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Abstract. Schemes are presented for calculating tuples of solutions of matrix polynomial equations using continued fractions. Despite the fact 
that the simplest matrix equations were solved in the second half of the 19th century, and the problem of multiplier decomposition was then 
deeply analysed, many tasks in this area have not yet been solved. Therefore, the construction of computer schemes for calculating the sequences 
of solutions is proposed in this work. The second-order matrix equations can be solved by a matrix chain function or iterative method. The 
results of the numerical experiment using the MatLab package for a given number of iterations are presented. A similar calculation is done 
for a symmetric square matrix equation of the 2nd order. Also, for the discrete (time) Riccati equation, as its analytical solution cannot be 
performed yet, we propose constructing its own special scheme of development of the solution in the matrix continued fraction. Next, matrix 
equations of the n-th order, matrix polynomial equations of the order of non-canonical form, and finally, the conditions for the termination of 
the iterative process in solving matrix equations by branched continued fractions and the criteria of convergence of matrix branching chain 
fractions to solutions are discussed.
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tational schemes are described in [3] and [5], however, many 
tasks in this area have not yet been solved [6, 7]. Attention will 
be focused on one of them in this work – the construction of 
computer schemes for calculating the tuples of solutions.

2.	 Second-order polynomial matrix equations

Consider the equation

	 AX 2 + BX + C = 0 � (2)

where A, B, C and X 2 Rm×m.
After regrouping the members, we obtain

	 X = –(B + AX)–1C .� (3)

On the basis of (3), it is possible to carry out the following 
iterative procedure

	 Xi = –(B + AXi ¡ 1)
–1C .� (4)

On the other hand, composition (3) gives the following 
development of solution (2) in the matrix chain fraction

X = –
³
B ¡ A(B ¡ A(B ¡ A(B ¡ …)–1C)

–1C)
–1

C
–́1

C.� (5)

There is another scheme for constructing an iterative method 
of the computation X-1. Assuming that there are invertible 
matrices A-1, X-1 for (2), we can write a recursive formula

	 X = – A–1 ¢ B ¡ A–1 ¢ C ¢ X –1.� (6)

1.	 Introduction

The issues raised in the article have appeared in generalised 
Leontiev-Ford simulations for the macroeconomic balance 
[1, 2] in solving Fredholm integral equations with non-linear 
nuclei. Contemporary scientific literature lacks publications 
related to the problem. In the case of determining the inter-
val for the elements of algebraic equations of real numbers, 
this can be done with the Sturm sequence, but this method 
cannot be generalised for the case of matrix equations. This 
leads to the conclusion that this problem has not been solved 
yet. A similar case of simple 1£1 matrices for which there 
is a solution does not apply to Leontiev-Ford simulations, 
i.e. solving integral equations. The aim of the publication is 
to propose a scheme of approach to receiving sequences of 
solutions.

So the matrix polynomial equations of general form are 
presented as

	 AnX n + An ¡ 1X n ¡ 1 + … + A1X + A0 = 0,� (1)

where Ai 2 Rm×m (0, n) – square nonzero matrices of order m 
with real elements, and X – an unknown square matrix of 
order m.

The simplest matrix equations were solved in the second 
half of the 19th century [3]. The problem of decomposition 
on a multiplier is deeply analysed in [4]. Most known compu-
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Equality (6) can be used to construct an iterative process

Xi = – A–1 ¢ B ¡ A–1 ¢ C ¢ X –1
i ¡ 1 .

And composition (6) gives another development of X in 
a continued matrix fraction

X = – (A–1B ¡ A–1C(– A–1B ¡ A–1C(– A–1B ¡ …)–1)–1)–1,� (7)

which may converge to another solution; it follows that matrix 
multiplication is not, in general, commutative.

Formulas of development (5) and (7) for X in equation (2) 
are separated and coincide with different solutions.

Consider as an example, the matrix equation

AX 2 + BX + C = 0

where

A = 

	 7	 –3	 –5

	 0.22	 5.1	 2.5

	 0.22	 –0.234	 –3.2

;

B = 

	 1	 6	 –5

	 0.5	 1.22	 –2.51

	 0.234	 –0.13	 2.2

;

C = 

	 –49.0707	 56.0938	 88.7682

	 7.6545	 –57.6309	 –115.6766

	 –1.2741	 13.4398	 35.2964

;

For matrix A, B, C one of the elements is known, but the 
given formula allows to determine two others.

