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1. Introduction

Positively invariant sets play an important role in the theory and
applications of dynamical systems. They appear in many differ-
ent problems such as constrained control, robustness analysis,
synthesis and optimization in the reason that it is closely re-
lated to the stability in the sense of Lyapunov and LaSalle the-
orem. There are many types of positively invariant sets such as
polyhedral sets, ellipsoidal sets, Lorenz cones, etc. [1, 2]. We
mainly consider convex polyhedral sets in this paper. Positive
invariant sets of a linear dynamical system can be traced back
to [3]. For a good survey of the art, refer to the survey paper of
F. Blanchini [4]. An extension of positive invariance conditions
to nonlinear dynamical systems and stochastic systems can be
found in [5, 6].

The necessary and sufficient conditions of positively invari-
ant sets for linear dynamical systems are studied in this paper.
Positive invariance condition of polyhedral sets for linear sys-
tems was first proposed by Bitsoris in [7, 8], in a study consid-
ering a class of polyhedral sets that is symmetrical and nonsym-
metric with respect to the origin. Hennet [9] has done a detailed
research on the positive invariance properties for constrained
linear discrete-time systems with feedback control. Recently,
Zoltán Horváth [1] presented a unified approach to invariance
conditions for a linear dynamical system. Rather than the al-
gebraic conditions, we study the numerical checking method to
check whether a given polyhedral set is a positively invariant set
or not. Numerical checking is an attractive method which was
once used to check the positivity and stability of the dynamical
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systems because it is easily implemented [10–13]. The consid-
erations of numerically checking method can be extended to the
positively invariant sets of fractional systems [14, 15] and the
constrained feedback controller synthesis [16].

Notations: The set of real m×n matrices will be denoted by
Rm×n. A matrix A = [ai j]∈ Rm×n

+ will be called nonnegative and
denoted by A≥ 0 if ai j ≥ 0 for i= 1,2, . . . ,m, j = 1,2, . . . ,n, AT

is the transpose of the matrix A. Vectors x,y ∈ Rn, x ≥ y means
xi ≥ yi, i = 1,2, . . . ,n. In is the identity matrix with size n× n.
The set of natural number will be denoted by N, all vectors will
be the column vectors in this paper.

2. Main results

We consider the following linear dynamical systems described
by the following equation.

x(k+1) = Adx(k), k ∈ N, (1)

ẋ(t) = Acx(t), t ∈ R, (2)

where Ad , Ac ∈ Rn×n, x(k),x(t) ∈ Rn.

Definition 1. A set S ∈ Rn is a positively invariant set for the
discrete-time system (1) if x(k) ∈ S implies x(k+1) ∈ S, for all
k ∈ N.

Definition 2. A set S ∈ Rn is a positively invariant set for the
continuous-time system (2) if x(0) ∈ S implies x(t) ∈ S, for all
t ≥ 0.

Definition 3. A matrix H is called a nonnegative matrix, de-
noted by H ≥ 0, if Hi j ≥ 0 for all i, j. A matrix M is called a
Metzler matrix, if Mi j ≥ 0 for i �= j.

Bull. Pol. Ac.: Tech. 68(2) 2020 1

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 68, No. 2, 2020
DOI: 10.24425/bpasts.2020.XXXXXX

Numerical checking method for positive invariance of polyhedral sets
for linear dynamical systems

H. YANG1∗ and Y. HU2

1 College of Mathematics and Systems Sciences, Shandong University of Science and Technology, Qingdao Shandong 266590, China
2 Maths &Information Technology School, Yuncheng University, Yuncheng Shanxi 044000, China

Abstract. Positively invariant sets play an important role in the theory and applications of dynamical systems. The stability in Lyapunov sense
of equilibrium x = 0 is equivalent to the existence of the ellipsoidal positively invariant sets. The constraints on the state and control vectors of
dynamical systems can be formulated as polyhedral positively invariant sets in practical engineering problems. Numerical checking method of
positive invariance of polyhedral sets is addressed in this paper. The validation of the positively invariant sets can be done by solving LPs which
can be easily implemented numerically. The effectiveness of the proposed checking method is illustrated by examples. Compared with the now
existing algebraic methods, numerical checking method is attractive and, importantly, easy to be implemented.

