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1. Introduction

Positive systems are dynamical systems whose state variables
are positive (or nonnegative) in values at all times. Systems with
nonnegative states are important because in practice, the non-
negativity property can be found frequently in numerous fields
such as biology, chemistry, physics, ecology, economy or so-
ciology (specific examples can be found in e.g. [1–5] and ref-
erences therein). Since positive systems are defined on cones,
not on linear spaces, many well-established results of standard
linear systems cannot be applied directly to positive systems.
Therefore, positive systems have gained increasing interest over
the past two decades due to their extensive applications in prac-
tice and theoretical complexes in control theory [1–11]. Some
developments and applications in positive systems theory are
given in [8].

Stability and stabilization are basic issues of standard lin-
ear dynamical systems as well as of positive linear systems.
Both issues have attracted considerable attention during the
last decades. There have been some significant results on the
asymptotical stability and stabilization of positive systems. Var-
ious approaches have been proposed such as algebra methods
[12, 13], methods based on LMI techniques [9], method based
on l1-induced norm [14] etc. Among the available methods, sys-
tems of linear inequalities method is an attractive method [15,
16]. In [15], the stability and stabilization conditions of the pos-
itive systems are formulated as a linear inequalities systems and
the feedback control law can be obtained by solving linear in-
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equalities systems with any standard numerical software. But
there are limited discussions available on two problems: (1) On
what conditions can one guarantee the existence of the related
systems of linear inequalities? (2) The related linear inequalities
systems are not standard linear programming, so how to obtain
the feedback control law by solving the linear inequalities sys-
tems? These two problems are fundamental and there are few
papers discussing these two problems. We further investigate
these two problems in this paper.

The goal of this paper is to propose new equivalent con-
ditions for the stability and stabilization of discrete-time and
continuous-time systems and methods for checking the stabil-
ity as well as obtaining the feedback control law while main-
taining their positivity and stability. To this end, we present
new conditions on the consistence and inconsistence of the lin-
ear inequalities systems based on Farkas theorem and I-rank of
the coefficient matrices. Then we extend the results to the posi-
tive linear systems. About the solution of the linear inequalities
system, we propose a standard linear programming model. The
consistency of the linear inequalities systems and and the solv-
ability of the LP are discussed. Numerical checking method is
an attractive method which was once used to check the posi-
tivity and stability of the dynamical systems because it is easy
to implement. We once discussed this method for the positivity
and stability checking of singular systems in [17–19]. Numer-
ical examples are given in the end to show the effectiveness of
our method. The advantage of the proposed method lies in the
fact that they are not only sufficient and necessary, but also can
be verified easily with any standard numerical software.

The paper is organized as follows. Section 2 analyzes the sta-
bility of the positive systems by means of linear inequalities
systems. Equivalent conditions of consistence of the linear in-
equalities systems as well as the asymptotical stability of the
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linear dynamical systems are presented. We also give a numer-
ical solving method for the the linear inequalities systems in
Section 2. Section 3 presents the conditions of the stabilization
of the positive linear systems and the numerical methods for
finding the feedback control law. Examples are given in Sec-
tion 4 to verify our conclusions. We end this paper in Section 5
by concluding remarks.

Notations: Rn
+ denotes the nonnegative orthant of Rn. AT de-

notes the transpose of the real matrix A, aT
i , i = 1,2, . . . ,n de-

notes the ith row of matrix A, Ji, i= 1,2,3 means the i-th matrix.
For a real matrix M with elements mi j,1≤ i, j ≤ n, M > 0 means
that its elements are positive (i.e., mi j > 0, 1 ≤ i, j ≤ n) and
M ≥ 0 means that the elements are nonnegative (i.e., mi j ≥ 0,
1 ≤ i, j ≤ n), M is a Metzler matrix if mi j ≥ 0, i �= j, which
means all the off-diagonal elements are nonnegative if M is a
Metzler matrix, I is the identity matrix with proper dimension.

2. Stability analysis

2.1. Stability analysis. Consider the following autonomous
discrete-time and continuous-time linear systems:

x(k+1) = Adx(k), x(0) = x0 ∈ Rn
+ , (1)

ẋ(t) = Acx(t), x(0) = x0 ∈ Rn
+ , (2)

where Ac, Ad ∈ Rn×n, x ∈ Rn, k ∈ Z+, Z+ = [0, 1, 2, . . .],
t ∈ [0,+∞). System (1) is a positive system if for any initial
conditions x0 ∈ Rn

+, x(k)≥ 0 for all k ∈ Z+. System (2) is a pos-
itive system if for any initial conditions x0 ∈ Rn

+, x(t) ≥ 0 for
any t ≥ 0. A necessary and sufficient condition for the system
(1) and (2) to be positive is given by the following Theorem 1.

Theorem 1. [5, 20]
(1) System (1) is a positive system for any x0 ∈ Rn

+ if and only
if Ad ∈ Rn×n

+ .
(2) System (2) is a positive system for any x0 ∈ Rn

+ if and only
if Ac is a Metzler matrix.

Theorem 2. [15, 16] Assume that system (1)(or(2)) is positive,
or equivalently that the matrix Ad is positive (or matrix Ac is a
Metzler matrix), then the following statements are equivalent:
(i) System (1) is asymptotically stable for every initial condi-

tion x0 ∈ Rn
+ if and only if there exists a λ ∈ Rn such that

(Ad − I)λ < 0, λ > 0. (3)

(ii) System (2) is asymptotically stable for every initial condi-
tion x0 ∈ Rn

+ if and only if there exists a λ ∈ Rn such that

Acλ < 0, λ > 0. (4)

Rewrite (3) into the form of the following system of linear
inequalities: (

Ad − I
−I

)

(2n)×n
λ <

(
0
0

)
. (5)

For simplicity, denote S =

(
Ad − I
−I

)
and the set Ω1 =

{λ | Sλ < 0, λ > 0} for (3) and Ω2 = {λ | Acλ < 0, λ > 0}
for (4), both of them have the same form.

Lemma 1. [21] (Farkas Lemma) Let M ∈ Rm×n, b ∈ Rm. Then
exactly one of the following two statements is true:
(i) There exists an x ∈ Rn such that Mx = b and x ≥ 0.

(ii) There exists a y ∈ Rm such that MT y ≥ 0 and bT y < 0.