By using the MatLab package, this equation was validated 
using the “left” recurrence formula Xi = –(B + AXi ¡ 1)

–1C and 
“right” — Xi = – A–1 ¢ B ¡ A–1 ¢ C ¢ X –1

i ¡ 1, respectively. The text 
of the M-file for the MatLab package is shown below:

function [] =AXsquaredPLusBXplusC_PlnmEquation 
( Iter_Count )

% Calculations solution sequences of the
% matrix polynomial equations
%    A*X^2+B*X+C=0
% by matrix continued fractions
clear all;

disp(  );
disp( -------------------------------------------------------- ) ;

A=[7 –3 –5;0.22 5.1 2.5;0.22 –0.234 –3.2 ];
B=[1 6 –5; 0.5 1.22 –2.51; 0.234 –0.13 2.2];
C=�[–49.0707 56.0938 88.7682;7.6545 –57.6309 

–115.6766;–1.2741 13.4398 35.2964];
k=1;
while(k<9)
% First approximations of solutions

X=[1 0 0;0 1 0; 0 0 1] ;
Y=[ 2.5 –1 0.2; –0.236 –1.33 –7.232; 0.256 –1.1 –1.267];
Z=Y;
i = 1;

while (norm(X–Z)/norm(X)>10^(–k) );
i = i+1;
Z=X;
X = -A^(–1)*B-A^(–1)*C*X^(–1);

end;
disp(  ) ;
fprintf( %s %e ,     epsilon=  ,10^(–k));
disp(  );
fprintf( %s %i  ,     Count iteration of 1st scheme , i);
fprintf(  %s %e , Error for X1 , norm(A*X^2+B*X+C));

Z=Y;
% Second approximations of solutions
Y=[1 0 0;0 1 0; 0 0 1];
i=1;
while (norm(Y–Z)/norm(Y)>10^(–k) );

i = i+1;
Z=Y;
Y= –(A*Y+B)^(–1)*C;

end;
X1=X;
X2=Y;

disp(  );
fprintf( %s %i , Count iteration of 2nd scheme , i)
fprintf(  %s %e , Error for X2 , norm(A*Y^2+B*Y+C));

k=k+1;
end
X1=X
X2=Y

end

where X and Y are arbitrary, which does not affect the result.

As a result of calculations at the initial approximation

X0 = 

	1	 0	 0

	0	 1	 0

	0	 0	 1

,

the solution of the “left” formula is calculated

Xl = 

	 1.7429	 –2.0338	 3.2240

	–11.2515	 –16.3708	 36.7645

	 –4.4950	 –7.5871	 17.7088

.

At the same time, another solution is calculated for the 
“right” scheme

Xr = 

	 –7.7367	 31.4896	 65.9651

	 –4.1912	 24.4310	 53.9026

	 1.2948	 –8.5957	 –19.2974

.

The results of the numerical experiment are given in the 
following Table 1
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Table 1

kXk ¡ Xk ¡ 1k/kXkk Left scheme Right scheme

1.000000e-001 1 37 iterations 1 42 iterations 

1.000000e-002 1 59 iterations 1 65 iterations 

1.000000e-003 1 81 iterations 1 87 iterations 

1.000000e-004 103 iterations 110 iterations 

1.000000e-005 126 iterations 132 iterations 

1.000000e-006 148 iterations 154 iterations

1.000000e-007 170 iterations 177 iterations 

1.000000e-008 193 iterations 199 iterations 

3.	 Symmetric polynomial square matrix 
equation of the 2nd order

Let it be:

	 AX + BX + XFX + C = 0� (8)

where A, B, C, D and X are matrices of size у m×m.
After regrouping the members, we obtain

	 X = – F –1B + (A + XF)–1 ¢ (AF –1B ¡ C).� (9)

From (9), we obtain an iterative formula of calculation X

Xi = –F –1B + (A + Xi ¡ 1F )–1 ¢ (AF –1B ¡ C).

