 5. The observed and simulated suspended sediment load for combination 2 using the artificial neural network (ANN) model and data 

from the Seyra gauging station, the Karaj River, Iran; source: own study  
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Table 4. The performance results of the different input combinations using the fuzzy logic model in the validation and test steps and data 
from the Seyra gauging station, the Karaj River, Iran 

Input combination Radius 
Validation Test 

RMSE (Mg∙day–1) R MAE RMSE (Mg∙day–1) R MAE 
Qt 0.5 6 672.5 0.67 2 349.0 9 070.6 0.63 7 147.3 
Qt, Qt-1 0.5 9 486.5 0.63 7 027.1 9 004.6 0.64 6 865.5 
Qt, Qt-1, Qt-2 0.5 9 223.7 0.63 6 648.6 9 517.3 0.62 6 875.2 
Qt, Qt-1, Qt-2, Qt-3 0.5 9 073.8 0.65 6 475.8 9 368.6 0.64 6 673.3 
Explanations as in Tab. 3. 
Source: own study. 

        
Fig. 6. Observed and simulated suspended sediment load for combination 1 using the fuzzy logic (FL) model and data from the Seyra 

gauging station, the Karaj River, Iran; source: own study 

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 
(ANFIS) MODEL 

The ANFIS model removes the expert presence of 
a fuzzy expert system while retaining the advantages. The 
performance results of the different input combinations of 
both ANFIS models (i.e., ANFIS-GP and ANFIS-FCM) 
are presented in Table 5. Looking at the table it becomes 
evident that for both ANFIS models combination 4 (Qt to 
Qt-3) provided the best results when used as the input. The 
commonly used method for building the ANFIS model was 
also applied in the present work to construct the neuro-
fuzzy models. Various membership functions (MFs) were 
used for the ANFIS architecture and different numbers of 
MFs were tested in order to select the optimum model. 
Sugeno’s fuzzy approach was used to establish the output 
values from the input data of the FIS architecture. Adjust-
ing the type and the number of MFs is an important pro-
cess to obtain an optimal fuzzy system. The nature of data 

and the subject to be solved along with the expert 
knowledge delineate the best MFs. Therefore, in the pre-
sent study, the trial and error approach and expert 
knowledge at the same time were utilized to determine the 
type and the number of MFs for ANFIS models. In the in-
terest of minimizing the time and calculation volume, 
modelers should avoid using a large number of MFs 
[SHIRI, KISI 2011]. Among the different possible types of 
MFs, the gussmf was found to give the best output results. 
For instance, using input combination 4, the ANFIS model 
had 2 gussmf MFs for the inputs. Figure 7 illustrate the 
observed and forecasted SSL values using the ANFIS-GP 
and ANFIS-FCM models. 

LEAST SQUARES SUPPORT VECTOR MACHINE 
(LSSVM) MODEL 

The LSSVM model was evaluated using different 
combinations of datasets as inputs and the performance 

Table 5. Performance results of the different input combinations using adaptive neuro-fuzzy inference system – grid partition (ANFIS- 
-GP) and adaptive neuro-fuzzy inference system – fuzzy C-mean clustering (ANFIS-FCM) in the validation and test steps and data from 
the Seyra gauging station, the Karaj River, Iran 

ANFIS type Input combination Structure 
Validation Test 

RMSE (Mg∙day–1) R MAE RMSE (Mg∙day–1) R MAE 

ANFIS-GP 

Qt (2, Gaussmf) 9 794.2 0.70 3 098.8 6 290.9 0.68 3 210.8 
Qt, Qt-1 (2, Gaussmf) 8 351.3 0.68 3 173.9 5 059.0 0.73 2 387.1 
Qt, Qt-1, Qt-2 (2, Gaussmf) 7 347.6 0.68 2 819.7 6 211.9 0.66 3 823.5 
Qt, Qt-1, Qt-2, Qt-3 (2, Gaussmf) 5 193.8 0.69 2 171.5 5 368.0 0.70 2 221.9 

ANFIS-FCM 

Qt (2, Gaussmf) 9 794.2 0.70 3 098.8 6 762.4 0.53 2 420.7 
Qt, Qt-1 (2, Gaussmf) 7 536.0 0.69 2 852.4 5 950.5 0.69 2 473.1 
Qt, Qt-1, Qt-2 (2, Gaussmf) 7 306.7 0.71 2 986.2 5 973.3 0.71 2 806.3 
Qt, Qt-1, Qt-2, Qt-3 (2, Gaussmf) 7 227.5 0.71 3 255.5 7 227.5 0.71 3 255.5 

Explanations as in Tab. 3. 
Source: own study. 
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Fig. 7. Observed and simulated suspended sediment load for combination 4 using the two adaptive neuro-fuzzy inference systems models 

and data from the Seyra gauging station, the Karaj River, Iran: a) ANFIS-GP, b) ANFIS-FCM; source: own study  

results for the validation and test steps are presented in 
Table 6. It was concluded that the LSSVM model with 
combination 1 as the input had the best RMSE, MAE, and R 
results for the training and test periods. Therefore, it was 
chosen as the best model for SSL estimation. The radial 
basis function (RBF) was recognized as a proper kernel  
 

function for this study. Different values for parameter C 
and the kernel function parameter γ were determined for 
the LSSVM based on the trial and error method. The opti-
mal values of C and γ for different combinations were 20 
and 0.5, respectively (Tab. 6). Figure 8 presents the ob-
served and predicted SSL values using the LSSVM model. 