Theorem 3. Let M ∈ Rm×n, then exactly one of the following
two statements is true:

(i) Mx < 0. (6)

(ii) MT y = 0, y ≥ 0, and y �= 0. (7)

Proof. If there exist solutions for (6), i.e., there exists at least
a x ∈ Rn such that Mx < 0, then for all y ≥ 0, y �= 0, we have
yT Mx < 0, i.e., xT MT y < 0, which shows that (7) has no solu-
tions otherwise contradicts to the hypotheses. If there exists no
solutions for (6), then there exists no α < 0, x ∈ Rn such that
Mx ≤ (α, . . . ,α). Denote M = {M, − e}, b = (0, . . . ,0,−1),
where e = (1, . . . ,1)T ∈ Rm. Then there exists no α < 0,x ∈ Rn

such that

M
(

x
α

)
≤ 0, b

T
(

x
α

)
> 0.

From Farkas Lemma 1, there exists solution for MT y= b, y≥ 0,
i.e., there exists solution for MT y = 0, eT y = 1, y ≥ 0, which is
equivalent to that fact that (7) has solutions. �

Definition 1. If there exists at least a x ∈ Rn such that system
(6) holds, then system (6) is called consistent.

Theorem 4. System (6) is consistent if and only if system
MT y = 0,y ≥ 0 in (7) has only one solution y = 0.

Proof. From Lemma 1, (6) has solutions if and only if (7) has
no solutions, which means if MT y= 0, y≥ 0 in (7) has solution,
it holds only when y = 0. �

The above alternative Theorem 3 and Theorem 4 give two
sufficient and necessary conditions for the consistency of sys-
tem (6), it is also a sufficient and necessary conditions for the
asymptotical stability of systems (1) and (2). But the algebraic
conditions are not easy to verify. Next we present another suf-
ficient and necessary condition for checking the consistency of
system (6) by means of the so-called I-rank in [22] of the coeffi-
cient matrix M of the linear inequality system. In the sequel, we
firstly give a review of the corresponding definitions and results
about I-rank of a given matrix.

Definition 2. [22] A real matrix M ∈ Rm×n is I-positive (or
I-negative) with respect to the rth (1 ≤ r ≤ n) column if all
elements of the rth column of M are positive (or negative). In
both cases(I-positive or I-negative), the matrix M will be said
to be I-definite with respect to the rth column. A matrix will be
said to be I-positive (or I-negative, or I-definite) if it possesses
at least a column whose entries are all positive (or negative).
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Definition 3. [22] For the real matrix M ∈ Rn×n, define the I-
minors of M according to different cases.
(1) If the matrix M is not I-definite with respect to the given
rth column r = 1,2, . . . ,n, then the elements of that column are
divided into three classes:

(i) those which are positive: mir, i = i1, i2, . . . , iP;
(ii) those which are negative: m jr, j = j1, j2, . . . , jN ;

(iii) those which are zeroes: mkr,k = k1,k2, . . . ,kN ;
the number of elements in the respective classes are represented
by P,N, and Z.

Define the elements of the matrix M(r)
1 from matrix M as the

following, for any pair of elements mir, m jr in the rth column
of matrix M (mir is positive and m jr is negative), we have the
second order determinants:

∣∣∣∣∣
mir mi1

m jr m j1

∣∣∣∣∣ ,
∣∣∣∣∣

mir mi2

m jr m j2

∣∣∣∣∣ , . . . ,

∣∣∣∣∣
mir mir−1

m jr m jr−1

∣∣∣∣∣ ,

∣∣∣∣∣
mir mir+1

m jr m jr+1

∣∣∣∣∣ , . . . ,

∣∣∣∣∣
mir min

m jr m jn

∣∣∣∣∣ .

The above row corresponds to one row in matrix M(r)
1 , thus

we have PN + Z rows in the derived matrix M(r)
1 , the zero el-

ement mkr in matrix M corresponds to one row of the matrix
M(r)

1 , we have Z rows in the matrix. Then the size of the matrix
M(r)

1 will be (PN + Z)× (n− 1). The sequential order of the
rows will be determined by the convention that: (1) each (i j)
row precedes every (k) row; and (2) two (i j) rows that one pre-
cedes which has the smaller i or (in case of equal i’s) that one
which has the smaller j.
(2) If the matrix M is I-definite with respect to the given rth col-
umn, definite the derived matrix as the matrix of one row and
n−1 columns, all elements of which are +1 or −1 according to
M is I-positive or I-negative with respect to the rth column.

In both cases, whether the matrix M is not I-definite or I-
definite respect to the given rth (r = 1,2, . . . ,n) column, we
will have n derived matrices M(r)

1 (r = 1, . . . ,n) with size (PN+

Z)× (n−1). The n matrices M1
1), M(2)

1 , . . . , M(n)
1 will be called

the I-minors of n−1 columns of the matrix M.
In a similar way, for any derived matrix M(r)

1 , r = 1,2, . . . ,n,
we can compute all the I-minors, it will denoted by M(rs)

2 , s =
1,2, . . . ,n−1. Then we have n(n−1) matrices which are also
called I-minors of n−2 columns of matrix M. More generally,
define recursively M

(r1r2...rp+ j)
p+1 as the I-minors of M(r1r2...rp)

p . We
thus have relative to the matrix M a well-defined system of I-
minors M(r1r2...rp)

P (p = 1, 2, . . . , n−1). The matrix M itself may
be considered as the I-minors of n columns.

Definition 4. [22] The I-rank of a matrix M is said to be k if it
possesses at least one I-minor of k columns which is I-definite,
but does not possess any I-minors of k+1 columns which is I-
definite. If none of its I-minors are I-definite, it will be said to
be of I-rank zero.

Proposition 1. The I-rank of a matrix M is not altered if
(i) Any two rows or any two columns are interchanged.

(ii) All elements of any row or any column are multiplied by
the same positive constant.

Example. Given matrix M =




1 −1 2
−5 7 0
2 −6 −4


, we compute

I-minors of the matrix M as the following.

M(1)
1 =

(
2 10

−16 −20

)
, M(2)

1 =

(
2 14

−16 −28

)

M(3)
1 =

(
8 −16
0 0

)
, M(11)

2 =

(
2

−16

)
,

M(12)
2 =

(
10
−20

)
, M(21)

2 =

(
2

−16

)
, M(22)

2 =

(
14
−28

)
,

M(31)
2 =

(
8
0

)
, M(32)

2 =

(
−16

0

)
.

