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Abstract. Due to the characteristics of color vegetation canopy images which have multiple details and Gaussion noise interference, the adap-
tive mean filtering (AMF) algorithm is used to perform the denoising experiments on noised images in RGB and YUV color space. Based on 
the single color characteristics of color vegetation canopy images, a simplified AMF algorithm is proposed in this paper to shorten the overall 
running time of the denoising algorithm by simplifying the adaptive denoising processing of the component V, which contains less image details. 
Experimental results show that this method can effectively reduce the running time of the algorithm while maintaining a good denoising effect.
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multi-channel filtering, many effective image denoising algo-
rithms have been proposed in recent years [9‒18]. In paper 
[9], Muhammad proposed a norm weighted fusion estimation 
method based on wavelet domain. The method holds the sig-
nificant geometric structure of the given noisy image during 
the denoising process and has a good denoising effect on an 
image with high level of noise. Linear and nonlinear 2-D image 
processing approaches are analyzed with the aim of removing 
the noise from data acquired by distributed optical fiber sen-
sors based on Brillouin optical time-domain analysis (BOTDA) 
in [11]. The authors also proposed an optimization procedure 
to find the optimal parameters of the non-local means (NLM) 
method for BOTDA data denoising. However, when the pro-
posed methods are used to denoise vegetation canopy images, 
many edge details are lost. The denoising results are below 
expectations. In [14] effective stacked denoising networks are 
proposed. The denoising process is decomposed into two stages. 
Firstly, the noise mapping of the noisy image is predicted, and 
then the image is denoised to further improve the visual quality 
and alleviate Gaussian noise overfitting. Paper [15] proposed 
a 2-D finite-impulse response (FIR) Wiener filter driven by the 
adaptive cuckoo search (ACS) algorithm for denoising multi-
spectral satellite images contaminated with the Gaussian noise 
of different variance levels. The ACS algorithm was proposed 
to optimize the Wiener weights for obtaining the best possible 
estimate of the desired uncorrupted image. The stability and 
convergence of the algorithm were analyzed, and the possibility 
of its application in the field of satellite images analysis was 
proved. To address the fact that different bands of hyperspectral 
images have different noise levels, HSI denoising method, tak-
ing into account the band relationship and different noise levels, 
was proposed in paper [17]. According to the characteristics 
of the target noise bands, this method selects some related but 
quality superior bands, and then fuses the selected related bands 
to realize the denoise of the target noise bands. These methods 
can well retain the edge details of the image, but the algorithms 
are complex and the processing speed is slow.

1.	 Introduction

In application fields such as checking green belt, investigating 
regional vegetation characteristics and monitoring the growth of 
experimental forest, color vegetation canopy image is the most 
important information source. Such images are easily disturbed 
by natural factors, such as wind and rain, and mixed with image 
noise, as they are usually collected outdoor or even in the wild. 
This makes studies on color vegetation canopy image denoising 
technology particularly important.

In recent years, many scholars have contributed to the study 
of image denoising technology and achieved good results [1‒8]. 
Paper [1] introduced a new CT image denoising method based 
on the generative adversarial network (GAN) with Wasserstein 
distance and perceptual similarity, which yielded a promising 
clinical result. Paper [2] proposed a fast and flexible denois-
ing convolutional neural network, namely FFDNet, achieving 
a good trade-off between inference speed and denoising per-
formance. A novel two-stage adaptive framework for denoising 
of differential interference contrast (DIC) images followed by 
Gabor based gray-level co-occurrence matrix (GLCM) feature 
extraction methodology is proposed in paper [3]. In paper [5], 
an efficient denoising method derived from morphological fil-
tering in nonsubsampled shearlet transform (NSST) domain 
and Bitonic filtering was proposed. The method achieves rea-
sonable and consistent denoising performance, specifically at 
high noise levels. Paper [8] proposed a hybrid filtering optimi-
zation method of contaminated spot image denoising method 
to deal with contaminated spots in near-sea-surface images. 
However, the methods mentioned above are only effective 
for single-channel grayscale image. The color information is 
lost once the color image has been processed. In the field of 
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As objects of processing, color vegetation canopy images, 
have very prominent characteristics. They are easy to be mixed 
with Gaussian noise, have complex edge details, and the main 
color of the images is usually yellow-green. According to the 
above characteristics, this paper proposes a simplified adaptive 
mean filtering (AMF) algorithm for YUV color space, in order 
to remove Gaussian noise effectively while retaining the edge 
details and improving the operation speed.