Table 6. Performance results of the different input combinations using the least squares support vector machine model in the validation 
and test steps; data are from the Seyra gauging station, the Karaj River, Iran 

Input combination Parameter C, γ 
Validation Test 

RMSE (Mg∙day–1) R MAE RMSE (Mg∙day–1) R MAE 
Qt 20, 0.5 5 175.2 0.69 2 113.7 5 641.3 0.69 2 074.8 
Qt, Qt-1 20, 0.5 6 288.9 0.65 2 839.9 5 151.8 0.66 2 215.9 
Qt, Qt-1, Qt-2 20, 0.5 6 273.1 0.65 3 119.7 5 171.0 0.66 2 594.6 
Qt, Qt-1, Qt-2, Qt-3 20, 0.5 6 380.6 0.64 3 276.7 5 272.2 0.65 2 754.3 

Explanations: C = kernel width parameter, γ = kernel width parameter, the others as in Tab. 3.   Source: own results. 

        
Fig. 8. Observed and simulated suspended sediment load for combination 1 using the least squares support vector machine (LSSVM) 

model and data are from the Seyra gauging station, the Karaj River, Iran; source: own study 
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COMPARISON OF RESULTS FROM THE DIFFERENT 
MODELS 

To obtain a comprehensive evaluation of the ANN, 
FL, ANFIS-GP, ANFIS-FCM and LSSVM models, the 
different combination (1 to 4) for the developed models 
were compared on the basis of river flows (Qt, Qt-1, Qt-2,  
Qt-3). Although the results showed that all AI models could 
predict SSL appropriately, ANN results better for combina-
tion 2 rather than other input combinations. The results of 
combination 1 were better than other input parameters for 
FL and LSSVM models. Also, results showed that both 
ANFIS models could predict SSL for combination 4 (Qt, 
Qt-1, Qt-2, Qt-3) appropriately, but for other combination, the 
performance of the models was not satisfactory. The opti-
mal architecture for ANN has 2 hidden layers and the pa-
rameter radius was 0.5 for FL. Also, For ANFIS model the 
two gussmf MFs for the inputs give the best output results. 
The best values of C and γ for LSSVM were 20 and 0.5 for 
all combination. Therefore, the comparative analysis of the 
optimum input combinations and models structure were 
checked at the same time using the given input and output 
data. 

From the results of AI models (Tabs. 3–6), it is evident 
that the statistical indices of each model used in the present 
study were satisfactory. Based on the values of NSE crite-
rion, the overall results of SSL prediction using the ANFIS 
models were better than the other models. A comparison of 
the RMSE and R values among the models showed that 
both ANFIS models had the best performance. However, 
the results showed that the ANFIS models outperformed 
the other models for predicting SSL using the given input 
and output data. The outcomes of the present study are 
consistent with those of KISI and ZOUNEMATKERMANI 
[2016] who compared ANFIS-FCM and ANN models. 
Moreover, it was observed that all models provided good 
results based on MAE, RMSE, and R criteria. Overall, the 
performances of the ANN, FL, ANFIS-GP, ANFIS-FCM, 
and LSSVM models used in the present study were satis-
factory. 

CONCLUSIONS 

Accurate and reliable suspended sediment load (SSL) 
prediction in rivers is a significant issue in watershed man-
agement due to its effects on designing and monitoring of 
hydraulic structures This study explored the potential us-
age of artificial intelligence techniques (i.e., ANN, FL, 
ANFIS-GP, ANFIS-FCM and LSSVM) in predicting river 
SSL based on present and previous monthly average river 
flows (Qt, Qt-1, Qt-2, Qt-3). The Seyra gauging station on the 
Karaj River, Iran was selected to test data-driven models 
based on the monthly data from the 50-year period. Using 
four antecedent combination inputs, containing Qt, Qt-1,  
Qt-2, Qt-3, the present study tried to generate the best-fit 
model. The models’ performances were assessed by global 
statistics: R, RMSE, and MAE. All models generally 
showed low RMSE and MAE and high R and results were 
satisfactory. Overall, the results of various models applied 
in this study showed that the LSSVM had the best perfor-

mance in forecasting the multifaceted, non-linear behav-
iour of the SSL. This study could be used as a guide for 
using artificial intelligence methods in estimating the SSL 
in rivers in the future. 
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