From the above I-minors and the definition of the I-rank, the
I-rank of the above matrix M is 0.

Theorem 5. [22] The sufficient and necessary condition of the
set Ω1 (or Ω2) is nonempty is that the I-rank of the matrix S
(or A) is k > 0.

Theorem 6. For positive system (1)(or (2)), it is asymptotically
stable if and only if the I-rank of the coefficient matrix S (or A)
in Ω1 (or Ω2) is greater than 0.

Proof. From Theorem 2 (i), (ii) and (5), we know that system
(1) (or (2)) is asymptotically stable if and only if the set Ω1
(or Ω2) is nonempty. Suppose the I-rank of the matrix S (or A)
is k, from Theorem 5, the sufficient and necessary condition of
the set Ω1 (or Ω2) is empty is that k > 0, then we complete the
proof. �

2.2. Numerical methods for checking asymptotical stability.
To transform the linear inequalities systems into linear equali-
ties systems, we need the following Lemma 2.

Lemma 2. Suppose ε = (ε1, . . . ,εn)
T ∈ Rn, the inequalities

aT
i λ ≤ εi, i = 1,2, . . . ,n hold if and only if there exists an

ω ∈ Rn, ω ≥ 0, such that aT
i λ +ωi = εi, i = 1,2, . . . ,m hold.

Proof. The result is trivial and obvious but important for our
conclusion in the following. If there exists an ω ∈ Rn, ω ≥ 0
such that aT

i λ +ωi = εi, i = 1,2, . . . ,n, aT
i λ ≤ εi, i = 1,2, . . . ,m

hold since ωi ≥ 0. If aT
i λ ≤ εi, i = 1,2, . . . ,n hold, there exists

ωi, i = 1,2, . . . ,n such that aT
i λ ≤ εi, i = 1,2, . . . ,n, take ω =

(ω1,ω2, . . . ,ωn)
T , thus we get the result. �

Denote J(1) = (A, In), x = (λ T ,ωT )T , then the asymptotic
stability of system (1) (or (2)) is equivalent to the existence of
the nonnegative solution for linear equations systems J(1)x=ω ,
for ε < 0.
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In a similar way, for any derived matrix M(r)
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we can compute all the I-minors, it will denoted by M(rs)

2 , s =
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called I-minors of n−2 columns of matrix M. More generally,
define recursively M
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thus have relative to the matrix M a well-defined system of I-
minors M(r1r2...rp)
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Definition 4. [22] The I-rank of a matrix M is said to be k if it
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(ii) All elements of any row or any column are multiplied by
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Example. Given matrix M =




1 −1 2
−5 7 0
2 −6 −4


, we compute

I-minors of the matrix M as the following.

M(1)
1 =

(
2 10

−16 −20

)
, M(2)

1 =

(
2 14

−16 −28

)

M(3)
1 =

(
8 −16
0 0

)
, M(11)

2 =

(
2

−16

)
,

M(12)
2 =

(
10
−20

)
, M(21)

2 =

(
2

−16

)
, M(22)

2 =

(
14
−28

)
,

M(31)
2 =

(
8
0

)
, M(32)

2 =

(
−16

0

)
.

From the above I-minors and the definition of the I-rank, the
I-rank of the above matrix M is 0.

Theorem 5. [22] The sufficient and necessary condition of the
set Ω1 (or Ω2) is nonempty is that the I-rank of the matrix S
(or A) is k > 0.

Theorem 6. For positive system (1)(or (2)), it is asymptotically
stable if and only if the I-rank of the coefficient matrix S (or A)
in Ω1 (or Ω2) is greater than 0.

Proof. From Theorem 2 (i), (ii) and (5), we know that system
(1) (or (2)) is asymptotically stable if and only if the set Ω1
(or Ω2) is nonempty. Suppose the I-rank of the matrix S (or A)
is k, from Theorem 5, the sufficient and necessary condition of
the set Ω1 (or Ω2) is empty is that k > 0, then we complete the
proof. �

2.2. Numerical methods for checking asymptotical stability.
To transform the linear inequalities systems into linear equali-
ties systems, we need the following Lemma 2.

Lemma 2. Suppose ε = (ε1, . . . ,εn)
T ∈ Rn, the inequalities

aT
i λ ≤ εi, i = 1,2, . . . ,n hold if and only if there exists an

ω ∈ Rn, ω ≥ 0, such that aT
i λ +ωi = εi, i = 1,2, . . . ,m hold.

Proof. The result is trivial and obvious but important for our
conclusion in the following. If there exists an ω ∈ Rn, ω ≥ 0
such that aT

i λ +ωi = εi, i = 1,2, . . . ,n, aT
i λ ≤ εi, i = 1,2, . . . ,m

hold since ωi ≥ 0. If aT
i λ ≤ εi, i = 1,2, . . . ,n hold, there exists

ωi, i = 1,2, . . . ,n such that aT
i λ ≤ εi, i = 1,2, . . . ,n, take ω =

(ω1,ω2, . . . ,ωn)
T , thus we get the result. �

Denote J(1) = (A, In), x = (λ T ,ωT )T , then the asymptotic
stability of system (1) (or (2)) is equivalent to the existence of
the nonnegative solution for linear equations systems J(1)x=ω ,
for ε < 0.
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Theorem 7. Let A ∈ Rm×n
+ . The positive system (1) (or system

(2)) is asymptotically stable if and only if for any ε ∈ Rn, ε < 0,
linear equations system

(A, In)

(
λ
ω

)
= ε (8)

has nonnegative solution
( λ

ω
)
, i.e. the linear equations system

is consistent in nonnegative variables (λ ,ω)T (for system (1),
A takes Ad − I and for system (2), A takes Ac).

Proof. The results can be obtained by Lemma 2 and Theorem 2
directly if we take (A, In) as the coefficient matrix and

( λ
ω
)

as
the unknown, then we have

J(1)x = ε, (9)

and then from the matrix equation and linear equalities systems
we obtain the result of Theorem 7. �

Taking into account the problem of nonnegative solution of
linear system (9), we can transform (9) into an optimization
problem, the nonnegative solution of system (9) can be obtained
by solving the following optimization (10).

