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1. Introduction

In positive system inputs, state variables and outputs take only
nonnegative values for any nonnegative inputs and nonnegative
initial conditions [1–3]. Examples of positive systems are in-
dustrial processes involving chemical reactors, heat exchang-
ers and distillation columns, storage systems, compartmental
systems, water and atmospheric pollution models. A variety of
models displaying positive behavior can be found in engineer-
ing, management science, economics, social sciences, biology
and medicine, etc. An overview of state of the art in positive
systems theory is given in monographs [1–5].

Mathematical fundamentals of the fractional calculus are
given in monographs [4–7]. The positive and fractional linear
systems have been investigated in [4, 5, 8–16]. Positive linear
systems with different fractional orders have been addressed in
[11, 16]. Descriptor positive systems have been analyzed in [12,
17]. Linear positive electrical circuits with state feedbacks have
been addressed in [5, 17]. The stability of nonlinear systems has
been investigated in [18, 19] and the global stability of nonlin-
ear systems with negative feedbacks and positive and not nec-
essarily asymptotically stable parts in [20, 21].

In this paper the global stability of nonlinear standard and
fractional positive feedback systems will be addressed.

The paper is organized as follows. In Section 2, basic defini-
tions and theorems concerning positive standard and fractional
linear systems and their transfer matrices are recalled. New suf-
ficient conditions for the global positive standard nonlinear sys-
tems are established in Section 3. Similar sufficient conditions
for fractional positive nonlinear systems are given in Section 4.
Concluding remarks are given in Section 5.

The following notation will be used: ℜ – the set of real num-
bers, ℜn×m – the set of n×m real matrices, ℜn×m

+ – the set of
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n×m real matrices with nonnegative entries and ℜn
+ = ℜn×1

+ ,
Mn – the set of n×n Metzler matrices (real matrices with non-
negative off-diagonal entries), In – n×n identity matrix.

2. Preliminaries

Consider the continuous-time linear system

ẋ = Ax+Bu, (1a)

y =Cx, (1b)

where x= x(t)∈ℜn, u= u(t)∈ℜm, y= y(t)∈ℜp are the state,
input and output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

Definition 1. [4, 5] The continuous-time linear system (1) is
called (internally) positive if x(t) ∈ ℜn

+, y(t) ∈ ℜp
+, t ≥ 0 for

any initial conditions x(0)∈ℜn
+ and all inputs u(t)∈ℜm

+, t ≥ 0.

Theorem 1. [4, 5] The continuous-time linear system (1) is
positive if and only if

A ∈ Mn , B ∈ ℜn×m
+ , C ∈ ℜp×n

+ . (2)

Definition 2. [4, 5] The positive continuous-time system (1)
for u(t) = 0 is called asymptotically stable if

lim
t→∞

x(t) = 0 for any x(0) ∈ ℜn
+ . (3)

Theorem 2. [4, 5] The positive continuous-time linear system
(1) is asymptotically stable if and only if one of the following
equivalent conditions is satisfied:
1. All coefficients of the characteristic polynomial

pn(s) = det [Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (4)

are positive, i.e. ai > 0 for i = 0,1, . . . ,n−1.
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2. There exists a strictly positive vector λ T =
[
λ1 · · · λn

]T ,
λk > 0, k = 1, . . . ,n such that

Aλ < 0 or λ T A < 0. (5)

If matrix A is nonsingular then we can choose λ = A−1c,
where c ∈ ℜn is strictly positive.

In this paper the following Caputo definition of the fractional
derivative of α order will be used [4–7]:

0Dα
t f (t) =

dα f (t)
dtα =

1
Γ(1−α)

t∫

0

ḟ (τ)
(t−τ)α dτ, 0<α < 1, (6)

where ḟ (τ) =
d f (τ)

dτ
and Γ(x) =

∞∫

0

tx−1e−t dt, Re(x)> 0 is the

Euler gamma function.
Consider the fractional continuous-time linear system

dα x(t)
dtα = Ax(t)+Bu(t), (7a)

y(t) =Cx(t), (7b)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input and
output vectors and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

Definition 3. [4, 5] The fractional system (7) is called (inter-
nally) positive if x(t) ∈ ℜn

+ and y(t) ∈ ℜp
+, t ≥ 0 for any initial

conditions x(0) ∈ ℜn
+ and all inputs u(t) ∈ ℜm

+, t ≥ 0.