The main contributions of this paper can be summarized as:
●	 The processing range of the AMF algorithm is extended to 

multi-channel color images.
●	 According to the characteristics of vegetation canopy 

images which have single color, transforming the image into 
YUV color space before denoising allows for eliminating 
the adaptive processing of component V and improving the 
overall operation speed of the algorithm.
The rest of the paper is organized as follows. In Section 2, 

adaptive mean filtering (AMF) algorithm used to remove the 
Gaussian noise is introduced. In Section 3 color space RGB and 
YUV and their conversion relations are considered. In Section 4 
experimental results of color vegetation canopy images denois-
ing are shown. In Section 5, the evaluation index of denoising 
effect is calculated and the experimental results are analyzed. 
Conclusions are drawn in Section 6.

2.	 Adaptive mean filtering (AMF) algorithm

The most classical algorithms of image denoising are median 
filtering and mean filtering. The denoising principle of these 
two algorithms is to change the pixel value of all the points in 
the box (the set of the target pixel and its surrounding pixels) 
into their median value or mean value, so as to achieve the 
effect of noise smoothing. However, there is an obvious defect 
in these processing methods. The algorithms treat all the pixels 
in the image equally, without considering the uniform part, the 
edge and texture, and the differences in the human eyes’ sen-
sitivity to different parts of the image. The defect makes the 
processed images lose a substantial amount of edge and detail 
information. Especially when the images with complex edges 
and details are processed, such as vegetation canopy images, 
the results are always severely distorted. In contrast, the adap-
tive image filtering algorithm can distinguish the useless noise 

Fig. 1. The diagram of the degenerate-restore process
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signal and the useful edge and texture information in the image 
independently. The algorithm preserves the edge, texture and 
other details of the image while removing the noise. In this 
way, the problems of distortion and blurring are largely avoided 
[19‒22].

Consider f (x, y) is the image to be processed. Under the 
effect of the degradation function h(x, y) and the noise signal 
n(x, y), the image f (x, y) is degraded to g(x, y), which is an 
image mixed with noise. In the time domain, the process of 
image degradation can be expressed as:

	 g(x, y) = h(x, y) * f (x, y) + n(x, y),� (1)

In the frequency domain, it can be expressed as:

	 G(u, v) = H(u, v)F(u, v) + N(u, v),� (2)

where G(u, v), H(u, v), F(u, v), N(u, v) are the Fourier trans-
form of g(x, y), h(x, y), f (x, y), n(x, y).

When only the denoising algorithm is studied, the degrada-
tion equation can be simplified as:

	 g(x, y) =  f (x, y) + n(x, y).� (3)

Given g(x, y) and some information about h(x, y) and 
n(x, y), the process of image denoising is equivalent to the 
estimate calculation of the image f (x, y). Let us define the esti-
mated value of  f (x, y) as f ̂(x, y). The diagram of the degener-
ate-restore process is shown in Fig. 1.

The noise in the vegetation canopy images mainly comes 
from the interference of natural outdoor conditions, and its 
main component is Gaussian noise. So the mean filter which 
has better Gaussian noise removal effect is selected to combine 
with the adaptive method for the image denoising. The formula 
can be expressed as follows:

	

f ̂ (x, y) = g(x, y) ¡ n ̂ (x, y) = 

f ̂ (x, y) = g(x, y) ¡ 
σg

2

σ ̂ L
2

£
g(x, y) ¡ µ ̂ L

¤
,
� (4)

where n ̂ (x, y) is the estimated value of the noise, σg
2 is the noise 

variance of g(x, y), σ ̂ L2 is the gray variance of pixel values 
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around point (x, y) (in the Box), and µ ̂ L is the gray average of 
pixel values around point (x, y) (in the box).

The computation results of (4) will vary with the relation-
ship between σg

2 and σ ̂ L2:
●	 If σg

2 = 0, there is no noise interference. Thus, (4) can be 
written as f ̂(x, y) = g(x, y), and the algorithm does not per-
form any image processing.

●	 If σ ̂ L2 >> σg
2, the variance of the pixels in the box is much 

greater than the noise variance of g(x, y), which means that 
the box contains image details such as edges and textures. 
Thus, (4) can be written as f ̂(x, y) = g(x, y), and the detail 
information of the image is preserved.

●	 If σ ̂ L2 ¼ σg
2, the variance of the pixels in the box is simi-

lar to the noise variance of  g(x, y), which means that the 
image region in the box is uniform. Thus, (4) can be written  
as f ̂ (x, y) = µ ̂ L, and mean filtering is used for denoising 
the box.

The logic flowchart of AMF is shown in Fig. 2.

