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1. Introduction

In classical queueing theory, we usually investigate systems
with finite or infinite number of identical servers that work con-
tinuously without any breaks. It means that all servers in the
system are reliable and we do not need stop their work (repair
them) during the process of service. For such systems, we usu-
ally obtain characteristics of the number of customers present
in the system, their waiting and sojourn time (for the systems
with finite number of servers and infinite queues) at any time in-
stant t or at least in steady state [1]. From the theoretical point
of view, the class of systems with infinite number of servers
is very important because such systems may be treated as the
limitary case of systems with big number of servers (n → ∞)
and obtained results in this case may be used as approximations
of characteristics for analogous systems with finite and numer-
ous number of servers. Formulae describing analyzed charac-
teristics are usually much less mathematically complicated and
more convienient from the numerical point of view. Moreover,
models with infinite number of servers have some practical ap-
plications, especially when we model customers storage pro-
cess in the multi-phase queueing systems [2] or analyze the
process of reading data from files located in some database. In-
deed, the model of M/G/∞ queueing system can be understood
as the limitary case of the Erlang-type M/G/n/0 one [1, 2]. It
is obvious that, in this model, all customers are served with-
out any waiting and their sojourn time is the time of their ser-
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vice. If we additionally assume that servers can break (which
is a very practical assumption because servers often need some
repair or break), situation changes because sojourn time of a
customer is then the sum of his service time and summary re-
pair time (sum of all times of repairs that were done during
its service). The analysis of mentioned above models becomes
much more interesting when we additionally assume that all
customers ariiving to the system have some random volume.
It means that we investigate models of queueing systems with
non-homogeneous customers. These models are used in mod-
eling of real computer or telecommunication systems in which
we store some information. During the investigations, we ad-
ditionaly obtain characteristics of the customers total volume
(which is the sum of the volumes of all customers present in
the system) at any time instant t or in steady state. These char-
acteristics show the summary size of all customers present in
the system and may be used during the process of designing of
real computer (or telecommunication) systems that have lim-
ited buffers space (memory). It is clear that even in the case
when we have infinite number of servers (e.g. M/G/∞ model)
but total customers volume is limited (by value V ), we face the
problem of the customers losses. In this case, loss probability
Ploss strictly depends on V value that can be used to choose
such level of buffer space to minimalize the loss probability
(when we have the exact formulae for its calculation). In the
beginning, such models were analyzed with the usage of re-
sults known from the classical queueing theory [3, 4] but it
became obvious that classical models cannot exactly describe
queueing models with non-homogeneous customers and some
generalizations are needed. For example, total volume charac-
teristics depend also on the character of dependency between
customer volume and his service time that was shown in many
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Evidently (from the total probability theorem), we have:

V (t |ν = 0, ζ = x) =
∞

∑
k=0

(αcx)k

k!
e−αcxG(k)

∗ (t − cx), (2)

where G(k)
∗ (t) is the kth Stieltjes convolution of DF G(t).

G(k)
∗ (t−cx) means that the total sojourn time of the customer is

the sum of his service time cx and k independent intervals hav-
ing the same DF G(t) (under condition that ζ = x, ν = 0 and
during service the system was broken k times).

Denote by R(x, t |ν = i) the next conditional DF:

R(x, t |ν = i) = P{ζ < x, γ < t |ν = i}, i = 0,1.

Taking into consideration the probability sense, we obtain from
the relation (1):

dR(x, t |ν = 0) = P{ζ ∈ [x;x+dx), γ ∈ [t; t +dt) |ν = 0}=

= dV (t |ν = 0, ζ = x)dL(x).

Then, based on formula (2), double LST (with respect to x
and t) of the function R(x, t |ν = 0) takes the form:

r(s,q |ν = 0) =
∞∫

0

∞∫

0

e−sx−qt dR(x, t |ν = 0) =

=

∞∫

0

∞∫

0

e−sx−qt
∞

∑
k=0

(αcx)k

k!
e−αcx dt

[
G(k)
∗ (t − cx)

]
dL(x) =

=

∞∫

0

e−sx−qt
∞

∑
k=0

(αcx)k

k!
e−αcxe−qcx(g(q))k dL(x) =

= ϕ(s+ cq+ cα(1−g(q))).

It is clear that if a customer arrives to the system when it is
in repair mode, his sojourn time includes time interval ψ from
his arriving epoch to the repair period termiation. Assume that

g1 = Eχ =

∞∫

0

t dG(t) < ∞. Then, DF K(t) of RV ψ has the

form:

K(t) = (g1)
−1

t∫

0

[1−G(u)]du

and its LST κ(q) is detemined by the relation (see e.g. [2]):

κ(q) =
1−g(q)

qg1
.

Therefore (on the base of LST properties) we obtain:

r(s,q |ν = 1) =
1−g(q)

qg1
r(s,q |ν = 0).

It is evident that P{ν = 0} =
1

1+αg1
and P{ν = 1} =

=
αg1

1+αg1
, whereas we obtain:

r(s,q) = r(s,q |ν = 0)P{ν = 0}+ r(s,q |ν = 1)P{ν = 1}=

=
r(s,q |ν = 0)

1+αg1

{
1+

α[1−g(q)]
q

}
=

=
ϕ(s+ cq+ cα(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
. (3)

From the relation (3) we can obtain LST v(q) of customer’s
sojourn time:

v(q) = r(0,q) =
ϕ(cq+ cα(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
=

=
β (q+α(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
. (4)

We can calculate the moments of RV γ (if exist) using the
relation (4). For example, the first and second moments take
the form:

v1 = Eγ =−v′(q)|q=0 = β1 (1+αg1)+
αg2

2(1+αg1)
, (5)

v2 = Eγ2 = v′′(q)|q=0 =

= 2αβ1g2 +β2 (1+αg1)
2 +

αg3

3(1+αg1)
. (6)