Key words: positively invariant set, linear system, polyhedral set, polyhedral cone, linear programming.

1. Introduction

Positively invariant sets play an important role in the theory and
applications of dynamical systems. They appear in many differ-
ent problems such as constrained control, robustness analysis,
synthesis and optimization in the reason that it is closely re-
lated to the stability in the sense of Lyapunov and LaSalle the-
orem. There are many types of positively invariant sets such as
polyhedral sets, ellipsoidal sets, Lorenz cones, etc. [1, 2]. We
mainly consider convex polyhedral sets in this paper. Positive
invariant sets of a linear dynamical system can be traced back
to [3]. For a good survey of the art, refer to the survey paper of
F. Blanchini [4]. An extension of positive invariance conditions
to nonlinear dynamical systems and stochastic systems can be
found in [5, 6].

The necessary and sufficient conditions of positively invari-
ant sets for linear dynamical systems are studied in this paper.
Positive invariance condition of polyhedral sets for linear sys-
tems was first proposed by Bitsoris in [7, 8], in a study consid-
ering a class of polyhedral sets that is symmetrical and nonsym-
metric with respect to the origin. Hennet [9] has done a detailed
research on the positive invariance properties for constrained
linear discrete-time systems with feedback control. Recently,
Zoltán Horváth [1] presented a unified approach to invariance
conditions for a linear dynamical system. Rather than the al-
gebraic conditions, we study the numerical checking method to
check whether a given polyhedral set is a positively invariant set
or not. Numerical checking is an attractive method which was
once used to check the positivity and stability of the dynamical

∗e-mail: yhlmath@126.com

Manuscript submitted 20XX-XX-XX, initially accepted for publication
20XX-XX-XX, published in ZZZZZZZZ 2020.

systems because it is easily implemented [10–13]. The consid-
erations of numerically checking method can be extended to the
positively invariant sets of fractional systems [14, 15] and the
constrained feedback controller synthesis [16].

Notations: The set of real m×n matrices will be denoted by
Rm×n. A matrix A = [ai j]∈ Rm×n

+ will be called nonnegative and
denoted by A≥ 0 if ai j ≥ 0 for i= 1,2, . . . ,m, j = 1,2, . . . ,n, AT

is the transpose of the matrix A. Vectors x,y ∈ Rn, x ≥ y means
xi ≥ yi, i = 1,2, . . . ,n. In is the identity matrix with size n× n.
The set of natural number will be denoted by N, all vectors will
be the column vectors in this paper.

2. Main results

We consider the following linear dynamical systems described
by the following equation.

x(k+1) = Adx(k), k ∈ N, (1)
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Proposition 1. [17] The set S ∈ Rn is a positively invariant set
for the discrete-time system (1) if and only if AdS∈ S. Similarly,
the set S is a positively invariant set for the continuous-time
system (2) if and only if for all t ≥ 0, eAtS ∈ S.

In this paper, we mainly investigate invariance conditions and
checking methods for the polyhedral sets described by the fol-
lowing inequalities systems.

P = {x ∈ Rn| Gx ≤ b}, (3)

CP = {x| Gx ≤ 0}, (4)

where G ∈ Rm×n, b ∈ Rm.

2.1. Invariance conditions for discrete-time systems. We
have the obtained the following results concerning invariance
conditions for discrete-time linear systems.

Theorem 1. [9] A polyhedron P given as in (3) is a positively
invariant set for the discrete-time linear system (1) if and only
if there exists a matrix H ∈ Rm×m such that H ≥ 0, HG = GAd
and Hb ≤ b.