3.	 RGB and YUV color spaces

Color space is an abstract mathematical model that uses a group 
of color components (usually three or four) to express different 

Fig. 2. The flowchart of the adaptive mean filtering (AMF) algorithm
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colors in a certain dimensional coordinate. The common color 
spaces are RGB, CMYK, HSV, YUV, YIQ, Lab, etc. Different 
color spaces have different expression range and expression 
rules, which are suitable for color image processing in differ-
ent conditions. For example, CMYK is usually used for color 
printing, HSV for computer graphics, and YIQ for color TV 
systems. In this paper, considering the characteristics of color 
vegetation canopy images, only RGB and YUV color space are 
discussed in detail.

3.1. RGB color space. RGB color space is the most classic and 
commonly used color space, especially for CRT display, video, 
multimedia and web design. The core design principle of RGB 
is that any color light in nature can be mixed by red, green and 
blue light in different proportions. Therefore, it can express 
almost all the colors that can be recognized by human eyes.

The greatest advantage of RGB color space is that the prin-
ciple is simple and intuitive – very easy to understand. But it 
also has obvious disadvantages. The three components R, G 
and B are highly correlated. If one of the components changes, 
the mixed color will also change a lot. So the integration of 
the three components always results in errors, after the three 
components are processed separately. In addition, due to the 
inherent physiological characteristics of the human eye, the 
sensitivity to changes in luminance and chrominance is not the 
same, and the sensitivity to red, green, blue color components 
is not the same either. Therefore, the visual uniformity of RGB 
color space is poor, and the visual color difference before the 
two colors cannot be equivalent to the distance between the two 
points in the color space.

3.2. YUV color space. Some early studies show that human 
eye is more sensitive to luminance information than to chromi-
nance information [23]. Therefore, to a certain extent, the com-
pression of chrominance information will not affect the visual 
effect of the human eye. Based on the above conclusion, YUV 
color space separates luminance information from chrominance 
information.

In the color space, component Y is used to represent the 
luminance information of the image, that is, the grayscale value. 
Also, human eye has different sensitivity to the brightness of 
red, green and blue color components [24‒26].

Components U and V are used to represent the chrominance 
of the image, that is, to describe the color and saturation of the 
image. They are obtained by compressing R, G and B compo-
nents in different proportions. The U component represents the 
chromatism from yellow green to bluish violet. The V com-
ponent represents the chromatism from cyan to magenta. The 
relationship between the two components is shown in Fig. 3.

The transformation between YUV color space and RGB 
color space can be achieved by a simple matrix operation:

	

Y = 0.299£R + 0.587£G + 0.114£B

U = – 0.147£R ¡ 0.289£G + 0.436£B

V = 0.615£R ¡ 0.515£G ¡ 0.100£B

,� (5)

	

R = Y + 1.140£V

G = Y ¡ 0.394£U ¡ 0.581£V

B = Y + 2.032U

,� (6)

The YUV color space has a smaller amount of data than 
RGB for the same color image, which leads to faster processing 
speed and lower algorithm complexity. The relative indepen-
dence between the luminance component Y and the chromi-
nance components U and V also reduces the possible image 
distortion in the process of components compounding, after 
processing each component separately.

As for the color vegetation canopy image, its main tone 
is yellow-green. The main chrominance information of the 
image is concentrated in the component U, and the component 
V contains very little information about the image chromi-
nance details. Therefore, when denoising this kind of images, 
the detail processing of component V can be simplified, which 
will greatly improve the efficiency of the algorithm.

4.	 Denoising experiment on color vegetation 
canopy images

In this paper, 20 color canopy images are used for denoising 
experiments with the size of 1200£1200 pixels and the repre-
sentation form is fractional real values. 6 of them were selected 
to show as samples in Fig. 4. The selected images have vegeta-
tion features as green trees, yellow trees, dead trees, low shrubs, 
grasslands and plant shadows, which are representative.

In order to simulate the natural noise signal, the images were 
mixed with Gaussian noise (the average value is 0.1 and the 
variance is 0.01). The images with Gaussian noise are shown 
in Fig. 5.

Since the default reading format of the image is established 
in the RGB color space, the first experiment consists in denois-
ing the noisy images in RGB. The AMF denoising results of 
the three components are shown in Fig. 6. The denoised color 
images of the 6 image samples, obtained by integrating the three 
components are shown in Fig. 7.