On the basis of (9), it is also possible to give a solution in 
the form of a matrix continued fraction

	
X = – F –1B + (A + (– F –1B + …) ¢ F)–1 £
X £ (AF –1B ¡ C)) ¢ F)–1 ¢ (AF –1B ¡ C) .

� (10)

On the other hand, we have for equation (8)

	 X = – AF –1 + (AF –1B ¡ C) ¢ (FX + B)–1.� (11)

From (11), we can also write a recursive formula for the 
computation of Х

Xi = –AF –1 + (AF –1B ¡ C) ¢ (F Xi ¡ 1 + B)–1.

On the basis of (11), another solution of the equation in the 
form of a matrix continued fraction can also be applied

X = –AF –1 + (AF –1B ¡ C) ¢ (F ¢ (–AF –1 +
X + (AF –1B ¡ C) ¢ (F ¢ (–AF –1 + …) + B)–1) + B)–1.

Let us consider as an illustration, a concrete matrix 

XFX + AX + XB + C  = 0,

where

A = 

	 12	 –3	 –5

	 0.22	 0.251	 0.25

	 0.22	 –0.234	 –0.13

;

B = 

	 1	 6	 –5

	 0.25	 0.22	 0.251

	 0.234	 –0.13	 0.22

;

C = 

	 –17.8735	 4.3189	 7.3513

	 10.1108	 –11.6472	 –2.6332

	 3.4000	 –3.5873	 2.1216

.

Also, for matrix A, B, C one of the elements is known, but 
the given formula allows to determine two others.

Using the MatLab package, this matrix equation was vali-
dated using the “left” recursive formula

Xi = –F –1B + (A + Xi ¡ 1F )–1(AF –1 ¡ B ¡ C)

and the “right” formula

Xi = –AF –1 + (AF –1B ¡ C)(F Xi ¡ 1 + B)–1,

respectively.
As a result of calculations at the initial approximation

X0 = 

	1	 0	 0

	0	 1	 0

	0	 0	 1

,

the solution is calculated of the left recursive formula

Xl = 

	 –2.9984	 6.5088	 –0.0999

	 –4.7394	 7.0966	 1.5527

	–11.1806	 18.7830	 0.2514

.

At the same time, another solution is calculated for the right

Xr = 

	 –7.3635	 –3.7180	 16.8727

	 3.4571	 –1.1975	 –8.1790

	 1.7465	 –0.6429	 –3.0706

.

The results of the experiments are given in Table 2

Table 2

kXk ¡ Xk ¡ 1k/kXkk Left scheme Right scheme

1.000000e-001 17 iterations 16 iterations 

1.000000e-002 22 iterations 22 iterations 

1.000000e-003 25 iterations 27 iterations 

1.000000e-004 31 iterations 30 iterations 

1.000000e-005 35 iterations iterations 35 

1.000000e-006 42 iterations iterations 41 

1.000000e-007 45 iterations 44 iterations 

1.000000e-008 51 iterations 50 iterations 
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4.	 Discrete Riccati equation

Consider the case of the Riccati equation, a type of nonlinear 
equation that arises in the context of problems in either contin-
uous or discrete time. For continuous time, we have a state-de-
pendent Riccati equation (SDRE) [8]. In general, the analytical 
solution of the SDRE cannot be performed yet. One of the ways 
of solving the SDRE are software packages, such as Matlab [9].
The text of proper M-file for the MatLab package is shown 
below:

function [] = RiccatiEquation
%   A*Y*A-Y-A*Y*B*(R-B *Y-B)^(-1)*B *Y*A -Q=0
% by matrix continued fractions
clear all;
disp(  );
disp( ______________________________________ );
A=[7 -3 -5;0.22 5.1 2.5;0.22 -0.234 -3.2 ];
B=[1 6 -5; 0.5 1.22 -2.51; 0.234 -0.13 2.2];
R=[3 -6 5; 5 22 -2.51; 2.34 -13 1.22];
Y=[ 15 -1 0.2; -0.236 -1.33 -1.232; 0.256 -1.1 -0.267];
Q=-A*Y*A+Y+A*Y*B*(R+B *Y+B)^(-1)*B *Y*A k=1;

while(k<9);
% First apromations of solutions
X=[1 0 0;0 1 0; 0 0 1] ;