It follows from [2] that LST δ (s) of DF of steady-state total
volume σ , in our case, takes the following form:

δ (s) = exp
{
−a[v1 + r′q(s,q)|q=0]

}
=

= exp
{
−a

[
c(1+αg1)

(
ϕ ′(s)+ϕ1

)
+

αg2(1−ϕ(s))
2(1+αg1)

]}
. (7)

The first and second moments of total customers volume take
the form:

δ1 = Eσ =−δ ′(s)|s=0 =

= a
[

c(1+αg1)ϕ2 +
αϕ1g2

2(1+αg1)

]
, (8)

δ2 = Eσ2 = δ ′′(s)|s=0 =

= δ 2
1 +a

[
c(1+αg1)ϕ3 +

αϕ2g2

2(1+αg1)

]
. (9)

4. System M/G/∞ under control
of M/G/1/∞ system

Consider the system M/G/∞ with customers of random vol-
ume as a model of a database table serving customers that
read information from the table. All these customers are served
without waiting (as in the system under consideration). Besides
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later papers [5–10]. In previous investigations, this fact was not
taken into account. As a result, we have mistakes in formulae
for characteristics of the total volume and loss probability. It is
worth noticing that in the theory of queueing systems with non-
homogeneous customers we also investigate models with un-
limited total volume (which seems to be impractical) because
results of such models analysis may be used to approximate
loss characteristics in analogous models with limited total vol-
ume [2, 11, 12]. This fact is very important because, for many
models, we are not able to obtain exact formulae and then we
have to use their approximations. The analysis of various prob-
lems connected with investigation of queueing systems with
non-homogeneous customers and limited or unlimited total vol-
ume can be found in many papers and books that have appeared
in recent [2, 5–11, 13–19].

In this paper, we investigate the modification of the classical
queueing model of the M/G/∞-type in which:
1) customers arriving to the system have some random volume

(size) characterized by arbitrary distribution function;
2) all servers can break simultaneously in some exponentially

distributed random moment of time and then they are re-
paired for some random time having arbitrary distribution;

3) service time of the customer is proportional to his volume
(so they are dependent);

4) total customers volume is unlimited.
Our main purpose is to obtain the characteristics of cus-

tomers total volume and their sojourn time for the system under
consideration and show possible practical applications of ob-
tained formulae.

The rest of the paper is organized as follows. In the next
Section 2, we introduce necessary notation and functions de-
scribing behavior of the system under consideration. Then, in
Section 3, we obtain main results connected with steady-state
characteristics of the customers total volume and their sojourn
time. Section 4 presents an interesting practical case of the
investigated model which can be understood as the model of
database table that serves customers requests for reading infor-
mation from the table, while customers writing new informa-
tion stop the process of reading (readers and writers problem).
In Section 5, we present results for the case of exponentially
distributed customers volume. In Section 6, for the analyzed
model, we additionally obtain characteristics of steady-state
customers number distribution. Finally, in Section 7 we show
the possibility of obtaining the approximations of loss charac-
teristics for analogous systems with finite buffers together with
some numerical examples obtained with the help of Mathemat-
ica environment [20]. The last Section 8 contains conclusions
and final remarks.

2. The model and basic notation

Consider a service system M/G/∞ with identical servers. Let a
be the parameter of customers entrance flow. All servers of the
system can break simultaneously at some random moments of
time. Time intervals of the system in good repair mode (work-
ing without breaks) have an exponential distribution with pa-

rameter α > 0. After system breakage, the repair period goes on
for some random time χ . Denote by G(t) = P{χ < t} its distri-

bution function (DF). Let g(q) =
∞∫

0

e−qt dG(t) be the Laplace–

Stieltjes transform (LST) of the function G(t) and gk be the kth
moment of RV χ . All customers present in the system at its
breaking moment continue their service after repair period ter-
mination and all customers that arrive during this period begin
their service after its termination. For the considered system,
the steady-state distribution of number of customers present in
it was determined in [21] in the case of exponentially distributed
service time.

Assume additionally that each customer is characterized
by some random volume ζ which does not depend on other
customers volumes and his arriving time. Denote by L(x) =

= P{ζ < x} its DF and by ϕ(s) =
∞∫

0

e−sx dL(x) – its LST. The

kth moment of RV ζ we shall denote by ϕk, k = 1,2, . . . . As-
sume that service time ξ of a customer is proportional to his
volume: ξ = cζ , c > 0. Then, we obtain for DF and LST of RV

ξ : B(t) = P{ξ < t} = L(t/c), β (q) =
∞∫

0

e−qt dB(t) = ϕ(cq).

Denote by βk, k = 1,2, . . . , the kth moment of service time ξ .
It is clear that βk = ckϕk. We shall denote by η the steady-state
number of customers present in the system. Let σ be the whole
sum of the volumes of customers present in the system in steady
state, i.e. RV σ is the total volume of these customers. Let

D(x) = P{σ < x} be DF of RV σ and δ (s) =
∞∫

0

e−sx dD(x) be

its LST. Our main aim is the determination of the function δ (s).

3. General solution

Let γ be a customer sojourn time, i.e. the length of time inter-
val from the moment of his arrival to the system to his ser-
vice termination. Denote by V (t) = P{γ < t} DF of RV γ

and by v(q) =
∞∫

0

e−qt dV (t) its LST. Note that RVs ζ and γ

are generally dependent, because service time (being a part
of sojourn time) of the customer depends on his volume. Let
R(x, t) = P{ζ < x,γ < t} be the joint DF of RVs ζ and γ ,

r(s,q) =
∞∫

0

∞∫

0

e−sx−qt dR(x, t) be double LST of DF R(x, t).