Corollary 1. A polyhedral cone CP given as in (4) is a posi-
tively invariant set for the discrete-time linear system (1) if and
only if there exists a matrix H ∈ Rm×m, such that H ≥ 0 and
HG = GAd .

Denote

H =




hT
1

hT
2
...

hT
m



, G =




gT
1

gT
2
...

gT
m



, b =




b1

b2
...

bm



, x =

(
hi

ω

)
,

where hT
i , gT

i , i = 1, . . . ,m are row vectors of matrices H, G
respectively, bi,ω ∈ R, i = 1,2, . . . ,m.

Proof. Corollary is obvious when we take b = 0 ∈ Rn in Theo-
rem 1. �

Proposition 2. The inequalities hT
i b ≤ bi, i = 1,2, . . . ,m hold

if and only if there exists an ω ∈ Rm such that hT
i bi +ωi = bi,

ω ≥ 0, i = 1,2, . . . ,m hold.

Proof. The result is obvious. If there exists an ω ∈ Rn, ω ≥ 0
such that hT

i bi+ωi = bi, i= 1,2, . . . ,m, hT
i bi ≤ bi, i= 1,2, . . . ,m

hold since ωi ≥ 0. If hT
i bi ≤ bi, i = 1,2, . . . ,m hold, there ex-

ists ωi, i = 1,2, . . . ,m such that hT
i bi ≤ bi, i = 1,2, . . . ,m, take

ω = (ω1,ω2, . . . ,ωm)
T , we can obtain the result. �

By the above partition of matrices H,G and Proposition 2,
results in Theorem 1 and Corollary 1 can be rewritten in the
following form respectively.

(
GT 0
bT 1

)(
hi

ωi

)
=

(
AT

d gi

bi

)
,

GT hi = AT
d gi, i = 1, . . . ,m.

With the above form and Theorem 1, we have the following
theorem.

Theorem 2. A polyhedron P given as in (3) is a positively in-
variant set for the discrete-time linear system (1) if and only if
there exists a nonnegative matrix H ∈ Rm×m and ωi ≥ 0 such
that

(
GT 0
bT 1

)(
hi

ωi

)
=

(
AT

d gi

bi

)
, i = 1, . . . ,m. (5)

Proof. For fixed i, i = 1,2, . . . ,m, from Theorem 1 and the par-
tition of matrices H, G, we have hT

i G = gT
i AT

d , take trans-
pose operation on both sides get GT hi = AT

d gi, from Proposi-
tion 2, hT

i bi ≤ bi can be replaced by hT
i bi + ωi = bi, ω ≥ 0,

i = 1,2, . . . ,m, rewrite the equations in the form of matrices
product, we have the conclusion. �

Corollary 2. A polyhedral cone CP given as in (4) is a posi-
tively invariant set for the discrete-time linear system (1) if and
only if there exists a nonnegative matrix H ∈ Rm×m, such that

GT hi = AT
d gi, i = 1, . . . ,m (6)

Proof. The corollary is obvious when by the partition of matri-
ces H, G and Corollary 1. �

Remark 1. Theorem 2 and Corollary 2 can be obtained directly
from Theorem 1 and Corollary 1 by means of Proposition 2 and
the partition of matrices, the proofs of the following Theorem 3,
4 for continuous-time cases and the corresponding corollary are
the same, we omit the proofs there.

2.2. Invariance conditions for continuous-time systems.

Theorem 3. [18] A polyhedron P given as in (3) is a positively
invariant set for the continuous-time system (2) if and only if
there exists a Metzler matrix H ∈ Rm×m, such that HG = GAc
and Hb ≤ 0.

Corollary 3. A polyhedral cone CP given as in (4) is a posi-
tively invariant set for the continuous system (2) if and only if
there exists a Metzler matrix H ∈ Rm×m, such that HG = GAc.

Proof. Corollary 3 is obvious when we take b = 0 ∈ Rm in The-
orem 2. �

Theorem 4. A polyhedron P given as in (3) is a positively in-
variant set for the continuous system (2) if and only if there
exists a Metzler matrix H ∈ Rm×m and ωi ≥ 0 such that the fol-
lowing equalities hold.