Z=Y;
i = 1;
while (norm(X-Z)/norm(X)>10^(-k) );

i = i+1;
Z=X;
X =Q+A *(A^(-1)*B*R^(-1)*B +A^(-1)*X^(-1))^(-1);

end;
X1=X;
disp(  );

fprintf( %s %i  , Count itaration of 1th sheme  ,i )
fprintf(  %s %e , Error for X1 , norm( A*X*A-X-A
*X*B*(R+B *X*B)^(-1)*B *X*A+Q));
X=[1 0 0;0 1 0; 0 0 1] ;
Z=Y;
i=1;
while (norm(X-Z)/norm(X)>10^(-k) );

i = i+1;
Z=X;
X=Q+(B *(A )^(-1)+R*B^(-1)*X^(-1)*(A )^(-1))^(-1) 
*R*B^(-1)*A ;

end;
disp(  );

fprintf( %s %i  , Count itaration of 2th sheme  ,i )
fprintf(  %s %e , Error for X2 , norm( A *X*A-X-A
*X*B*(R+B *X*B)^(-1)*B *X*A+Q) );
k=k+1;
end

X1=X
X2=Z
end

As a result of calculations at the initial approximation

X0 = 

	1	 0	 0

	0	 1	 0

	0	 0	 1

,

the solution of the “left” formula is calculated

Xl = 

	 2.1313	 –0.8828	 –1.4406

	 –0.9733	 0.4443	 0.6673

	 –1.5319	 0.6337	 1.0369

.

At the same time, another solution is calculated for the 
“right” scheme

Xr = 

	 2.1313	 –0.8828	 –1.4406

	 –0.9733	 0.4443	 0.6673

	 –1.5319	 0.6337	 1.0369

.

For the second case, i.e. a discrete (time) Riccati equation, 
let us now consider what is known in the applications of the 
equation:

	
ATXA ¡ X ¡ ATXB(R + 
+ BTXB)

–1BTXA + Q = 0,
� (12)

where A, B, C, R, Q and X are matrices of size m×m.
As a result of transformations, equation (12) can be written as

	 X = Q + AT(A–1BR –1BT + A–1X –1)–1.� (13)

This expression can also be carried out for iterations to cal-
culate X:

	 Xi = Q + AT(A–1BR –1BT + A–1X –1
i ¡ 1)

–1.� (14)

On the basis of (14), we obtain a solution in the form of 
a two-period matrix continued fraction

	

X = Q + AT(A–1BR –1BT + A–1(Q + 

X + AT(A–1BR –1BT + A–1(Q + 

X + AT(A–1BR –1BT + …)–1)–1)–1)–1)
–1.

� (15)

On the other hand, equation (12) can be obtained from:

	 X = Q + 
£

BT(AT)–1 + B–1X –1(AT)–1¤–1
RB–1A.� (16)

On the basis of (16), we have an iterative formula for cal-
culating the solution

Xi = Q + 
£

BT(AT)–1 + RB–1X –1
i ¡ 1(A

T)–1
¤–1

RB–1A.
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From (16), the development of a solution in a two-period 
matrix continued fraction is obtained

	

X = Q + (BT(AT)–1 + RB–1(Q + 

X + (BT(AT)–1 + RB–1(Q + …)–1 £ 

X £ (AT)–1)–1RB–1A)–1(AT)–1)–1RB–1A.

� (17)

Consequently, for each of the considered equations, (2), (8), 
and (12), its own special scheme of development of the solution 
in the matrix continued fraction can be constructed, converging 
to another solution.

5.	 Polynomial matrix equations of the n-th order

It turns out that, in this case, you can build a general scheme. 
Let us have

	 X n + An ¡ 1X n ¡ 1 + An ¡ 2 X n ¡ 2 +
+ … + A1X + A0 = 0 ,

� (18)

where Ai 2 Rm×m (i = 0, n ¡ 1), X 2 Rm×m is the matrix, and 
n ¸ 2 is an integer number.

Then the solution of equation (18) can be in the form 
of a one-branched branched matrix continued fraction with 
branches of n ¡ 1 branching.