Fig. 3. The relationship between the U and V components
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Fig. 4. Original color vegetation canopy image samples

a)

d)

b)

e)

c)

f )

Fig. 5. Color vegetation canopy image mixed with Gaussian noise (the average value is 0.1 and the variance is 0.01)

a)

d)

b)

e)

c)

f )
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a)

c)

b)

d)

Fig. 6. The AMF denoising results of the R, G, B components of the images in Fig. 5 (components R, G and B are shown from left to right)
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Fig. 7. AMF denoising results in color space RGB of the images in Fig. 5

a)

e)

d)

f )

b)

e)

c)

f )

Fig. 6. The AMF denoising results of the R, G, B components of the images in Fig. 5 (components R, G and B are shown from left to right)
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The noisy images in Fig. 5 are transformed into color space 
YUV. The Y, U and V components are denoised by AMF, and 

the denoised component images and color images are shown in 
Fig. 8 and Fig. 9, respectively.

a)

c)

b)

d)

Fig. 8. AMF denoising results of the Y, U, V components of the images in Fig. 5 (components Y, U and V are shown from left to right)
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Fig. 9. AMF denoising results in color space YUV of the images in Fig. 5

a)

e)

d)

f )

b)

e)

c)

f )

Fig. 8. AMF denoising results of the Y, U, V components of the images in Fig. 5 (components Y, U and V are shown from left to right)
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It can be seen in Fig. 6 that the three image components in 
the RGB color space all contain much image detail information. 
Fig. 8 shows that, in the YUV color space, the image details 
are mainly reflected in the component Y, a small amount in the 
component U, while the details contained in the component 
V are very few. Therefore, to denoising the component V by 
original mean filtering instead of AMF is attempted.

The denoised images of the component V are shown in 
Fig. 10. Combine the denoised component V with the compo-
nents Y and U in Fig. 8 to obtain the color images. The color 
vegetation canopy images denoised by the simplified algorithm 
are shown in Fig. 11.

Fig. 10. The V components denoised by original mean filtering

a b

c d

e f

Fig. 11. The simplified AMF denoising results in color space YUV of 
the images in Fig. 5

a b

c d

e f

Table 1 
The average running time of the three denoising methods  

for all experimental images (mixed with Gaussian noise with 
average value of 0.1 and variance of 0.01)

Time (s) AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.41 0.47 0.32

Image b 0.37 0.47 0.30

Image c 0.30 0.44 0.27

Image d 0.39 0.46 0.29

Image e 0.38 0.46 0.33

Image f 0.35 0.45 0.31

…… …… …… ……

Image p 0.34 0.43 0.29

Image q 0.39 0.48 0.30

Image r 0.42 0.49 0.34

Image s 0.40 0.48 0.33

Image t 0.33 0.39 0.26

The average running times of the three denoising methods 
for all experimental images (a–t) are listed in Table 1.

In order to better prove the effectiveness of the method 
proposed in this paper, the experimental images are mixed with 
Gaussian noise with mean value of 0.1 and variance of 0.1. The 
image samples are shown in Fig. 12.

The denoising experimental results of AMF in color 
space RGB for the noisy images in Fig.  12 are shown in 
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Fig. 13. AMF denoising results in color space RGB of the images in Fig. 12

a)

a)

d)

d)

b)

b)

e)

e)

c)

c)

f )

f )

Fig. 12. The color vegetation canopy image mixed with Gaussian noise (the average value is 0.1 and the variance is 0.1)
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Fig. 13. The denoising experimental results of AMF in color 
space YUV are shown in Fig. 14, and the denoising exper-

Fig. 15. The simplified AMF denoising results in color space YUV of the images in Fig. 12

a)

a)

d)

d)

b)

b)

e)

e)

c)

c)

f )

f )

Fig. 14. AMF denoising results in color space YUV of the images in Fig. 12

imental results of simplified AMF in color space YUV are 
shown in Fig. 15.
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The average running time of the three denoising methods 
for all experimental images (a–t) are listed in Table 2.

Further, Gaussian noise with mean value of 0 and variance 
of 0.1 is mixed into the experimental images. The image sam-
ples are shown in Fig. 16.

Fig. 16. The color vegetation canopy image mixed with Gaussian noise 
(the average value is 0 and the variance is 0.1)

a b

c d

e f

Fig. 17. AMF denoising results in color space RGB of the images in 
Fig. 16

a b

c d

e f

Time (s) AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.44 0.48 0.36

Image b 0.40 0.44 0.33

Image c 0.32 0.43 0.30

Image d 0.37 0.43 0.32

Image e 0.41 0.45 0.33

Image f 0.39 0.43 0.33

Table 2 
The average running time of the three denoising methods for all experimental images (mixed with Gaussian noise of average value 0.1  

and variance 0.1)

The denoising experimental results of AMF in color space 
RGB for the noisy images in Fig. 16 are shown in Fig. 17. The 
denoising experimental results of AMF in color space YUV are 
shown in Fig. 18. The denoising experimental results of simpli-
fied AMF in color space YUV are shown in Fig. 19.