The nonnegative solution of systems (10) can be obtained by
solving the following optimization problem (11). The optimal
solution of optimization problem (11) is the nonnegative so-
lution of linear equation systems (10). Rewrite matrix J(1) =
[J(1)1 ,J(1)2 , · · · ,J(1)m ], where J(1)i , i = 1,2, . . . ,m is the column

vector of matrix J(1). Define function f (x) =
m

∑
i=1

∣∣ei − (J(1))T
i x

∣∣,
the solution (or approximation solution) of systems (10) can be
obtained by finding the solution of the following optimization
problem (11).

min f (x)

s.t. x ≥ 0, and x �= 0,
(10)

which means finding the nonnegative but not zero solution of
(11). We present the specific result in the following Proposi-
tion 2.

Proposition 2. Finding the solution of optimization problem
(10) is equivalent to solving the following optimization prob-
lem (11).

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B

(
t
x

)
≥

(
ε
−ε

)
,

(
t
x

)
≥ 0.

(11)

where

B =

(
I J(1)

I −J(1)

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...
0



. The optimal solution of (11) is

y(0) =

(
t(0)

x(0)

)
, x(0) is the nonnegative solution of optimiza-

tion (10), moreover, f (x(0)) = g(y(0)) =
m

∑
i=1

t(0)i .

Proof. From (9) and (11), we have

t ≥ ε − J(1)x, t ≥−(ε − J(1)x), (12)

thus we have ti ≥ εi − (J(1))T
i x, ti ≥−(εi − (J(1))T

i x), such that

ti ≥
∣∣εi − (J(1))T

i x
∣∣, i = 1,2, · · · ,m. (13)

Suppose y(0) =

(
t(0)

x(0)

)
is the solution of (11), then, we will

prove that x(0) is the nonnegative solution of (10) by contradic-
tion. If it is not, there must exist a nonnegative vector x∗ such
that f (x∗)< f (x(0)), let

t∗i =
∣∣εi − (J(1))T

i x∗
∣∣, i = 1,2, · · · ,m, (14)

then we have

y� =

(
t∗

x∗

)
≥ 0,

where t∗ = (t∗1 , t
∗
2 , · · · , t∗m)

T , x∗ = (x∗1,x
∗
2, · · · ,x∗m)

T ,

By∗ =

(
t∗ J(1)1 x∗

t∗ −J(1)1 x∗

)
≥

(
ε
−ε

)
, (15)

which means y∗ satisfies (11) and

g(y∗) =
m

∑
i=1

t∗i =
m

∑
i=1

∣∣εi − (J(1)i )T x∗
∣∣= f (x∗).

Again because t(0) satisfies (13) and f (x∗)< f (x(0)), we have

g(y∗)= f (x∗)< f (x(0))=
n

∑
i=1

∣∣εi−(J(1)i )T x(0)
∣∣<

n

∑
i=1

t(0)i =g(y(0)),

which is contradictory to the fact that y(0) is the solution of (11).
In the sequel, we shall prove

t(0)i =
∣∣εi − (J(1)i )T x(0)

∣∣, i = 1,2, · · · ,n. (16)

If (16) does not hold for all i = 1,2, . . . ,m, from (13), we can
deduce that

g(y(0)) =
m

∑
i=1

t(0)i =
m

∑
i=1

∣∣εi − (J(1)i )T x(0)
∣∣> f (x(0)),
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then similar to the former proof, we derive a contradiction that
y(0) is the solution of (11), then we have (16) holds, i.e.

g(y(0)) =
n

∑
i=1

t(0)i =
n

∑
i=1

∣∣εi − (J(1)i )T x(0)
∣∣= f (x(0)),

which completes the proof. �

From Theorem 7 and Proposition 2, we have the following
Theorem 8 which is a necessary and sufficient condition of the
asymptotically stability for linear systems (1) and (2).

Theorem 8. The positive system (1) (or system (2)) is asymp-
totically stable if and only if for any ε ∈Rn, ε < 0, the following
optimization has a solution.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B

(
t
x

)
≥

(
ε
−ε

)
,

(
t
x

)
≥ 0.

(17)

where

B =

(
I J(1)

I −J(1)

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...
0



.

Remark 1. From Theorem 8, the autonomous positive system
(1) (or (2)) is asymptotically stable while guaranteeing the pos-
itivity if and only if the corresponding optimization problems
(17) has solutions. Theorem 8 shows that the asymptotical sta-
bility of the system (1) (or (2)) can be checked by the exis-
tence of solution for the LP optimization (17). It is an attractive
method for checking the asymptotic stability of the positive lin-
ear dynamical systems.

3. Stabilization of the positive linear dynamical
systems

3.1. Equivalent conditions of stabilization. This section
studies the stabilization problem of the positive linear dynami-
cal systems. In the following forced system:

x(k+1) = Adx(k)+Bdu(k), x(0) = x0 ∈ R+
n , (18)

ẋ(t) = Acx(t)+Bcu(t), x(0) = x0 ∈ R+
n . (19)

The control law u ∈ Rp is assumed to be a constant state-
feedback u(k) = Kdx(k) for (18) (u(t) = Kcx(t) for (19)), where

Kd (or Kc) is the gain matrix. The control law must be designed
in such way that the resulting governed system is positive and
asymptotically stable. The stability synthesis of the systems
(18) and (19) can be obtained by the following Theorem 11
and Theorem 12.

Definition 5. [20]
(1) The discrete-time (18) is called (internally) positive sys-

tems if x(k) ∈ Rn
+, k ∈ Z+ for any initial conditions x0 ∈ Rn

+ and
all inputs u(k) ∈ Rm

+, k ∈ Z+.
(2) The continuous-time (19) is called (internally) positive

systems if x(t) ∈ Rn
+, t ≥ 0 for any initial conditions x0 ∈ Rn

+

and all inputs u(t) ∈ Rm
+, t ≥ 0.

Theorem 9. [5, 20] For the systems (18) and (19), the positivity
conditions of the systems are as the following:

(1) The systems (18) is a (internally) positive systems for any
x0 ∈ Rn

+ if and only if Ad ∈ Rn×n
+ , Bd ∈ Rn×m

+ .
(2) The systems (19) is a (internally) positive systems for any

x0 ∈ Rn
+ if and only if Ac is a Metzler matrix and Bc ∈ Rn×m

+ .