	

X = P0 + 
k = 1

n ¡ 1

∑ Pk

Ã
P0 + 

k = 1

n ¡ 1

∑ Pk

Ã
P0 + 

X + 
k = 1

n ¡ 1

∑ Pk

³
… ¡ Qk

´–1 X ¡ Qk

!–1
 ¡ Qk

!–1 � (19)

which is obtained by the composition of fractional linear 
expressions of the species

	 X = P0 + 
k = 1

n ¡ 1

∑Pk(X ¡ Qk)
–1 � (20)

where Pk 2 Rm×m and Qk 2 Rm×m(k = 0, n ¡ 1) are square ma-
trices whose elements pi,  j, k(i, j = 1, m) and qi,  j, k(i, j = 1, m;  
k = 1, n ¡ 1) are determined from the system of equations ob-
tained by the method of indefinite coefficients

(–1)n ¡ 1Q1Q2 … Qn ¡ 1 + P0 = A1;

(–1)n ¡ 2
n ¡ 1

k = 1
∑

k ¡ 1

l = 1
∏Ql

n ¡ 1

l = k + 1
∏ Ql ¡ 

n ¡ 1

k = 1
∑ Pk +

+ (–1)n ¡ 1P0Q1Q2 … Qn ¡ 1 = A2;

(–1)n ¡ 2
n ¡ 1

k = 2
∑

n ¡ 2

l = k + 1
∑ (1 ¡ δ kl)

k ¡ 1

r = 1
∏Qk

l ¡ 1

r = k + 1
∏ Qr

n ¡ 2

r = l + 1
∏ Qr +

+ 
n ¡ 1

k = 1
∑ Pk

k ¡ 1

r = 1
∏Qr

n ¡ 1

r = k + 1
∏ Qr + (–1)n ¡ 1

n ¡ 1

k = 1
∑

k ¡ 1

r = 1
∏P0Qr = A3;

n ¡ 1

k = 1
∑ Qk + 

n ¡ 1

k = 2
∑

n ¡ 1

l = k + 1
∑ P1QkQl + … + 

+ 
n ¡ 1

k = 1
∑

n ¡ 1

l = k + 1
∑ (1 ¡ δ kr)Pr QkQl + … +

+ (–1)n ¡ 1
n ¡ 1

k = 1
∑

k ¡ 1

r = 1
∏Pn ¡ 1QkQl = An ¡ 1;

n ¡ 1

k = 1
∑ P1Qk + … + 

n ¡ 1

k = 1
∑ (1 ¡ δ kr)Pr Qr  + … +

+ 
n ¡ 2

k = 1
∑ Pn ¡ 1 Qk + 

n ¡ 1

k = 1
∑ P0Qk = A0 .

If you put Qk = qk ¢ E (k = 1, n ¡ 1) and provide for all scalar 
qk the pairs of different, distinct numerical values, then the 
last system of matrix equations will become linear, relatively 
unknown Pi for all (i = 0, n ¡ 1) and will have a single solu-
tion. To calculate the numerical value of a solution for X using 
a computer, the recursive formula (20) is rewritten in the form

	 Xi = P0 + 
k = 1

n ¡ 1

∑ Pk(X i ¡ 1 ¡ Qk)
–1.� (21)

6.	 Matrix polynomial equation of the n-th order 
of non-canonical form

Let us now introduce into consideration

	 X n + X n ¡ 1An ¡ 1 + X n ¡ 2An ¡ 2 +
+ … + XA1 + A0 = 0.

� (22)

where Ai 2 R m×m (i = 0, n ¡ 1) X 2 R m×m is the matrix, and 
n ¸ 2 is an integer number.