First, we determine r(s,q).
Denote by ν the mode indicator of customer’s arrival epoch:

assume that ν = 0, if the customer arrives to the system when it
is in the good repair mode, and ν = 1, if the customer arrives to
the system when it is in the repair mode. Let x be the customer
volume (ζ = x). Determine the following conditional DF:

V (t |ν = 0, ζ = x) = P{γ < t |ν = 0, ζ = x}. (1)

2 Bull. Pol. Ac.: Tech. 68(2) 2020
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Evidently (from the total probability theorem), we have:
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∞
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Denote by R(x, t |ν = i) the next conditional DF:

R(x, t |ν = i) = P{ζ < x, γ < t |ν = i}, i = 0,1.

Taking into consideration the probability sense, we obtain from
the relation (1):

dR(x, t |ν = 0) = P{ζ ∈ [x;x+dx), γ ∈ [t; t +dt) |ν = 0}=

= dV (t |ν = 0, ζ = x)dL(x).

Then, based on formula (2), double LST (with respect to x
and t) of the function R(x, t |ν = 0) takes the form:

r(s,q |ν = 0) =
∞∫

0

∞∫

0

e−sx−qt dR(x, t |ν = 0) =

=

∞∫

0

∞∫

0

e−sx−qt
∞

∑
k=0

(αcx)k

k!
e−αcx dt

[
G(k)
∗ (t − cx)

]
dL(x) =

=

∞∫

0

e−sx−qt
∞

∑
k=0

(αcx)k

k!
e−αcxe−qcx(g(q))k dL(x) =

= ϕ(s+ cq+ cα(1−g(q))).

It is clear that if a customer arrives to the system when it is
in repair mode, his sojourn time includes time interval ψ from
his arriving epoch to the repair period termiation. Assume that

g1 = Eχ =

∞∫

0

t dG(t) < ∞. Then, DF K(t) of RV ψ has the

form:

K(t) = (g1)
−1

t∫

0

[1−G(u)]du

and its LST κ(q) is detemined by the relation (see e.g. [2]):

κ(q) =
1−g(q)

qg1
.

Therefore (on the base of LST properties) we obtain:

r(s,q |ν = 1) =
1−g(q)

qg1
r(s,q |ν = 0).

It is evident that P{ν = 0} =
1

1+αg1
and P{ν = 1} =

=
αg1

1+αg1
, whereas we obtain:

r(s,q) = r(s,q |ν = 0)P{ν = 0}+ r(s,q |ν = 1)P{ν = 1}=

=
r(s,q |ν = 0)

1+αg1

{
1+

α[1−g(q)]
q

}
=

=
ϕ(s+ cq+ cα(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
. (3)

From the relation (3) we can obtain LST v(q) of customer’s
sojourn time:

v(q) = r(0,q) =
ϕ(cq+ cα(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
=

=
β (q+α(1−g(q)))

1+αg1

{
1+

α[1−g(q)]
q

}
. (4)

We can calculate the moments of RV γ (if exist) using the
relation (4). For example, the first and second moments take
the form:

v1 = Eγ =−v′(q)|q=0 = β1 (1+αg1)+
αg2

2(1+αg1)
, (5)

v2 = Eγ2 = v′′(q)|q=0 =

= 2αβ1g2 +β2 (1+αg1)
2 +

αg3

3(1+αg1)
. (6)

It follows from [2] that LST δ (s) of DF of steady-state total
volume σ , in our case, takes the following form:

δ (s) = exp
{
−a[v1 + r′q(s,q)|q=0]

}
=

= exp
{
−a

[
c(1+αg1)

(
ϕ ′(s)+ϕ1

)
+

αg2(1−ϕ(s))
2(1+αg1)

]}
. (7)

The first and second moments of total customers volume take
the form:

δ1 = Eσ =−δ ′(s)|s=0 =

= a
[

c(1+αg1)ϕ2 +
αϕ1g2

2(1+αg1)

]
, (8)

δ2 = Eσ2 = δ ′′(s)|s=0 =

= δ 2
1 +a

[
c(1+αg1)ϕ3 +

αϕ2g2

2(1+αg1)

]
. (9)

4. System M/G/∞ under control
of M/G/1/∞ system

Consider the system M/G/∞ with customers of random vol-
ume as a model of a database table serving customers that
read information from the table. All these customers are served
without waiting (as in the system under consideration). Besides
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the sum of his service time cx and k independent intervals hav-
ing the same DF G(t) (under condition that ζ = x, ν = 0 and
during service the system was broken k times).

Denote by R(x, t |ν = i) the next conditional DF:

R(x, t |ν = i) = P{ζ < x, γ < t |ν = i}, i = 0,1.

Taking into consideration the probability sense, we obtain from
the relation (1):
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his arriving epoch to the repair period termiation. Assume that
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t dG(t) < ∞. Then, DF K(t) of RV ψ has the

form:

K(t) = (g1)
−1

t∫

0
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and its LST κ(q) is detemined by the relation (see e.g. [2]):
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=

=
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We can calculate the moments of RV γ (if exist) using the
relation (4). For example, the first and second moments take
the form:

v1 = Eγ =−v′(q)|q=0 = β1 (1+αg1)+
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, (5)

v2 = Eγ2 = v′′(q)|q=0 =

= 2αβ1g2 +β2 (1+αg1)
2 +

αg3

3(1+αg1)
. (6)

It follows from [2] that LST δ (s) of DF of steady-state total
volume σ , in our case, takes the following form:

δ (s) = exp
{
−a[v1 + r′q(s,q)|q=0]

}
=

= exp
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−a

[
c(1+αg1)

(
ϕ ′(s)+ϕ1

)
+

αg2(1−ϕ(s))
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]}
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the form:

δ1 = Eσ =−δ ′(s)|s=0 =
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[

c(1+αg1)ϕ2 +
αϕ1g2
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δ2 = Eσ2 = δ ′′(s)|s=0 =
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c(1+αg1)ϕ3 +
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4. System M/G/∞ under control
of M/G/1/∞ system

Consider the system M/G/∞ with customers of random vol-
ume as a model of a database table serving customers that
read information from the table. All these customers are served
without waiting (as in the system under consideration). Besides
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reading customers, customers that modify tables information
(writing customers) can arrive. If such customer arrives dur-
ing presence of reading ones in the system, the service of them
is immediately interrupted and will be continued after modifi-
cation period termination. It means that reading customers are
blocked as long as writing customers appear. This model may
be treated as an interesting one for readers and writers prob-
lem. Assume that writing customers form a Poisson entrance
flow with parameter α and denote by K(t) DF of their ser-
vice time. The process of table modification is described by
M/G/1/∞ queueing model. The behavior of this system does
not depend on the reading process. The analysis of this situ-
ation leads to our previous model (Section 3), if we assume
that G(t) = Π(t), where Π(t) is DF of busy period of the con-

trol M/G/1/∞ system. Let κ(q) =
∞∫

0

e−qt dK(t) be LST of DF

K(t) and π(q) =
∞∫

0

e−qt dΠ(t) be LST of DF Π(t), κi and πi be

the ith moments of service time and busy period of the control
system, respectively, i = 1,2, . . . .

Then, in this case, the functions r(s,q) and v(q) can be ob-
tained from the relations (3) and (4), where g(q) = π(q). It is
known [2] that the function π(q) is a unique solution of the
functional equation π(q) = κ(q+α −απ(q)) (under assump-
tion ακ1 < 1). So, LST δ (s) and first two moments of the
sojourn time γ and total volume σ can be determined by the
relations (5)–(9), where gi = πi, i = 1,2,3. It is known (see
e.g. [2]) that

π1 =
κ1

1−ακ1
, π2 =

κ2

(1−ακ1)3 ,

π3 =
κ3

(1−ακ1)4 +
3ακ2

2
(1−ακ1)5 .

5. The case of exponentially distributed customer
volume

If customer volume has an exponential distribution with param-

eter f , we have ϕ(s) =
f

s+ f
. Then, the function r(s,q) takes

the form:

r(s,q) =
f (q+α −αg(q))

q(1+αg1)[s+ f + c(q+α −αg(q))]
.

The function v(q) is determined as follows:

v(q) =
µ(q+α −αg(q))

q(1+αg1)(q+µ +α −αg(q))
,

where µ = f/c is the parameter of service time. The first and
second moments of sojourn time are determined as

v1 =
1+αg1

µ
+

αg2

2(1+αg1)
,

v2 =
2αg2

µ
+

2(1+αg1)
2

µ2 +
αg3

3(1+αg1)
.

Assume additionally that the repair period is also exponen-

tially distributed with parameter b. Then, we have g(q)=
b

b+q
,

g1 = 1/b, g2 = 2/b2 and g3 = 6/b3. Hence, the function v(q)
takes the form:

v(q) =
µb(q+α +b)

(α +b) [q2 +(µ +α +b)q+µb]
.

Therefore, DF V (t) = P{γ < t} can be obtained by Laplace
transform v(q)/q inversion. Finally, we have:

V (t) = 1− µb
(α +b)(q2 −q1)

(
α +b−q1

q1
e−q1t−

−α +b−q2

q2
e−q2t

)
,

where

q1 =
µ +α +b−

√
(µ +α +b)2 −4µb

2
,

q2 =
µ +α +b+

√
(µ +α +b)2 −4µb

2
.

The first and second moments of RV γ have the form:

v1 =
1
b

(
α +b

µ
+

α
α +b

)
,

v2 =
2
b2

[
2α
µ

+
(α +b)2

µ2 +
α

α +b

]
.

In a similar way, we obtain relation for δ (s) in the case of ex-
ponential distribution of customer volume:

δ (s) = exp
{
− as

s+ f

[
c(1+αg1)(s+2 f )

f (s+ f )
+

+
αg2

2(1+αg1)

]}
.

For the first and second moments of RV σ we have in this case:

δ1 =
a
f

[
2c(1+αg1)

f
+

αg2

2(1+αg1)

]
,

δ2 = δ 2
1 +

a
f 2

[
6c(1+αg1)

f
+

αg2

1+αg1

]
.
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In the case when repair period is also exponentially dis-
tributed with parameter b, we easily obtain:

δ (s) = exp
{
− as

s+ f

[
c(b+α)(s+2 f )

b f (s+ f )
+

α
b(b+α)

]}
,

δ1 =
a
f

[
2c(b+α)

b f
+

α
b(b+α)

]
,

δ2 = δ 2
1 +

a
f 2

[
6c(b+α)

b f
+

2α
b(b+α)

]
.

6. Customers number distribution

Using the relation (7), we can also determine the steady-state

generating function P(z) =
∞

∑
k=0

P{η = k}zk of number of cus-

tomers present in the system. Indeed, RV η can be treated as
the total volume of customers with the same volume ζ ≡ 1 and
c = 1. Then, we have ϕ(s) = e−s, ϕ1 = 1 and the function δ (s)
takes the form:

δ (s) = exp
{
−a(1− e−s)

[
1+αg1 +

αg2

2(1+αg1)

]}
.