Theorem 3. [4, 5] The fractional system (7) is positive if and
only if

A ∈ Mn , B ∈ ℜn×m
+ , C ∈ ℜp×n

+ . (8)

The fractional positive linear system (7) is called asymptoti-
cally stable (and matrix A Hurwitz) if

lim
t→∞

x(t) = 0 for all x(0) ∈ ℜn
+. (9)

The positive fractional system (7) is asymptotically stable if and
only if the real parts of all eigenvalues sk of the matrix A are
negative, i.e. Resk < 0 for k = 1, . . . ,n [4, 7].

Theorem 4. The positive fractional system (7) is asymptoti-
cally stable if and only if one of the following equivalent con-
ditions is satisfied:
1. All coefficients of the characteristic polynomial

det [Ins−A] = sn +an−1sn−1 + . . .+a1s+a0 (10)

are positive, i.e. ai > 0 for i = 0,1, . . . ,n−1.
2. There exists a strictly positive vector λ =

[
λ1 · · · λn

]
,

λk > 0, k = 1, . . . ,n such that

Aλ < 0 or λ T A < 0. (11)

The transfer matrix of the system (7) is given by

T (sα) =C [Insα −A]−1 B. (12)

3. Global stability of standard nonlinear
feedback systems

Consider the nonlinear feedback system shown in Fig. 1 which
consists of a positive linear part and a nonlinear element with
characteristic u= f (e). The linear part is described by the equa-
tions

ẋ = Ax+Bu,

y =Cx,
(13)

where x = x(t) ∈ ℜn
+, u = u(t) ∈ ℜ+, y = y(t) ∈ ℜ+ is the state

vector, input and output and A ∈ Mn, B ∈ ℜn×1
+ , C ∈ ℜ1×n

+ .

Fig. 1. The nonlinear feedback system

The characteristic of the nonlinear element is shown in Fig. 2
and it satisfies the condition

0 ≤ f (e)
e

≤ k < ∞ . (14)

It is assumed that the positive linear part is asymptotically stable
(the matrix A ∈ Mn is Hurwitz).

Fig. 2. Characteristic of the nonlinear element

Definition 4. The nonlinear positive system is called globally
stable if it is asymptotically stable for all nonnegative initial
conditions x(0) ∈ ℜ+.

The following theorem gives sufficient conditions for the
global stability of the positive nonlinear system.

Theorem 5. The nonlinear system consisting of the positive
and asymptotically stable linear part and the nonlinear element
satisfying the condition (14) is globally stable if the matrix

A+ kBC ∈ Mn (15)

is asymptotically stable.
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Proof. The proof will be accomplished by the use of the Lya-
punov method [22, 23]. As the Lyapunov function V (x) we
choose

V (x) = λ T x ≥ 0 for x ∈ ℜn
+ , (16)

where λ is strictly positive vector, i.e. λk > 0, k = 1, . . . ,n.
Using (16) and (13) we obtain

V̇ (x) = λ T ẋ = λ T (Ax+Bu)

= λ T (Ax+B f (e))≤ λ T (A+ kBC)x
(17)

since u = f (e)≤ ke = kCx.
From (17) it follows that V̇ (t) < 0 if the condition (15) is

satisfied and the nonlinear system is globally stable. �

Example 1. Consider the nonlinear system with the positive
linear part with the matrices

A =

[
−4 2

1 −3

]
, B =

[
1

1

]
, C = [ 1 0 ] (18)

and the nonlinear element satisfying the condition (14) for k = 1
and k = 2.

Using (15) and (18) for k = 1 we obtain

A1 = A+ kBC =

[
−4 2

1 −3

]
+

[
1

1

][
1 0

]

=

[
−3 2

2 −3

]
∈ M2 .