For equation (22), the solution can also be written in the 
form of a one-branched matrix continued fraction with n ¡ 1 
branches:

X = P0 + 
n ¡ 1

k = 1
∑ (P0 ¡ Qk + … +

X + 
n ¡ 1

ks = 1
∑ (P0 ¡ Qks

 + … Pks)
–1Pk1)

–1Pk ,

which is obtained by the composition of fractional linear 
expressions of the species

	 X = P0 + 
k = 1

n ¡ 1

∑ (X ¡ Qk)
–1Pk ,� (23)

where Pk 2 Rm×m and Qk 2 Rm×m(k = 0, n ¡ 1) are square ma-
trices whose elements pi,  j, k(i, j = 1, m) and qi,  j, k(i, j = 1, m; 
k = 1, n ¡ 1) are determined from the system of equations ob-
tained by the method of indefinite coefficients
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(–1)n ¡ 1Q1Q2 … Qn ¡ 1 + P0 = A1;

(–1)n ¡ 2
n ¡ 1

k = 1
∑

k ¡ 1

l = 1
∏Ql

n ¡ 1

l = k + 1
∏ Ql ¡ 

n ¡ 1

k = 1
∑ Pk +

+ (–1)n ¡ 1Q1Q2 … Qn ¡ 1P0 = A2;

(–1)n ¡ 2
n ¡ 1

k = 2
∑

n ¡ 2

l = k + 1
∑ (1 ¡ δ kl)

k ¡ 1

r = 1
∏Qk

l ¡ 1

r = k + 1
∏ Qr

n ¡ 2

r = l + 1
∏ Qr +

+ 
n ¡ 1

k = 1
∑

k ¡ 1

r = 1
∏ Qr

n ¡ 1

r = k + 1
∏ Qr Pk + (–1)n ¡ 1

n ¡ 1

k = 1
∑

k ¡ 1

r = 1
∏ Qr P0 = A3;

n ¡ 1

k = 1
∑ Qk + 

n ¡ 1

k = 2
∑

n ¡ 1

l = k + 1
∑ QkQl P + … + 

+ 
n ¡ 1

k = 1
∑

n ¡ 1

l = k + 1
∑ (1 ¡ δ kr)QkQl Pr  + … +

+ (–1)n ¡ 1
n ¡ 1

k = 1
∑

k ¡ 1

r = 1
∏QkQl Pn ¡ 1 = An ¡ 1;

n ¡ 1

k = 1
∑ Qk P1 + … + 

n ¡ 1

k = 1
∑ (1 ¡ δ kr)Qr Pr + … +

+ 
n ¡ 2

k = 1
∑ Qk Pn ¡ 1 + 

n ¡ 1

k = 1
∑ Qk P0 = A0 .

If you put Qk = qk ¢ E (k = 1, n ¡ 1) and provide for all sca-
lar qk the pairs of different distinct numerical values, then the 
last system of n matrix equations will become linear, relatively 
unknown Pi to all (i = 0, n ¡ 1) and will have a single solution. 
To calculate the solution X on a computer, recurrence formula 
(23) should be rewritten in the form:

	 Xi = P0 + 
k = 1

n ¡ 1

∑ (X i ¡ 1 ¡ Qk)
–1Pk .� (24)

In order to informally solve and study all of the considered 
levels, it is necessary to also conduct a study of convergence of 
the solution and stability of the corresponding branched matrix 
continued fractions.

We now test the resulting schemes for the matrix equation 
of the third order

X3 + A2X2 + A1X + A0 = 0

where

A2 = 

	 2	 –3	 –5

	 0.22	 0.251	 0.25

	 0.22	 –0.234	 –0.13

;

A1 = 

	 1	 6	 –5

	 0.25	 0.22	 0.251

	 0.234	 –0.13	 0.22

;

A0 = 

	 136.0000	 139.0000	 134.0000

	–274.0240	 –269.0270	 –282.0490

	–350.2980	 –358.7900	 –336.5740

.

Using the MatLab package, this matrix equation was vali-
dated using a recursive formula

Xk = q0 + p1 ¢ (q1 ¢ E + Xk  ¡ 1)
–1 + p2 ¢ (q2 ¢ E + Xk  ¡ 1)

–1.

The parameter q1, q2 value are selected as any different 
q1 = .92, q2 = 1.92, and the parameter q0 is calculated by the 
formula q0 = q1 ¢ E + q2 ¢ E ¡ A2; p1 and p2 are calculated from 
the system of equations

A ¢ P = B

where

A = 
	 E	 E

	q2 ¢ E	 q1 ¢ E
;

B = 
– A1 + q1 ¢ q2 ¢ E ¡ q0 ¢ q1 ¢ E ¡ q0 ¢ q2 ¢ E

– A0 ¡ q0 ¢ q1 ¢ q2 ¢ E
;

P = 
p1

p2
 =  A–1 ¢ B.