(
GT 0
bT 1

)(
hi

ωi

)
=

(
AT

c gi

bi

)
, i = 1, . . . ,m. (7)

Corollary 4. A polyhedral cone CP given as in (4) is a posi-
tively invariant set for the continuous system (2) if and only if
there exists a Metzler matrix H ∈ Rm×m such that the following
equalities hold.

GT hi = AT
c gi, i = 1, . . . ,m. (8)
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2.3. Numerical checking methods. The above theorems and
corollaries are the algebraic conditions for the positive invari-
ance of the polyhedral sets for linear dynamical systems. All the
results are in the form of linear equation systems with nonnega-
tive solution. This motivates us to consider solving nonnegative
solution of the inhomogeneous system of linear equations.

Jx = e, (9)

where J is the coefficient matrix with size m×n, e is a nonzero
vector.

J =




j11 j12 . . . j1n

j21 j22 . . . j2n
...

...
...

...
jm1 jm2 . . . jmn



, x =




x1

x2
...

xn



, e =




e1

e2
...

em



.

Taking into account the problem of nonnegative solution of lin-
ear system (9), we can transform (9) into an optimization prob-
lem, the nonnegative solution of system (9) can be obtained by
solving the following (10).

In the sequel, we will show that the optimal solution of op-
timization problem (10) is the nonnegative solution of linear
equation systems (9). Rewrite matrix J = [J1,J2, · · · ,Jm], where
Ji, i = 1,2, · · · ,m is the column vector of matrix J. Define func-

tion f (x) =
m

∑
i=1

∣∣ei − JT
i x

∣∣, the solution (or approximation solu-

tion) of systems (9) can be obtained by finding the solution of
the following optimization problem (10).

min f (x)
s.t. x ≥ 0, x �= 0,

(10)

which means find the nonnegative but not zero solution of (10).
We formulate the conclusion in the following Proposition 3.

Proposition 3. Existence of the solutions for optimization
problem (10) is equivalent to the existence of the nonnegative
solutions of the following optimization problem (11).

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti ,

s.t. B

(
t
x

)
≥

(
e
−e

)
,

(
t
x

)
≥ 0.

(11)

where

B =

(
I J
I −J

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...

0n



.

The optimal solution of (11) is y(0) =

(
t(0)

x(0)

)
, x(0) is the

nonnegative solution of optimization (10), moreover, f (x(0)) =

g(y(0)) =
m

∑
i=1

t(0)i .

Proof. From (11), we have

t ≥ e− Jx, t ≥−(e− Jx), (12)

so we have ti ≥ ei − JT
i x, ti ≥−(ei − JT

i x), such that

ti ≥
∣∣ei − JT

i x
∣∣ , i = 1,2, · · · ,m. (13)

Suppose y(0) =

(
t(0)

x(0)

)
is the solution of (11), then, we will

prove that x(0) is the nonnegative solution of (10) by contradic-
tion. If it is not, there must exist a nonnegative vector x∗ such
that f (x∗)< f (x(0)), let

t∗i =
∣∣ei − JT

i x∗
∣∣ , i = 1,2, · · · ,m, (14)

then we have y� =

(
t∗

x∗

)
≥ 0,

where t∗ = (t∗1 , t
∗
2 , · · · , t∗m)T , x∗ = (x∗1,x

∗
2, · · · ,x∗m)T ,

By∗ =

(
t∗ Jx∗

t∗ −Jx∗

)
≥

(
e
−e

)
, (15)

which means y∗ satisfies (11) and

g(y∗) =
m

∑
i=1

t∗i =
m

∑
i=1

∣∣ei − JT
i x∗

∣∣= f (x∗).