(19)

The matrix (19) is Hurwitz since the characteristic polynomial

det(I2s−A1) =

∣∣∣∣∣
s+3 −2

−2 s+3

∣∣∣∣∣= s2 +6s+5 (20)

has the zeros s1 =−1, s2 =−5.
We obtain the same result using Theorem 2, since for

λ T =
[
1 1

]
we have

A1λ =

[
−3 2

2 −3

][
1

1

]
=−

[
1

1

]
<

[
0

0

]
. (21)

For k = 2 we obtain

A2 = A+ kBC =

[
−4 2

1 −3

]
+2

[
1

1

][
10

]

=

[
−2 2

3 −3

]
.

(22)

The matrix (22) is not Hurwitz since

det(I2s−A2) =

∣∣∣∣∣
s+2 −2

−3 s+3

∣∣∣∣∣= s(s+5) (23)

and the nonlinear system for k = 2 does not satisfy the condi-
tions of Theorem 5.

4. Global stability of fractional nonlinear
feedback systems

Consider the nonlinear feedback system shown in Fig. 1, which
consists of a fractional positive linear part and a nonlinear el-
ement with characteristic u = f (e) shown in Fig. 2. The frac-
tional linear part is described by equations

dα x
dtα = Ax+Bu,

y =Cx,
(24)

where x = x(t) ∈ ℜn
+, u = u(t) ∈ ℜ+, y = y(t) ∈ ℜ+ are the

state vector, input and output, the fractional derivative
dα x
dtα is

defined by (6) and A ∈ Mn, B ∈ ℜn×1
+ , C ∈ ℜ1×n

+ .
The characteristic of the nonlinear element shown in Fig. 2

satisfies the condition

0 ≤ f (e)
e

≤ k < ∞. (25)

It is assumed that the fractional positive linear part is asymptot-
ically stable (the matrix A ∈ Mn is Hurwitz).

Definition 5. A fractional nonlinear positive system is called
globally stable if it is asymptotically stable for all nonnegative
initial conditions x(0) ∈ ℜ+.

The following theorem gives sufficient conditions for the
global stability of the fractional positive nonlinear system.

Theorem 6. The fractional nonlinear system consisting of the
positive and asymptotically stable linear part and the nonlinear
element satisfying the condition (14) is globally stable if the
matrix

A+ kBC ∈ Mn . (26)

is asymptotically stable.

Proof. The proof will be accomplished by the use of the Lya-
punov method [22, 23]. As the Lyapunov function V (x) we
choose the scalar function defined by (16).

Using (16) and (13) we obtain

dαV
dtα = λ T dα x

dtα = λ T (Ax+Bu)

= λ T (Ax+B f (e))≤ λ T (A+ kBC)x

(27)

since u = f (e)≤ ke = kCx.

From (27) it follows that
dαV
dtα < 0 if the condition (26) is

satisfied and the fractional nonlinear system is globally stable.�
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Example 2. Consider a nonlinear system with a fractional pos-
itive linear part with matrices

A =

[
−2 1
1 −3

]
, B =

[
1
0.5

]
, C = [ 0.5 1 ] (28)

and a nonlinear element satisfying the condition (14) for k =
0.8. Using (26) and (28) we obtain

A1 = A+ kBC =

[
−2 1

1 −3

]
+0.8

[
1

0.5

][
0.5 1

]

=

[
−1.6 1.8

1.2 −2.6

]
∈ M2 .

(29)

The matrix (29) is Hurwitz since the characteristic polynomial

det(I2s−A1) =

∣∣∣∣∣
s+1.6 −1.8

−1.2 s+2.6

∣∣∣∣∣= s2 +4.2s+2 (30)

has positive coefficients. Therefore, the fractional positive sys-
tem is globally stable.

From comparison of Theorems 5 and 6, it follows that the
same condition (15) is the sufficient condition for the global
stability of the standard and fractional positive nonlinear sys-
tems. Therefore, we have the following important conclusion.

Conclusion 1. The global stability of the positive nonlinear sys-
tems is independent of its standard and fractional orders.

5. Conclusions

The global stability of positive continuous-time standard and
fractional orders nonlinear systems has been investigated. New
sufficient conditions for the global stability of the positive stan-
dard (Theorem 5) and fractional order (Theorem 6) nonlinear
systems have been established. The effectiveness of the new
stability conditions has been demonstrated on simples exam-
ples. The considerations can be extended to discrete-time pos-
itive nonlinear systems and to positive nonlinear systems with
different orders.
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