As a result of the calculations, the initial approximation 
X0 = E for the values of parameters q1 = 0.96 and q2 = 1.92 
for the iteration of 41 provides the calculated approximations 
of the solution.

Xk = 

	 12.3600	 147.9411	 –107.2121

	–28.9221	 –290.3746	 224.4685

	–36.2185	 –363.6585	 282.0369

.

The results of the experiment are presented in the Table 3

Table 3

kXk ¡ Xk ¡ 1k/kXkk Number of iterations k

1.000000e-001 10

1.000000e-002 17

1.000000e-003 19

1.000000e-004 30

1.000000e-005 32

1.000000e-006 41

1.000000e-007 48

1.000000e-008 52

1.000000e-009 54

1.000000e-010 63

1.000000e-011 71
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The same initial approximation X0 for parameter values 
q1 = 10.96 and q2 = 1.92 for 210 iterations allows for calcu-
lating an approximate solution

Xk = 

	1.2733	 0.3902	 2.3444

	6.1634	 4.4915	 1.1393

	1.3978	 4.2253	 5.4958

.

With the same initial approximation X0 for the values of 
parameters q1 = 9.59076 and q2 = 6.0192 for 982 iterations, 
an approximate solution is calculated.

Xk = 

	 21.3944	 67.9436	 52.9237

	–9.0895	 –37.6830	 36.5578

	–3.3096	 –21.2760	 25.3785

.

The results of the experiment are presented in the Table 4

Table 4

kXk ¡ Xk ¡ 1k/kXkk Count of iterations k

1.000000e-001 191

1.000000e-002 118

1.000000e-003 137

1.000000e-004 164

1.000000e-005 183

1.000000e-006 210

1.000000e-007 229

1.000000e-008 256

1.000000e-009 275

1.000000e-010 302

1.000000e-011 321

7.	 Conditions for the termination  
of the iterative process in solving matrix 
equations by branched continued fractions

Now consider the signs of the convergence of the iterative pro-
cess to the solution and substantiation of the criteria for com-
pleting the calculation of solutions of matrix equations with the 
use of the apparatus of branched matrix continued fractions.

If we combine expressions (16), (20) and (23), it is easy to 
note that all matrix continued fractions formed by them are a 
partial case of the next law of the composition

	 Xi = P0 + 
k = 1

n ¡ 1

∑Pk(X i ¡ 1 ¡ Qk)
–1Pk .� (25)

In fact, the same signs of convergence for matrix branching 
continued fractions have already been submitted [10], but it is 
equally important to obtain reliable criteria for the termination 
of iterations, and the convergence of the process precisely to the 
solution of a particular equation.

8.	 Criteria of convergence of matrix branching 
chain fractions to solutions

It is assumed that the solution of (18) equation on a certain 
interval is sought after the iterative procedure of the form

	 X i + 1 = P0 + 
k = 1

n ¡ 1

∑Pk(–Qk + Xi)
–1Rk .� (26)

Matrix elements P0, Pk, Qk, Rk (k = 1, n ¡ 1) are deter-
mined from the system of equations composed of the coef-
ficients of this equation. Then the solution X =  lim

i!1
Xi can  

be represented as an infinite one-period matrix continued 
fraction

	
X = P0 + 

k = 1

n ¡ 1

∑Pk

Ã
P0 ¡ Qk + 

k = 1

n ¡ 1

∑Pk

³
P0 ¡

X ¡ Qk + … Rk

´–1
Rk

!–1
Rk .

� (27)

Of course, this fraction will be convergent, and even more 
so, converging to a solution only under certain conditions. 
To study the convergence problem for the solution of such 
developments, let us consider a non canonical matrix branch-
ing continued fraction

	 D = b0 + 
s = 1

1

D
k(s) = 1

n

∑ ak(s)
b –1

k(s)
ck(s)

� (28)

and we formulate the criteria for deciding the end of iterations 
and the convergence of the process precisely to the solution of 
the specific equations.

The following theorems refer to equation (18).