Theorem 10. [15] For the positive discrete-time system (18),
the following statements are equivalent:

(1) There exist n+ 1 vectors d = (d1,d2, . . . ,dn)
T ∈ Rn and

z1,z2, . . . ,zn ∈ Rp such that

(Ad − I)d +Bd

n

∑
i=1

zi < 0;

d > 0;
ai jd j +(bd)iz j ≥ 0, 1 ≤ i, j ≤ n.

(20)

with BT
d =

(
(bd)

T
1 ,(bd)

T
2 , . . . ,(bd)

T
n
)
, where (bd)i, i= 1,2, . . . ,n

denotes the i-th row of matrix Bd in system (18).
(2) There exists a state-feedback law u(k) = Kx(k) such that

the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

K =
(
d−1

1 z1,d−1
2 z2, . . . ,d−1

n zn).

For the positive continuous-time systems (19), we have the
following analogous Theorem 11 as Theorem 10 for discrete-
time systems.

Theorem 11. [16] For the positive continuous-time systems
(19), the following statements are equivalent:

(1) There exist n+ 1 vectors d = [d1,d2, . . . ,dn]
T ∈ Rn and

z1,z2, . . . ,zn ∈ Rp such that

Acd +Bc

n

∑
i=1

zi < 0;

d > 0;
ai jd j +(bc)iz j ≥ 0, 1 ≤ i, j ≤ n, i �= j.

(21)

with BT
c =

(
(bc)

T
1 ,(bc)

T
2 , . . . ,(bc)

T
n
)
, where (bc)i, i = 1,2, . . . ,n

denotes the i-th row of matrix Bc in system (19).
(2) There exists a state-feedback law u(t) = Kx(t) such that

the closed-loop system is positive and asymptotically stable,
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then similar to the former proof, we derive a contradiction that
y(0) is the solution of (11), then we have (16) holds, i.e.

g(y(0)) =
n

∑
i=1

t(0)i =
n

∑
i=1

∣∣εi − (J(1)i )T x(0)
∣∣= f (x(0)),

which completes the proof. �

From Theorem 7 and Proposition 2, we have the following
Theorem 8 which is a necessary and sufficient condition of the
asymptotically stability for linear systems (1) and (2).

Theorem 8. The positive system (1) (or system (2)) is asymp-
totically stable if and only if for any ε ∈Rn, ε < 0, the following
optimization has a solution.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B

(
t
x

)
≥

(
ε
−ε

)
,

(
t
x

)
≥ 0.

(17)

where

B =

(
I J(1)

I −J(1)

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...
0



.

Remark 1. From Theorem 8, the autonomous positive system
(1) (or (2)) is asymptotically stable while guaranteeing the pos-
itivity if and only if the corresponding optimization problems
(17) has solutions. Theorem 8 shows that the asymptotical sta-
bility of the system (1) (or (2)) can be checked by the exis-
tence of solution for the LP optimization (17). It is an attractive
method for checking the asymptotic stability of the positive lin-
ear dynamical systems.

3. Stabilization of the positive linear dynamical
systems

3.1. Equivalent conditions of stabilization. This section
studies the stabilization problem of the positive linear dynami-
cal systems. In the following forced system:

x(k+1) = Adx(k)+Bdu(k), x(0) = x0 ∈ R+
n , (18)

ẋ(t) = Acx(t)+Bcu(t), x(0) = x0 ∈ R+
n . (19)

The control law u ∈ Rp is assumed to be a constant state-
feedback u(k) = Kdx(k) for (18) (u(t) = Kcx(t) for (19)), where

Kd (or Kc) is the gain matrix. The control law must be designed
in such way that the resulting governed system is positive and
asymptotically stable. The stability synthesis of the systems
(18) and (19) can be obtained by the following Theorem 11
and Theorem 12.

Definition 5. [20]
(1) The discrete-time (18) is called (internally) positive sys-

tems if x(k) ∈ Rn
+, k ∈ Z+ for any initial conditions x0 ∈ Rn

+ and
all inputs u(k) ∈ Rm

+, k ∈ Z+.
(2) The continuous-time (19) is called (internally) positive

systems if x(t) ∈ Rn
+, t ≥ 0 for any initial conditions x0 ∈ Rn

+

and all inputs u(t) ∈ Rm
+, t ≥ 0.

Theorem 9. [5, 20] For the systems (18) and (19), the positivity
conditions of the systems are as the following:

(1) The systems (18) is a (internally) positive systems for any
x0 ∈ Rn

+ if and only if Ad ∈ Rn×n
+ , Bd ∈ Rn×m

+ .
(2) The systems (19) is a (internally) positive systems for any

x0 ∈ Rn
+ if and only if Ac is a Metzler matrix and Bc ∈ Rn×m

+ .

Theorem 10. [15] For the positive discrete-time system (18),
the following statements are equivalent:

(1) There exist n+ 1 vectors d = (d1,d2, . . . ,dn)
T ∈ Rn and

z1,z2, . . . ,zn ∈ Rp such that

(Ad − I)d +Bd

n

∑
i=1

zi < 0;

d > 0;
ai jd j +(bd)iz j ≥ 0, 1 ≤ i, j ≤ n.

(20)

with BT
d =

(
(bd)

T
1 ,(bd)

T
2 , . . . ,(bd)

T
n
)
, where (bd)i, i= 1,2, . . . ,n

denotes the i-th row of matrix Bd in system (18).
(2) There exists a state-feedback law u(k) = Kx(k) such that

the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

K =
(
d−1

1 z1,d−1
2 z2, . . . ,d−1

n zn).

For the positive continuous-time systems (19), we have the
following analogous Theorem 11 as Theorem 10 for discrete-
time systems.

Theorem 11. [16] For the positive continuous-time systems
(19), the following statements are equivalent:

(1) There exist n+ 1 vectors d = [d1,d2, . . . ,dn]
T ∈ Rn and

z1,z2, . . . ,zn ∈ Rp such that

Acd +Bc

n

∑
i=1

zi < 0;

d > 0;
ai jd j +(bc)iz j ≥ 0, 1 ≤ i, j ≤ n, i �= j.