It is clear that δ (s) = P(e−s), whereas we obtain:

P(z) = exp
{
−a(1− z)

[
1+αg1 +

αg2

2(1+αg1)

]}
=

= e−aheazh,

where h = 1+αg1 +
αg2

2(1+αg1)
. Since eazh =

∞

∑
k=0

(ah)k

k!
zk, we

can conclude that the number of customers present in the sys-
tem under consideration has Poisson distribution with parame-
ter ah, i.e.:

P{η = k}= (ah)k

k!
e−ah, k = 0,1, . . . . (10)

7. Estimation of loss characteristics for
the system with limited total volume

It is clear that, using the relation (7), we can obtain the explicite
form of DF D(x) very rarely. But we can approximate it by DF
D∗(x) having the form:

D∗(x) = p0 +(1− p0)
γ(p,gx)

Γ(p)
, (11)

where γ(p,gx) is incomplete gamma-function, i.e. γ(p,gx) =

=

gx∫

0

t p−1e−t dt and Γ(p) = γ(p,∞) is gamma-function, p0 =

= P{η = 0} = P{σ = 0} = e−ah, as it follows from (10). Let

δ ∗
1 and δ ∗

2 be the first and second moment of RV with DF D∗(x),
respectively. It follows from (11) that

δ ∗
1 =

(1− p0)p
g

,

δ ∗
2 =

(1− p0)p(p+1)
g2 .

Parameters p and g can be chosen so that the first and second
moments of approximate distribution function have to be equal
to corresponding moments of the DF D(x). Finally, we obtain:

p =
δ 2

1

(1− p0)δ2 −δ 2
1
,

g =
(1− p0)δ1

(1− p0)δ2 −δ 2
1
,

where the moments δ1 and δ2 are determined by relations (8)
and (9), respectively.

Let us consider a system M/G/(∞,V ) which differs from
the system analyzed in Sec. 2–6 in total volume limitation. Let
V = const is the system buffer space, such that σ(t)<V for all
t > 0. Let a customer having the volume x arrive to the system at
epoch t. Then, he will be accepted for service, if σ(t−)+x ≤V .
Otherwise the customer will be lost. Therefore, for this system,
we have to introduce some measures of losses. Such traditional
characteristic is the loss probability Ploss, i.e. the probability that
arriving customer will be lost (it has a sense of a part of lost cus-
tomers). In this case, it is determined as follows:

Ploss = 1−
V∫

0

DV (V − x)dL(x).

Let DV (x) be DF of steady-state total volume σ in the system
with limited buffer space. We evidently have (see e.g. [2]):

Ploss ≤ P∗
loss = 1−

V∫

0

D(V − x)dL(x), (12)

since D(x)≤ DV (x) for all x ≥ 0.
Other measure of losses is the probability of unit of volume

loss Qloss, having the sense of a part of lost volume (infor-
mation). For the system with limited volume, it can be deter-
mined as:

Qloss = 1− 1
ϕ1

V∫

0

xDV (V − x)dL(x).

It can be easily shown that

Qloss ≤ Q∗
loss = 1− 1

ϕ1

V∫

0

xD(V − x)dL(x). (13)

It can be also proved [2] that Qloss ≥ Ploss.
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In the case when repair period is also exponentially dis-
tributed with parameter b, we easily obtain:
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+

α
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,
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b f
+
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1 +
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b f
+
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b(b+α)

]
.

6. Customers number distribution

Using the relation (7), we can also determine the steady-state

generating function P(z) =
∞

∑
k=0

P{η = k}zk of number of cus-

tomers present in the system. Indeed, RV η can be treated as
the total volume of customers with the same volume ζ ≡ 1 and
c = 1. Then, we have ϕ(s) = e−s, ϕ1 = 1 and the function δ (s)
takes the form:

δ (s) = exp
{
−a(1− e−s)

[
1+αg1 +

αg2

2(1+αg1)

]}
.

It is clear that δ (s) = P(e−s), whereas we obtain:

P(z) = exp
{
−a(1− z)

[
1+αg1 +

αg2

2(1+αg1)

]}
=

= e−aheazh,

where h = 1+αg1 +
αg2

2(1+αg1)
. Since eazh =

∞

∑
k=0

(ah)k

k!
zk, we

can conclude that the number of customers present in the sys-
tem under consideration has Poisson distribution with parame-
ter ah, i.e.:

P{η = k}= (ah)k

k!
e−ah, k = 0,1, . . . . (10)

7. Estimation of loss characteristics for
the system with limited total volume

It is clear that, using the relation (7), we can obtain the explicite
form of DF D(x) very rarely. But we can approximate it by DF
D∗(x) having the form:

D∗(x) = p0 +(1− p0)
γ(p,gx)

Γ(p)
, (11)

where γ(p,gx) is incomplete gamma-function, i.e. γ(p,gx) =

=

gx∫

0

t p−1e−t dt and Γ(p) = γ(p,∞) is gamma-function, p0 =

= P{η = 0} = P{σ = 0} = e−ah, as it follows from (10). Let

δ ∗
1 and δ ∗

2 be the first and second moment of RV with DF D∗(x),
respectively. It follows from (11) that

δ ∗
1 =

(1− p0)p
g

,

δ ∗
2 =

(1− p0)p(p+1)
g2 .

Parameters p and g can be chosen so that the first and second
moments of approximate distribution function have to be equal
to corresponding moments of the DF D(x). Finally, we obtain:

p =
δ 2

1

(1− p0)δ2 −δ 2
1
,

g =
(1− p0)δ1

(1− p0)δ2 −δ 2
1
,

where the moments δ1 and δ2 are determined by relations (8)
and (9), respectively.