Again because t(0) satisfies (13) and f (x∗)< f (x(0)), we have

g(y∗) = f (x∗)< f (x(0)) =
n

∑
i=1

∣∣∣ei − JT
i x(0)

∣∣∣<
n

∑
i=1

t(0)i = g(y(0)),

which is contradictory to the fact that y(0) is the solution of (11).
In the sequel, we shall prove

t(0)i =
∣∣∣ei − JT

i x(0)
∣∣∣ , i = 1,2, · · · ,m. (16)

If (16) does not hold for all i = 1,2, · · · ,m, from (13), we can

deduce that g(y(0)) =
m

∑
i=1

t(0)i =
m

∑
i=1

∣∣∣ei − JT
i x(0)

∣∣∣ > f (x(0)), then

similar to the former proof, we derive a contradiction that y(0)

is the solution of (11), then we have (16) holds, i.e.

g(y(0)) =
m

∑
i=1

t(0)i =
m

∑
i=1

∣∣∣ei − JT
i x(0)

∣∣∣= f (x(0)),

which completes the proof. �
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By means of Proposition 3 and the algebraic conditions in
Theorem 1 to Theorem 4, we have the following conclusions to
check the positive invariance of a given polyhedral set for linear
dynamical systems.

Theorem 5. A polyhedron P given as in (3) is a positively in-
variant set for the discrete-time linear system (1) if and only
if the following optimization problems have solutions for all
i = 1,2, . . . ,m.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m+1

∑
i=1

t j

s.t. B

(
t
x

)
≥




(
AT

d gi

bi

)

−

(
AT

d gi

bi

)



,

(
t
x

)
≥ 0.

(17)

where

B =




I(m+1)

(
GT 0
bT 1

)

I(m+1) −

(
GT 0
bT 1

)



, t =




t1
t2
...

t(m+1)



,

u=




u1

u2
...

u(m+1)




=




1
1
...
1



, y=

(
t
x

)
, θ =




0
0
...

0(m+1)



.

Proof. The conclusion can be obtained according to Propo-
sition 3 and Theorem 4 by replacing the matrices J with(

GT 0
bT 1

)
and e with

(
AT

d gi

bi

)
for i = 1,2, . . . ,m. �

Corollary 5. A polyhedral cone CP given as in (4) is a pos-
itively invariant set for the discrete-time linear system (1) if
and only if the following optimization have solutions for all
i = 1,2, . . . ,m.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
j=1

t j

s.t. B

(
t
x

)
≥

(
AT

d gi

−AT
d gi

)
,

(
t
x

)
≥ 0.

(18)

where

B =

(
I GT

I −GT

)
, t =




t1
t2
...

tm



,

u =




u1

u2
...

um




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...

0m



.

Proof. The conclusion can be obtained according to Proposi-
tion 3 and Corollary 4 by replacing the matrices J with GT and
e with AT

d gi for i = 1,2, . . . ,m.
Denote I( j) = diag{1,1, . . . ,0 j,1, . . . ,1}, j = 1,2, . . . ,m, i.e.

I( j) is an identity matrix with the jth diagonal entry replaced by
0 while other entries remained unchanged. �

Theorem 6. A polyhedron P given as in (3) is a positively
invariant set for the continuous system (2) if and only if the
following optimization problems have solutions for all i =
1,2, . . . ,m.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m+1

∑
j=1

t j

s.t. B

(
t
x

)
≥




AT
c gi

bi

−AT
c gi

−bi


 , I(m+1+i)

(
t
x

)
≥ 0.

(19)

where

B =




I

(
GT 0
bT 1

)

I −

(
GT 0
bT 1

)



, t =




t1
t2
...

tm+1



,

u =




u1

u2
...

um+1




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...

0(m+1)



.

Proof. The conclusion can be obtained according to Propo-
sition 3 and Theorem 4 by replacing the matrices J with(

GT 0
bT 1

)
and e with

(
AT

c gi

bi

)
for i = 1,2, . . . ,m. The con-

straints of being a Metzler matrix can be obtained by multiply-
ing matrices I(m+1+i), i = 1,2, . . . ,m+1, which means omitting
the constraints of the ith variables.