(21)

with BT
c =

(
(bc)

T
1 ,(bc)

T
2 , . . . ,(bc)

T
n
)
, where (bc)i, i = 1,2, . . . ,n

denotes the i-th row of matrix Bc in system (19).
(2) There exists a state-feedback law u(t) = Kx(t) such that

the closed-loop system is positive and asymptotically stable,
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where K can be calculated as follows:

K = (d−1
1 z1,d−1

2 z2, . . . ,d−1
n zn).

The proof in above Theorem 11 and Theorem 12 can be ob-
tained by replacing Ad in system (1) with Ad +BdKd and let

BdKd = Bd

n

∑
i=1

zi (for continuous-time system by replacing Ac

in system (2) with Ac+BcKd and let BcKd = Bc

n

∑
i=1

zi), detailed

proofs can be found in reference [15] and [16]. In the sequel,
we derive the new conditions according to these two theorems.

We can rewrite the form of (20) in Theorem 11 as the fol-
lowing:

(
Ad−I Bd · · · Bd

−I 0 · · · 0

)

·
(
d1, d2, . . . , dn, zT

1 , zT
2 , . . . , zT

n
)T

< 0; (22)




−(ad)11 0 · · · 0 −(bd)1 0 · · · 0
0 −(ad)12 · · · 0 0 −(bd)1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −(ad)1n 0 · · · 0 −(bd)1

−(ad)21 0 · · · 0 −(bd)2 0 · · · 0
0 −(ad)22 · · · 0 0 −(bd)2 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −(ad)2n 0 · · · 0 −(bd)2

· · · · · · · · · · · · · · · · · · · · · · · ·
−(ad)n1 0 · · · 0 −(bd)n 0 · · · 0

0 −(ad)n2 · · · 0 0 −(bd)n · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −(ad)nn 0 · · · 0 −(bd)n




·
(

d1 d2 . . . , dn zT
1 zT

2 . . . , zT
n

)T
≤ 0. (23)

It should be kept in mind that in the above equation (22), the
size of the coefficient matrix is (2n)×(n+np), and the variable
ω =

(
d1,d2, . . . ,dn,zT

1 ,z
T
2 , . . . ,z

T
n
)T is (n+np) dimensional, in

brevity, we write the coefficient matrix as Md and Rd in (22),
(23). The size of the coefficient matrix Rd is n2 × (n + np)
dimensional and the variable is the same as that in (22), we
rewrite the coefficient matrix as Rd . Then we can reformulate
the equations (22) and (23) as:

Ω3 = {ω,ω ∈ R(p+1)n| Mdω < 0, Rdω ≤ 0}. (24)

We can also rewrite the form of (21) in Theorem 12 as the
following:

(
Ac Bc · · · Bc

−I 0 · · · 0

)

·
(
d1, d2, . . . , dn, zT

1 , zT
2 , . . . , zT

n
)T

< 0; (25)




0 −(ac)11 · · · 0 0 −(bc)1 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −(ac)1n 0 · · · 0 −(bc)1

−(ac)21 0 · · · 0 −(bc)2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −(ac)2n 0 · · · 0 −(bc)2

· · · · · · · · · · · · · · · · · · · · · · · ·
−(ac)n1 0 · · · 0 −(bc)n 0 · · · 0

0 −(ac)n2 · · · 0 0 −(bc)n · · · 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · −(ac)nn 0 −(bc)(n−1) · · · 0




·
(

d1 d2 . . . , dn zT
1 zT

2 . . . , zT
n

)T
≤ 0. (26)

The size of the coefficient matrix in (25) is (2n)× (n + np),
and the variable ω =

(
d1,d2, . . . ,dn,zT

1 ,z
T
2 , . . . ,z

T
n
)T is (n+np)

dimensional, in brevity, we write the coefficient matrix as Mc
and Rc in (25), (26). The size of the coefficient matrix Rc is
(n−1)2 × (n+np) dimensional and the variable is the same as
that in (25), we rewrite the coefficient matrix as Rc. Then we
can reformulate the equations (25) and (26) as:

Ω4 = {ω,ω ∈ R(p+1)n| Mcω < 0, Rcω ≤ 0}. (27)

Lemma 3. [23] (Motzkin, 1936) Let A, C and D be given ma-
trices, with A being nonvacuous. Then exactly one of the fol-
lowing is true.

(i) Ax > 0, Cx ≥ 0, Dx = 0 has solution.
(ii) AT y1 +CT y2 +DT y3 = 0, y1 ≥ 0, y3 ≥ 0, y3 �= 0 has a

solution y1, y2, y3.

Lemma 4. [24] Let A, B be given matrices, with A being non-
vacuous. Then exactly one of the following is true.

(i) Ax > 0, Bx ≥ 0 has a solution x.
(ii) AT y1 +BT y2 = 0, y1 ≥ 0, y2 ≥ 0, y2 �= 0 has a solution

y1, y2.

Proof. This lemma can be obtained by taking D= 0 and replace
A,B in the above Motzkin Lemma 3 as −A, −B. �

Theorem 12. The existence condition of a state-feedback
law ud(k) = Kdx(k) for discrete-time systems (18) (uc(t) =
Kcx(t) for continuous-time systems (19)) while guaranteeing
the closed-loop system is positive and asymptotically stable,
where Kd (or Kc) can be calculated as in Theorem 11(2) (or
in Theorem 12(2)) is if and only if the I-rank of matrix J(2) =(

Md

Rd

)
(or J(3) =

(
Mc

Rc

)
) is greater than 0.

Proof. From (2) in Theorem 11(or Theorem 11 for continuous-
time systems), we know that the existence condition of a state-
feedback law ud(k) = Kdx(k) for discrete-time systems (18)
(uc(t) = Kcx(t) for continuous-time systems (19)) is equiva-
lent to the consistence of (20) for discrete-time systems (or
(21) for continuous-time systems (19)), which is equivalent to
the nonempty of the set Ω3 (or Ω4) in (24), and in (27) for
continuous-time systems (19). From Theorem 5, the nonempty
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of the set Ω3 (or Ω4) is equivalent to the I-rank of matrix J(2)

(or J(3)) is greater than 0, which completes the proof. �

3.2. Numerical solving methods. From (23) and (26), we can
see that the coefficient matrices don’t have the compact form
and are not readily implemented when the state vector is large.
Analogous to the above Theorem 8, we have the following the-
orem to compute the feedback matrix K, the methods here have
compact form and are ready to be implemented.