Theorem 1. If there is only one solution of a polynomial matrix 
equation in the interval 

£
–n, n

¤
, then its development (27) in the 

iterative procedure (26) in the matrix branch continued fraction 
with elements satisfying the conditions (4)

kb –1
k(s)k ∙  1

kak(s)kkck(s)k + n
(1 ∙ ks ∙ n; s = 1, 2, 3, …)� (29)

coincides with this solution.
where n means order of matrix.

Proof. The fact of the convergence of the fraction (28) and 
the region of convergence D 2 

£
–n, n

¤
 in the conditions of the 

theorem is discussed in detail in [4]. To bring the iteration pro-
cedure closer to the solution of the equation, a BCD with real 
elements is introduced:

D ̂  = b ̂ 0 + 
1

s = 1
D

n

ks = 1
∑

a ̂ k(s)

b ̂ k(s)
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where

a ̂ k(s)
 = –kak(s)k, b ̂ k(s)

 = kak(s)k + n

to all  s = 1, 2, … p; ks = 1, 2, … n. Next, the inequalities for 
the suitable fractions are proved 

D ̂ 0 > D ̂ 1 > D ̂ 2 > D ̂ 3 > ¢¢¢ > D ̂ k > ¢¢¢

or

kDm  + 1 ¡ Dmk < α jD ̂ 1 ¡ D ̂ 0j
where 0 < α < 1.
That is, the principle of compression mappings is fulfilled, 
which proves the theorem. □

Strict proofing is too long and will be provided in a separate 
publication.

Theorem 2. If there is only one solution of the polynomial 
matrix equation in the interval

–
n

k1 = 1
∑ kak1kkck1k ,  

n

k1 = 1
∑ kak1kkck1k ,

then its development (27) in the iterative procedure (26) in the 
matrix branch continued fraction with elements satisfying the 
conditions (4)

	 kb –1
k(s)k ∙  1

1 + 
n

ks + 1 = 1
∑ kak(s + 1)kkck(s + 1)k

(s = 1, 2, 3, …).� (30)

coincides with this solution.

Proof. The fact of the convergence of the fraction (28) and the 
region of convergence

D 2   –
n

k1 = 1
∑ kak1kkck1k ,  

n

k1 = 1
∑ kak1kkck1k

in the conditions of the theorem is discussed in detail in [4]. 
And to bring the convergence of the iterative procedure exactly 
to the solution of the equation, we introduce the BCF with real 
elements:

D ̂  = b ̂ 0 + 
1

s = 1
D

n

ks = 1
∑

a ̂ k(s)

b ̂ k(s)

where

a ̂ k(s)
 = –kak(s)k, b ̂ k(s)

 = 
n ¡ 1

ks + 1 = 1
∑ kak(s)k + 1

to all s = 1, 2, … p; ks = 1, 2, … n. And then again the fact of 
the monotonicity of the approach fractions of the introduced 
branching numerical fraction and the fulfillment of the crite-

ria of the compression mapping method are proved, as in the 
previous theorem. □

The indicated signs of convergence indicate the ability to 
calculate Xm with the given accuracy ε based on inequality 
checking

kXm ¡ Xm  ¡ 1k ∙ ε

if one of the following sufficient signs of convergence to the 
solution is fulfilled. In this case

kXm ¡ X k < kXm ¡ Xm  ¡ 1k,

and therefore kXk ½ (kXk, –kXm  ¡ 1k) .
It should be noted that in practice, iterative computation 

processes are often convergent under significantly less strin-
gent conditions. And the results of the numerical experiments 
convincingly confirm this fact.

So, in particular, for the last example, kQ0
–1k = 0.09671109; 

at the same time 1/(1+||P1||+||P2||) = 0.003842229. That is, the 
condition of convergence

kQ0
–1k <  1

1 + kP1k + kP2k
is not even close. But for the whole given sequence, the itera-
tion process of the solution calculation is fast enough.

9.	 Conclusions

Thus, the approaches to calculating the tuples of solutions of 
matrix polynomial equations are given, and sufficient criteria 
for the completion of iterative processes and their convergence 
to the solution are formulated.

This approach can be applied in the aforementioned gener-
alised Leontiev-Ford simulations.
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