Corollary 6. A polyhedral cone CP given as in (4) is a pos-
itively invariant set for the continuous system (2) if and only
if the following optimization problem have solutions for all
i = 1,2, . . . ,m.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
j=1

t j

s.t. B

(
t
x

)
≥

(
AT

c gi

−AT
c gi

)
, I(m+i)

(
t
x

)
≥ 0.

(20)
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where

B =

(
I GT

I −GT

)
, t =




t1
t2
...

tm



,

u =




u1

u2
...

um




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...

0m



.

Proof. The conclusion can be obtained according to Proposi-
tion 3 and Corollary 4 by replacing the matrices J with GT

and e with AT
c gi for i = 1,2, . . . ,m. The constraints of being a

Metzler matrix can be obtained by multiplying matrices I(m+i),
i = 1,2, . . . ,m, which means omitting the constraints of the ith
variables. �

3. Numerical examples

We illustrate our method using the following examples.

Example 1. (discrete-time systems with polyhedral set)
Consider the second order discrete-time linear systems

x(k+1) =

(
−0.32 0.32
−0.42 −0.92

)
x(k). (21)

with the polyhedral set

P1 =




x|




1 4
−2 2
−1 −4
2 −2


x ≤




1
0.5
1

0.5






.

To check whether the given polyhedral set P1 is an invariant
set for the given discrete-time systems (21). It was verified by
Example 3 in [7] that this set is a positively invariant set. By
using Theorem 1 and Theorem 5 in this paper, we only need
solving the LP problems (17) in Theorem 5 with

Ad =

(
−0.32 0.32
−0.42 −0.92

)
, G =




gT
1

gT
2

gT
3

gT
4




=




1 4
−2 2
−1 −4
2 −2


,

b =




1
0.5
1

0.5


,

thus obtained the result matrix

H =




0.4640 0 0 0.1680
1.0720 0.5360 0 0

0 0.1680 0.4640 0
0 0 0 0


,

that satisfies Theorem 1 such that H ≥ 0, HG = GAd , Hb ≤
b. Therefore, compared with the method in [7], our method is
readily implemented.

Example 2. (discrete-time systems with polyhedral convex
cone)

Consider the same second order discrete-time linear systems
as that in (21)

x(k+1) =

(
−0.32 0.32
−0.42 −0.92

)
x(k)

with

CP1 =

{
x|

(
−1 −4
2 −2

)
x ≤

(
0
0

)}
.

To check whether the given polyhedral set CP1 is an invariant
set for the given discrete-time systems (21). It was verified by
Example 3 in [7] that this convex cone is a positively invariant
set. By using Corollary 1 and Corollary 5 in this paper, we only
need solving LP problems (18) with

Ad =

(
−0.32 0.32
−0.42 −0.92

)
, G =

(
gT

1

gT
2

)
=

(
−1 −4
2 −2

)
,

thus obtained

H =

(
0.8400 0.5360

0 0.1680

)

which satisfies Corollary 1 such that H ≥ 0, HG = GAd . There-
fore, by using our method, we can draw the same conclusion.

Example 3. (continuous-time systems with polyhedral set)
Consider the second order continuous-time linear systems

ẋ =

(
−1 −3.2
−0.1 −0.6

)
x. (22)

with

P2 =





x|




−0.5 1
1 −8
0 1


x ≤




1.5
4

0.5






.

It was verified in [8] Example 1 that this set is a posi-
tively invariant set for systems (22). By using Theorem 4
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where

B =

(
I GT

I −GT

)
, t =




t1
t2
...

tm



,

u =




u1

u2
...

um




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...

0m



.

Proof. The conclusion can be obtained according to Proposi-
tion 3 and Corollary 4 by replacing the matrices J with GT

and e with AT
c gi for i = 1,2, . . . ,m. The constraints of being a

Metzler matrix can be obtained by multiplying matrices I(m+i),
i = 1,2, . . . ,m, which means omitting the constraints of the ith
variables. �

3. Numerical examples

We illustrate our method using the following examples.