Denote J(2) =
(

M
R

)
, x = ω , ε ′ =

(
ε
0

)
. By means of

Proposition 3, we have

Theorem 13. For the positive systems (18), the following state-
ments are equivalent:

(1) There exists a nonnegative solution for linear equations
systems J(2)x = ε ′, the nonnegative solution can be obtained by
solving the following optimization problem.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B
(

t
x

)
≥
(

ε ′

−ε ′

)
,

(
t
x

)
≥ 0,

(28)

where B, u, t, x, θ are as that in (17). The optimal solution

of (28) is y(0) =
(

t(0)

x(0)

)
, x(0) is the nonnegative solution of

systems J(2)x = ε ′, where

B =

(
I J(2)

I −J(2)

)
, t =




t1
t2
...

tm



,

u =




u1

u2
...

um




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...
0



.

(2) There exists a state-feedback law u(k) = Kx(k) such that
the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

Kc =
(
d−1

1 z1, d−1
2 z2, . . . , d−1

n zn
)
,

where di, zi, i = 1,2, . . . ,n can be obtained from the solution x∗

of the optimization (28).

Theorem 14. For the positive systems (19), the following state-
ments are equivalent:

(1) There exists a nonnegative solution for linear equations
systems J(3)x = ε ′, the nonnegative solution can be obtained by

solving the following optimization problem.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B
(

t
x

)
≥
(

ε ′

−ε ′

)
,

(
t
x

)
≥ 0,

(29)

where B, u, t, x, θ are as that in (17). The optimal solution

of (29) is y(0) =
(

t(0)

x(0)

)
, x(0) is the nonnegative solution of

systems J(3)x = ε ′. where

B =

(
I J(3)

I −J(3)

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...
0



.

(2) There exists a state-feedback law u(k) = Kx(k) such that
the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

Kd =
(
d−1

1 z1, d−1
2 z2, . . . , d−1

n zn
)
,

where di, zi, i = 1,2, . . . ,n can be obtained from the solution x∗

of the optimization (11).

Remark 2.
(1) The results of Theorem 13 and Theorem 14 are from Theo-

rem 8 and Theorem 12 directly, we omit the proof here for
brevity.

(2) From Theorem 8 and Theorem 12 (or Theorem 13), the
closed-loop system (18) (or (19)) is asymptotically stable
while guaranteeing the positivity if and only if the corre-
sponding LP optimization problems (28) (or (29)) has solu-
tions.

4. Examples

In this section, two simple examples are given to illustrate the
effectiveness of methods proposed in this paper. We present
three methods to check the asymptotic stability of the given
positive linear dynamical systems.

Example 1. Consider the discrete-time linear system

x(k+1) = Adx(k)+Bdu(k),
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of the set Ω3 (or Ω4) is equivalent to the I-rank of matrix J(2)

(or J(3)) is greater than 0, which completes the proof. �

3.2. Numerical solving methods. From (23) and (26), we can
see that the coefficient matrices don’t have the compact form
and are not readily implemented when the state vector is large.
Analogous to the above Theorem 8, we have the following the-
orem to compute the feedback matrix K, the methods here have
compact form and are ready to be implemented.

Denote J(2) =
(

M
R

)
, x = ω , ε ′ =

(
ε
0

)
. By means of

Proposition 3, we have

Theorem 13. For the positive systems (18), the following state-
ments are equivalent:

(1) There exists a nonnegative solution for linear equations
systems J(2)x = ε ′, the nonnegative solution can be obtained by
solving the following optimization problem.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B
(

t
x

)
≥
(

ε ′

−ε ′

)
,

(
t
x

)
≥ 0,

(28)

where B, u, t, x, θ are as that in (17). The optimal solution

of (28) is y(0) =
(

t(0)

x(0)

)
, x(0) is the nonnegative solution of

systems J(2)x = ε ′, where

B =

(
I J(2)

I −J(2)

)
, t =




t1
t2
...

tm



,

u =




u1

u2
...

um




=




1
1
...
1



, y =

(
t
x

)
, θ =




0
0
...
0



.

(2) There exists a state-feedback law u(k) = Kx(k) such that
the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

Kc =
(
d−1

1 z1, d−1
2 z2, . . . , d−1

n zn
)
,

where di, zi, i = 1,2, . . . ,n can be obtained from the solution x∗

of the optimization (28).

Theorem 14. For the positive systems (19), the following state-
ments are equivalent:

(1) There exists a nonnegative solution for linear equations
systems J(3)x = ε ′, the nonnegative solution can be obtained by

solving the following optimization problem.

min g(y) =
(
uT ,θ T )

(
t
x

)
=

m

∑
i=1

ti

s.t. B
(

t
x

)
≥
(

ε ′

−ε ′

)
,

(
t
x

)
≥ 0,

(29)

where B, u, t, x, θ are as that in (17). The optimal solution

of (29) is y(0) =
(

t(0)

x(0)

)
, x(0) is the nonnegative solution of

systems J(3)x = ε ′. where

B =

(
I J(3)

I −J(3)

)
, t =




t1
t2
...

tm



, u =




u1

u2
...

um




=




1
1
...
1



,

y =

(
t
x

)
, θ =




0
0
...
0



.

(2) There exists a state-feedback law u(k) = Kx(k) such that
the closed-loop system is positive and asymptotically stable,
where K can be calculated as follows:

Kd =
(
d−1

1 z1, d−1
2 z2, . . . , d−1

n zn
)
,

where di, zi, i = 1,2, . . . ,n can be obtained from the solution x∗

of the optimization (11).

Remark 2.
(1) The results of Theorem 13 and Theorem 14 are from Theo-

rem 8 and Theorem 12 directly, we omit the proof here for
brevity.

(2) From Theorem 8 and Theorem 12 (or Theorem 13), the
closed-loop system (18) (or (19)) is asymptotically stable
while guaranteeing the positivity if and only if the corre-
sponding LP optimization problems (28) (or (29)) has solu-
tions.

4. Examples

In this section, two simple examples are given to illustrate the
effectiveness of methods proposed in this paper. We present
three methods to check the asymptotic stability of the given
positive linear dynamical systems.