Let us consider a system M/G/(∞,V ) which differs from
the system analyzed in Sec. 2–6 in total volume limitation. Let
V = const is the system buffer space, such that σ(t)<V for all
t > 0. Let a customer having the volume x arrive to the system at
epoch t. Then, he will be accepted for service, if σ(t−)+x ≤V .
Otherwise the customer will be lost. Therefore, for this system,
we have to introduce some measures of losses. Such traditional
characteristic is the loss probability Ploss, i.e. the probability that
arriving customer will be lost (it has a sense of a part of lost cus-
tomers). In this case, it is determined as follows:

Ploss = 1−
V∫

0

DV (V − x)dL(x).

Let DV (x) be DF of steady-state total volume σ in the system
with limited buffer space. We evidently have (see e.g. [2]):

Ploss ≤ P∗
loss = 1−

V∫

0

D(V − x)dL(x), (12)

since D(x)≤ DV (x) for all x ≥ 0.
Other measure of losses is the probability of unit of volume

loss Qloss, having the sense of a part of lost volume (infor-
mation). For the system with limited volume, it can be deter-
mined as:

Qloss = 1− 1
ϕ1

V∫

0

xDV (V − x)dL(x).

It can be easily shown that

Qloss ≤ Q∗
loss = 1− 1

ϕ1

V∫

0

xD(V − x)dL(x). (13)

It can be also proved [2] that Qloss ≥ Ploss.
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The values P∗
loss and Q∗

loss can be the estimators of loss char-
acteristics Ploss and Qloss, respectively, under assumption that
customers losses are rather rare events. For their approximate
calculaton, we can replace the function D(x) by D∗(x) in rela-
tions (12) and (13). Of course, in such case, it is possible that
relations (12)–(13) will not be satisfied, as it is connected with
approximation mistake. Now we present some numerical exam-
ples in which we obtain estimators of loss characteristics for the
system with limited total volume and compare them to results
obtained by simulation. Approximations P∗

loss and Q∗
loss were

calculated with the help of Mathematica environment [20] and
simulation results PSIM

loss and QSIM
loss were obtained with the help

of previously written Python3 scripts [22] and the usage of dis-
crete event simulation method (DES) [23].

7.1. Customer volume and repair period exponentially dis-
tributed. Assume that the arrival flow parameter a= 1, param-
eter of presence system in good repair mode α = 2, coefficient
c = 1 and customer volume is exponentially distributed with
parameter f = 2. Suppose additionally that repair period is also
exponentially distributed with parameter b = 1. Then, on the
base of calculations from Section 5 and using (12), (13) formu-
lae, we can find loss characteristics approximations of analyzed
system. They are presented in Table 1.

Table 1
Loss characteristics a = 1, α = 2, c = 1, f = 2, b = 1

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.218136 0.409677 0.483899 0.625923

4 0.076142 0.155185 0.143673 0.207518

6 0.024476 0.051370 0.038280 0.057290

8 0.007105 0.014971 0.009775 0.014854

10 0.001666 0.003756 0.002440 0.003739

12 0.000399 0.000933 0.000600 0.000925

14 0.000076 0.000180 0.000146 0.000226

16 0.000015 0.000036 0.000035 0.000055

Now we change only one parameter. Suppose that b = 1.5.
Then, of course, loss characteristics are decreasing, what is pre-
sented in Table 2.

Now we change one more parameter. Assume that a = 0.75.
In such case loss characteristics are also decreasing (Table 3).

7.2. Customer volume exponentially distributed and repair
period uniformly distributed. One more time we assume that
the arrival flow parameter a = 1, parameter of presence system
in good repair mode α = 2, coefficient c = 1 and customer vol-
ume is exponentially distributed with parameter f = 2. But now
we suppose that the repair period is uniformly distributed on the
interval [0,2]. Then we have g1 = 1 and g2 = 4/3 and, on the
base of calculations from Section 5, we can obtain loss charac-
teristics approximations that are presented in Table 4.

Table 2
Loss characteristics a = 1, α = 2, c = 1, f = 2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.170649 0.347311 0.356096 0.503283

4 0.046844 0.104930 0.086337 0.133603

6 0.011270 0.026692 0.020003 0.031568

8 0.002267 0.005576 0.004577 0.007251

10 0.000410 0.001104 0.001042 0.001654

12 0.000087 0.000231 0.000236 0.000376

14 0.000011 0.000019 0.000053 0.000085

16 0.000001 0.000005 0.000012 0.000019

Table 3
Loss characteristics a = 0.75, α = 2, c = 1, f = 2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.136910 0.298190 0.263957 0.406753

4 0.030872 0.073847 0.053377 0.088405

6 0.005597 0.014215 0.010800 0.017964

8 0.000912 0.002536 0.002203 0.003656

10 0.000129 0.000391 0.000452 0.000748

12 0.000019 0.000049 0.000093 0.000154

14 0.000003 0.000006 0.000019 0.000032

16 5 ·10−7 0.000002 0.000004 0.000007

Table 4
Loss characteristics a = 1, α = 2, c = 1, f = 2, g1 = 1

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.201224 0.392348 0.453320 0.597143

4 0.065004 0.139362 0.129946 0.189749

6 0.017467 0.040206 0.034086 0.051309

8 0.004362 0.010480 0.008651 0.013173

10 0.000801 0.002012 0.002157 0.003306

12 0.000148 0.000405 0.000532 0.000819

14 0.000019 0.000054 0.000130 0.000201

16 0.000005 0.000020 0.000032 0.000049

If we decrease parameter of the uniformly distributed repair
period, then loss characteristics are decreasing. For example, if
repair period is uniformly distributed on the interval [0,4/3]
(then g1 = 2/3 and g2 = 16/27), loss characteristics are as
shown in Table 5.
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Table 5
Loss characteristics a = 1, α = 2, c = 1, f = 2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.160724 0.335958 0.338173 0.484500

4 0.040880 0.095678 0.080402 0.125233

6 0.008796 0.022070 0.018509 0.029236

8 0.001576 0.004201 0.004234 0.006708

10 0.000252 0.000661 0.000966 0.001532

12 0.000041 0.000123 0.000220 0.000349

14 0.000009 0.000028 0.000050 0.000080

16 0.000001 0.000003 0.000011 0.000018

If we change additionally parameter a (e.g. a = 0.75) then
loss characteristics also decrease, which is presented in Table 6.