Example 1. (discrete-time systems with polyhedral set)
Consider the second order discrete-time linear systems

x(k+1) =

(
−0.32 0.32
−0.42 −0.92

)
x(k). (21)

with the polyhedral set

P1 =




x|




1 4
−2 2
−1 −4
2 −2


x ≤




1
0.5
1

0.5






.

To check whether the given polyhedral set P1 is an invariant
set for the given discrete-time systems (21). It was verified by
Example 3 in [7] that this set is a positively invariant set. By
using Theorem 1 and Theorem 5 in this paper, we only need
solving the LP problems (17) in Theorem 5 with

Ad =

(
−0.32 0.32
−0.42 −0.92

)
, G =




gT
1

gT
2

gT
3

gT
4




=




1 4
−2 2
−1 −4
2 −2


,

b =




1
0.5
1

0.5


,

thus obtained the result matrix

H =




0.4640 0 0 0.1680
1.0720 0.5360 0 0

0 0.1680 0.4640 0
0 0 0 0


,

that satisfies Theorem 1 such that H ≥ 0, HG = GAd , Hb ≤
b. Therefore, compared with the method in [7], our method is
readily implemented.

Example 2. (discrete-time systems with polyhedral convex
cone)

Consider the same second order discrete-time linear systems
as that in (21)

x(k+1) =

(
−0.32 0.32
−0.42 −0.92

)
x(k)

with

CP1 =

{
x|

(
−1 −4
2 −2

)
x ≤

(
0
0

)}
.

To check whether the given polyhedral set CP1 is an invariant
set for the given discrete-time systems (21). It was verified by
Example 3 in [7] that this convex cone is a positively invariant
set. By using Corollary 1 and Corollary 5 in this paper, we only
need solving LP problems (18) with

Ad =

(
−0.32 0.32
−0.42 −0.92

)
, G =

(
gT

1

gT
2

)
=

(
−1 −4
2 −2

)
,

thus obtained

H =

(
0.8400 0.5360

0 0.1680

)

which satisfies Corollary 1 such that H ≥ 0, HG = GAd . There-
fore, by using our method, we can draw the same conclusion.

Example 3. (continuous-time systems with polyhedral set)
Consider the second order continuous-time linear systems

ẋ =

(
−1 −3.2
−0.1 −0.6

)
x. (22)

with

P2 =





x|




−0.5 1
1 −8
0 1


x ≤




1.5
4

0.5






.

It was verified in [8] Example 1 that this set is a posi-
tively invariant set for systems (22). By using Theorem 4
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and Theorem 6 in this paper, we only need solving LP prob-
lems (19) with

Ac =

(
−1 −3.2
−0.1 −0.6

)
, G =




gT
1

gT
2

gT
3


=




−0.5 1
1 −8
0 1


,

b =




1.5
4

0.5


,

thus obtaining

H =




−0.7326 0.2835 0.2476
0.0337 −0.0583 0.0238
2.0022 0.8504 −0.6571


,

which is a Metzler matrix that satisfies Theorem 4 such that
HG = GAc, Hb ≤ b. This means that P2 is a positively invariant
set for continuous-time systems (22).

Example 4. (continuous-time systems with polyhedral convex
cone)

Consider the second order continuous-time linear systems
(22) in Example 3 with

CP2 =




x|




−0.5 1
1 −8
0 1


x ≤




0
0
0






.

By using Corollary 4 and Corollary 6, we only need solving the
LP problems (20) with

Ac =

(
−1 −3.2
−0.1 −0.6

)
, G =




gT
1

gT
2

gT
3


=




−0.5 1
1 −8
0 1


,

thus obtaining the result matrix of LP (20)

H =




−0.3634 0.3237 0.2785
0.2183 −0.0382 0.0392
3.1097 0.9711 −0.5645


 ,

satisfies Corollary 4, which means that the convex cone CP2 is a
positively invariant set for continuous-time systems (22).