Example 1. Consider the discrete-time linear system

x(k+1) = Adx(k)+Bdu(k),
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where

Ad =




0.5 0 0.6
0.6 0.8 1.2
0.8 1 0.8


 , Bd =




0
1
1


 .

From Theorem 10, the linear system is positive. The I-minors

of matrix
(

Ad − I
−I

)
are:

M(1)
1 =

(
−0.1 −0.2 0.5 1 0 0
0.96 −1.2 0.38 −0.2 0 0

)T

,

M(2)
1 =

(
0.76 0.8 0 0 0
1.16 −0.2 0 0 0

)T

,

M(3)
1 =

(
0.38 −0.5 1.08 0.6 0 0
0.6 −0.5 1.16 −0.2 0 0

)T

,

it is obvious that the I-rank of matrix
(

I −Ad

−I

)
is 0.

From Theorem 2, the autonomous discrete-time system is
not asymptotically stable. The stability result can also ob-
tained from Theorem 6, the autonomous linear system is
not asymptotically stable since the spectrum of σ(Ad) =
(2.1458,0.3542,−0.4), Ad has the unstable eigenvalue λ1 =
2.1458 we know that the linear system is not asymptotically
stable. We obtained the gain matrix of the closed loop system
(17) by Theorem 13 in this paper with ε ′ = −(0.1,0.1,0.1)T ,
the solution (d1,d2,d3,z1,z2,z3)

T = (580.5420, 394.1752,
392.3399,−300.3974, −266.4273, −266.7070)T , then Kd =
(−0.5174,−0.6759,−0.6798). The closed-loop systems is pos-
itive and asymptotically stable since

Ad +BdKd =




0.5000 0.0000 0.6000
0.0826 0.1241 0.5202
0.2826 0.3241 0.1202


 ,

and the eigenvalues are λ1 = 0.8674, λ2 = 0.2517, λ3 =
−0.3748.

Remark 3. Throughout the paper, output stabilization refers to
output positively asymptotically stabilization. Note, the defini-
tion of stabilization ensures that stabilization is regardless of the
control input (positive or negative), the plant will maintain non-
negativity of states for all initial conditions x0 ∈ Rn

+ of the plant
(due to the Metzler property (Theorem 1 and Theorem 10)). It
is worth pointing out that in “real life systems”, nonnegativity
of states occurs quite often; however, the need for the input u to
be also nonnegative, as in the original definition (Definition 5)
may not always be a necessity, as was also pointed out in [16,
25]. Thus, throughout this paper, we do not restrict ourselves to
nonnegative inputs, as it was shown in [26] that such a restric-
tion breaks down the possibility of stabilization.

Example 2. Consider the continuous-time linear system

ẋ(t) = Acx(t)+Bcu(t),

where

Ac =




0 1 1 2
1 −2 2 0
2 1 3 1
0 2 0 −1


 , Bc =




1 1 0
2 0 0
1 1 1
0 1 0


.

From Theorem 9, the linear system is positive and the
spectrum of Ac are σ(Ac) = (4.2974,−0.7148,−1.7913 +
0.8353i,−1.7913 − 0.8353i), the autonomous system is un-
stable since Ac has unstable eigenvalue λ = 4.2974. As that
in Example 1, also we can obtain the result from the I-rank

of matrix
(

A
−I

)
according to Theorem 2(ii) and Theorem 6

in this paper, we have the same conclusion about the asymp-
totic stability since the I-rank is 0. By Theorem 14, take ε ′ =
−1.0e−01∗ (1,1,1,1)T , we obtained the solution

(d1,d2,d3,d4,z1,z2,z3,z4) = (502.5335, 120.3769, 45.1729,
119.9020, −223.9135, 31.5827, −692.3870, −38.0045,
−46.8862, 33.2171, −14.7687, 36.5199, −478.8018,
47.8386, −237.6350, 129.2268),

compute the feedback control law

Kc =




−0.4456 −0.3157 −0.3269 0.3990
0.0628 −0.3895 0.8084 −1.9819
−1.3778 0.2759 −105993 1.0778




and

A+BKc =




−0.3827 0.2948 1.4815 0.4171
0.1089 −2.6314 1.3461 0.7980
0.2395 0.5707 −7.1178 0.4948
0.0628 1.6105 0.8084 −2.9819




with the spectrum

σ(Ac +BKc) = (−7.3582,−0.2334,−1.5541,−3.9681)

which guarantee the positivity and asymptotic stability of the
closed-loop system according to Theorem 14 in this paper.

5. Concluding remarks

New equivalent conditions of the asymptotic stability and sta-
bilization of positive linear dynamical systems were studied in
this paper. The problems of stability and the stabilization for
the positive continuous-time and discrete-time linear systems
are transformed into consistency conditions of the algebraic
linear inequalities systems. We presented some conditions of
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consistency and inconsistency for the linear inequalities sys-
tems. We also proposed a numerical solving method of the lin-
ear inequalities system, then the relation between the consis-
tency for the linear inequalities systems and the solvability of
the LP optimization problem were discussed. The advantage
of our method is that we transform the inequalities constraints
conditions into the equalities constraints condition which can
be formulated into a standard LP optimization problem, which
avoided solving the strict algebraic linear inequalities systems.
The method proposed in this paper can be considered as an im-
provement of LP method in [15, 16]. Compared with existing
LP approaches in the literature, our design approach constructs
a controller with compact form, which is easy to implement,
especially when the dimension of the state vector is large. Nu-
merical examples are given in the end to show the effectiveness
of our method.

Acknowledgements. This paper is partly supported by the mo-
bility program of Shandong University of Science and Tech-
nology 2019.
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consistency and inconsistency for the linear inequalities sys-
tems. We also proposed a numerical solving method of the lin-
ear inequalities system, then the relation between the consis-
tency for the linear inequalities systems and the solvability of
the LP optimization problem were discussed. The advantage
of our method is that we transform the inequalities constraints
conditions into the equalities constraints condition which can
be formulated into a standard LP optimization problem, which
avoided solving the strict algebraic linear inequalities systems.
The method proposed in this paper can be considered as an im-
provement of LP method in [15, 16]. Compared with existing
LP approaches in the literature, our design approach constructs
a controller with compact form, which is easy to implement,
especially when the dimension of the state vector is large. Nu-
merical examples are given in the end to show the effectiveness
of our method.
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