Table 6
Loss characteristics a = 0.75, α = 2, c = 1, f = 2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.128631 0.287237 0.250857 0.391729

4 0.026580 0.066338 0.050030 0.083729

6 0.004615 0.012614 0.010106 0.016820

8 0.000617 0.001842 0.002068 0.003427

10 0.000102 0.000301 0.000426 0.000704

12 0.000006 0.000011 0.000088 0.000146

14 0.000003 0.000004 0.000018 0.000030

16 1 ·10−7 2 ·10−7 0.000004 0.000006

7.3. Customer volume uniformly distributed and repair pe-
riod exponentially distributed. Assume that a = 1, α = 2,
c = 1 but this time customer volume is uniformly distributed
on the interval [0,1]. Then we have ϕ1 = 1/2, ϕ2 = 1/3 and
ϕ3 = 1/4. Suppose that repair period is exponetially distributed
with parameter b = 1. From the formulae (8), (9) we obtain
the next loss characteristics approximations. We present them
in Table 7.

Table 7
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, b = 1

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.234872 0.305140 0.520424 0.768946

4 0.048110 0.063562 0.118915 0.296182

6 0.008071 0.010651 0.020292 0.076842

8 0.001231 0.001646 0.003064 0.016242

10 0.000188 0.000252 0.000437 0.003052

12 0.000016 0.000024 0.000061 0.000533

14 0.000001 0.000001 0.000008 0.000089

Now we change only parameter b (b = 1.5). Then loss char-
acteristics are decreasing. We present this fact in Table 8.

Table 8
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.164901 0.219152 0.405249 0.685058

4 0.019035 0.026077 0.077075 0.227167

6 0.001628 0.002263 0.011851 0.053214

8 0.000140 0.000199 0.001687 0.010505

10 0.000011 0.000016 0.000233 0.001884

12 4 ·10−7 7 ·10−7 0.000032 0.000318

14 2 ·10−7 3 ·10−7 0.000004 0.000052

Now we change also parameter a. Assume that a = 0.75. For
this case, loss characteristics are presented in Table 9.

Table 9
Loss characteristics a = 0.75, α = 2, c = 1, ϕ1 = 1/2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.117111 0.157804 0.329611 0.621760

4 0.008558 0.011843 0.055620 0.186190

6 0.000471 0.000641 0.008052 0.040870

8 0.000012 0.000019 0.001113 0.007739

10 4 ·10−7 5 ·10−7 0.000152 0.001350

7.4. Customer volume and repair period uniformly dis-
tributed. Once again we assume that the arrival flow param-
eter a = 1, parameter of presence system in good repair mode
α = 2, coefficient c = 1 and customer volume is uniformly dis-
tributed on the interval [0,1]. But now we suppose that that re-
pair period is uniformly distributed on the interval [0,2]. Then
we have b1 = 1 and b2 = 4/3 and, using calculations from Sec-
tion 4, we obtain the following loss characteristics approxima-
tions (Table 10).

If we decrease parameter of the uniformly distributed repair
period, loss characteristics are also decreasing. If repair period
is uniformly distributed on the interval [0,4/3], loss character-
istics present like in Table 11.

If we decrease once again entrance flow parameter into
a = 0.75 then loss characteristics also decrease, what is pre-
sented in Table 12.

If we analyze obtain numerical results, we can notice some
interesting facts:
• Approximation of loss characteristics is much better for

small values of Ploss and Qloss, so we can use them only
in such cases. For bigger values of loss characteristics we
have use simulation methods.
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Table 5
Loss characteristics a = 1, α = 2, c = 1, f = 2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.160724 0.335958 0.338173 0.484500

4 0.040880 0.095678 0.080402 0.125233

6 0.008796 0.022070 0.018509 0.029236

8 0.001576 0.004201 0.004234 0.006708

10 0.000252 0.000661 0.000966 0.001532

12 0.000041 0.000123 0.000220 0.000349

14 0.000009 0.000028 0.000050 0.000080

16 0.000001 0.000003 0.000011 0.000018

If we change additionally parameter a (e.g. a = 0.75) then
loss characteristics also decrease, which is presented in Table 6.

Table 6
Loss characteristics a = 0.75, α = 2, c = 1, f = 2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.128631 0.287237 0.250857 0.391729

4 0.026580 0.066338 0.050030 0.083729

6 0.004615 0.012614 0.010106 0.016820

8 0.000617 0.001842 0.002068 0.003427

10 0.000102 0.000301 0.000426 0.000704

12 0.000006 0.000011 0.000088 0.000146

14 0.000003 0.000004 0.000018 0.000030

16 1 ·10−7 2 ·10−7 0.000004 0.000006

7.3. Customer volume uniformly distributed and repair pe-
riod exponentially distributed. Assume that a = 1, α = 2,
c = 1 but this time customer volume is uniformly distributed
on the interval [0,1]. Then we have ϕ1 = 1/2, ϕ2 = 1/3 and
ϕ3 = 1/4. Suppose that repair period is exponetially distributed
with parameter b = 1. From the formulae (8), (9) we obtain
the next loss characteristics approximations. We present them
in Table 7.