To illustrate the advantages of our approach, we present other
dynamical systems with higher dimension (order) and solve the
LP problems step by step to obtain the matrix H that satisfies
Corollary 4.

Example 5. (continuous-time systems with polyhedral convex
cone)

Consider the continuous-time linear system (23) which is a
Wilson system

ẋ =




0 0 0 −150
1 0 0 −245
0 1 0 −113
0 0 1 −19


x (23)

with the same convex polyhedral cone CP2 in Example 4. To
check whether CP2 is a positively invariant convex cone for sys-
tems (23), by Corollary 4, we need to check whether the matrix
H that satisfies (8) exists or not. By Corollary 6 we only need
solving some LP problems in (20) with

B=

(
I4 GT

I4 −GT

)
, G=




gT
1

gT
2

gT
3


=




−0.5 1 1 2
1 −8 0 1
0 1 3 7


.

The fist LP problem denoted (LP1) is described by

(
AT

c gi

−AT
c gi

)
=

(
AT

c g1

−AT
c g1

)
, Ac =




0 0 0 −150
1 0 0 −245
0 1 0 −113
0 0 1 −19


 ,

where g1 is the transpose of the first row vector of ma-
trix G. I(4+1) = diag{1,1,1,1,0,1,1}. The solution of LP1 is
[−2,0,0], which forms the first row of matrix H.

The second LP problem, denoted (LP2) in (20), involves the
same matrices B, G, Ac and

(
AT

c gi

−AT
c gi

)
=

(
AT

c g2

−AT
c g2

)
,

where g2 is the transpose of the second row vector of ma-
trix G. I(4+2) = diag{1,1,1,1,1,0,1}. The solution of LP2 is
[95.6170,39.8085,222.8511], which forms the second row of
matrix H.

The third LP problem, denoted (LP3) in (20), involves the
same matrices B, G, Ac and

(
AT

c gi

−AT
c gi

)
=

(
AT

c g3

−AT
c g3

)
,

where g3 is the transpose of the third row vector of ma-
trix G. I(4+3) = diag{1,1,1,1,1,1,0}. The solution of LP3 is
[147.6000,0,−144.6000], which forms the second row of ma-
trix H. These three solutions form matrix

H =




−2 0 0
95.6170 39.8085 222.8511

147.6000 0 −144.6000


 ,

and H is a Metzler matrix that satisfies Corollary 4, hence CP2
is a positively invariant set for system (23).
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4. Concluding remarks

Positively invariant sets are important both for the system the-
ory and for the computational practice of dynamical systems.
In this paper, necessary and sufficient conditions for the posi-
tive invariance of a polyhedral set for linear dynamical systems
were addressed. Algebraic conditions of the positively invari-
ant set have been transformed into a solution of LP problems
with constraints. By solving LP problems, we can check nu-
merically whether given polyhedral sets are positively invariant
sets or not. The effectiveness of the proposed method is illus-
trated by numerical examples. Compared to existing checking
methods, the new method is favourable since it does not require
verification of algebraic conditions. It only requires solving LP
problems numerically, which can be done on any mathematical
software. In this aspect, numerical checking method has proven
attractive.
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4. Concluding remarks

Positively invariant sets are important both for the system the-
ory and for the computational practice of dynamical systems.
In this paper, necessary and sufficient conditions for the posi-
tive invariance of a polyhedral set for linear dynamical systems
were addressed. Algebraic conditions of the positively invari-
ant set have been transformed into a solution of LP problems
with constraints. By solving LP problems, we can check nu-
merically whether given polyhedral sets are positively invariant
sets or not. The effectiveness of the proposed method is illus-
trated by numerical examples. Compared to existing checking
methods, the new method is favourable since it does not require
verification of algebraic conditions. It only requires solving LP
problems numerically, which can be done on any mathematical
software. In this aspect, numerical checking method has proven
attractive.
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