Table 7
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, b = 1

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.234872 0.305140 0.520424 0.768946

4 0.048110 0.063562 0.118915 0.296182

6 0.008071 0.010651 0.020292 0.076842

8 0.001231 0.001646 0.003064 0.016242

10 0.000188 0.000252 0.000437 0.003052

12 0.000016 0.000024 0.000061 0.000533

14 0.000001 0.000001 0.000008 0.000089

Now we change only parameter b (b = 1.5). Then loss char-
acteristics are decreasing. We present this fact in Table 8.

Table 8
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.164901 0.219152 0.405249 0.685058

4 0.019035 0.026077 0.077075 0.227167

6 0.001628 0.002263 0.011851 0.053214

8 0.000140 0.000199 0.001687 0.010505

10 0.000011 0.000016 0.000233 0.001884

12 4 ·10−7 7 ·10−7 0.000032 0.000318

14 2 ·10−7 3 ·10−7 0.000004 0.000052

Now we change also parameter a. Assume that a = 0.75. For
this case, loss characteristics are presented in Table 9.

Table 9
Loss characteristics a = 0.75, α = 2, c = 1, ϕ1 = 1/2, b = 1.5

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.117111 0.157804 0.329611 0.621760

4 0.008558 0.011843 0.055620 0.186190

6 0.000471 0.000641 0.008052 0.040870

8 0.000012 0.000019 0.001113 0.007739

10 4 ·10−7 5 ·10−7 0.000152 0.001350

7.4. Customer volume and repair period uniformly dis-
tributed. Once again we assume that the arrival flow param-
eter a = 1, parameter of presence system in good repair mode
α = 2, coefficient c = 1 and customer volume is uniformly dis-
tributed on the interval [0,1]. But now we suppose that that re-
pair period is uniformly distributed on the interval [0,2]. Then
we have b1 = 1 and b2 = 4/3 and, using calculations from Sec-
tion 4, we obtain the following loss characteristics approxima-
tions (Table 10).

If we decrease parameter of the uniformly distributed repair
period, loss characteristics are also decreasing. If repair period
is uniformly distributed on the interval [0,4/3], loss character-
istics present like in Table 11.

If we decrease once again entrance flow parameter into
a = 0.75 then loss characteristics also decrease, what is pre-
sented in Table 12.

If we analyze obtain numerical results, we can notice some
interesting facts:
• Approximation of loss characteristics is much better for

small values of Ploss and Qloss, so we can use them only
in such cases. For bigger values of loss characteristics we
have use simulation methods.
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Table 10
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, g1 = 1

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.212566 0.280554 0.485251 0.744637

4 0.031640 0.042970 0.105184 0.274415

6 0.002931 0.004013 0.017441 0.069127

8 0.000250 0.000337 0.002592 0.014334

10 0.000018 0.000023 0.000367 0.002659

12 3 ·10−7 4 ·10−7 0.000051 0.000460

Table 11
Loss characteristics a = 1, α = 2, c = 1, ϕ1 = 1/2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.150319 0.201998 0.384964 0.668666

4 0.012168 0.017010 0.071193 0.216118

6 0.000653 0.000913 0.010806 0.049852

8 0.000021 0.000029 0.001529 0.009748

10 0.000002 0.000003 0.000211 0.001738

12 1 ·10−7 2 ·10−7 0.000029 0.000292

Table 12
Loss characteristics a = 0.75, α = 2, c = 1, ϕ1 = 1/2, g1 = 2/3

V PSIM
loss QSIM

loss P∗
loss Q∗

loss

2 0.104941 0.142867 0.314908 0.608354

4 0.004722 0.006751 0.052164 0.178749

6 0.000141 0.000208 0.007500 0.038831

8 0.000003 0.000005 0.001035 0.007308

10 1 ·10−7 3 ·10−7 0.000141 0.001270

• Approximation of loss probability Ploss is better than ap-
proximation of Qloss characteristic.

• Approximations in the case of exponentially distributed
customer volume are better than in the case of uniformly
distributed one (compare results from Table 1 – Table 6 and
Table 7 – Table 12). In the case of uniformly distributed cus-
tomer volume, approximation mistakes are relatively big.

• Loss characteristics (and their approximations) strictly de-
pend on the forms of distribution functions of customer vol-
ume and repair period (not only on their first moments). In
all calculations, we choose parameters of customer volume
and repair period in such way that first moments were the
same (e.g. compare Table 1, 4, 7 and 10 and analogously
Table 2, 5, 8 and 11 or Table 3, 6, 9 and 12).

• Loss characteristics for M/G/(∞,V )-type system with un-
reliable servers depend on: arrival rate a, parameter of pres-

ence system in good repair mode α , coefficient c and the
forms of distribution functions of customer volume and re-
pair period.

8. Conclusions and final remarks

In the present paper, we investigated queueing system of
the M/G/∞-type with non-homogeneous customers, unlimited
memory space and unreliable servers. In the beginning, after ex-
act mathematical analysis, we obtained Laplace-Stieltjes trans-
forms of customer sojourn time and customers total volume in
steady state together with formulae defining first moments of
these random variables. Later on, we presented some interest-
ing special cases of analyzed model including the case of ex-
ponentially distributed customer volume and interesting model
of database table that can be treated as possible representation
of readers and writers problem. Then, we showed how to use
obtained formulae to calculate the steady-state distribution of
number of customers for the system under consideration. Fi-
nally, we discussed how and when one can use the obtained loss
characteristics approximations and simulation to analogous sys-
tem with limited memory space. We illustrated our discussion
with some numerical calculations for some special cases of ana-
lyzed model, comparing them with simulation results. Both the
theoretical and simulation results show that loss characteristics
for the model with limited total volume strictly depend on the
forms of customer volume and repair period distributions. Prac-
tical applications of analyzed model and obtained results are
possible in computer systems designing. Indeed, we may use
proper numerical characteristics to choose the size of needed
memory volume so as to to avoid excessive loss characteristics.
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