Time (s) AMF in RGB AMF in YUV Simplified AMF 
in YUV

…… …… …… ……

Image p 0.39 0.46 0.31

Image q 0.33 0.46 0.30

Image r 0.43 0.45 0.33

Image s 0.40 0.49 0.34

Image t 0.34 0.39 0.28
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Fig. 19. Simplified AMF denoising results in color space YUV of the images in Fig. 16

a)

a)

d)

d)

b)

b)

e)

e)

c)

c)

f )

f )

Fig. 18. AMF denoising results in color space YUV of the images in Fig. 16
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The average running time of the three denoising methods for all experimental images (a–t) are listed in Table 3.

Time (s) AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.38 0.43 0.31

Image b 0.39 0.46 0.32

Image c 0.35 0.42 0.30

Image d 0.33 0.40 0.26

Image e 0.38 0.46 0.31

Image f 0.39 0.45 0.30

Table 3 
The average running time of the three denoising methods for all experimental images  

(mixed with Gaussian noise with average value 0 and variance 0.1)

Time (s) AMF in RGB AMF in YUV Simplified AMF 
in YUV

…… …… …… ……

Image p 0.40 0.46 0.32

Image q 0.33 0.43 0.27

Image r 0.44 0.50 0.35

Image s 0.45 0.49 0.34

Image t 0.39 0.44 0.28

5.	 Calculation of image quality evaluation 
parameters and analysis

5.1. Calculation of PNSR (peak signal to noise ratio).  PNSR 
is the ratio of the peak signal power to the destructive noise 
power [27]. It can be calculated according to the following 
equation:

	 PSNR = 10 ¢ log10

³
MAX2

MSE

´
,� (7)

where MAX is the maximum value of pixels in the image, 
generally 255. MSE is the mean square error. For two mono-
chrome images I and K with the same size of  m£n, MSE can 
be expressed as:

	 MSE =  1
mn i = 0

m ¡ 1

∑
j = 0

n ¡ 1

∑
£

I(i, j) ¡ K(i, j)
¤2,� (8)

As for color images in RGB and YUV color space, since each 
pixel point has three component values, MSE can be expressed 
as:

	 MSE =  1
3mn i = 0

m ¡ 1

∑
j = 0

n ¡ 1

∑
k = 0

2

∑
£

I(i, j, k) ¡ K(i, j, k)
¤2,� (9)

The PNSR values of the original color vegetation canopy 
images (a‒t) and their denoised images processed by the three 
denoising algorithms are calculated, and the results are listed 
in Tables 4‒6.

Table 4 
PNSR of the original color vegetation canopy images  

and the denoised images  (mixed with Gaussian noise which  
average value is 0.1 and variance is 0.01)

PNSR
PNSR of  images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 20.0584 21.5898 21.4389

Image b 22.9513 24.9004 24.5428

Image c 23.1949 25.4588 25.0533

Image d 22.7502 24.6003 24.2651

Image e 22.2215 24.1669 23.8962

Image f 23.0521 26.0038 25.6264

…… …… …… ……

Image p 23.2842 23.9234 23.3285

Image q 21.4986 22.2374 22.0234

Image r 22.5389 24.3945 23.7882

Image s 22.2485 23.2457 22.3597

Image t 23.2398 24.9342 24.1469

Table 5 
PNSR of the original color vegetation canopy images  

and the denoised images  (mixed with Gaussian noise which  
average value is 0.1 and variance is 0.1)

PNSR
PNSR of  images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 21.3135 22.3021 22.2123

Image b 22.9834 24.4573 24.4477

Image c 24.5659 25.8943 25.7813

Image d 22.8324 24.6235 24.2333

Image e 23.3554 24.4673 24.3465

Image f 22.5658 24.7826 24.6635

…… …… …… ……

Image p 23.4452 23.5345 23.5262

Image q 20.9340 22.3823 22.1225

Image r 21.7843 24.2345 23.1491

Image s 23.4395 24.8261 23.7323

Image t 22.0485 24.5773 24.4239
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5.2. Calculation of FSIM (feature similarity). The human eye 
has different sensitivity to different pixels in the image. For 
example, the pixels at the position of edges and intersections 
are more likely to attract the attention of human eye. Com-
pared with PNSR, FSIM takes this feature into consideration 
and takes it as the basis for evaluating image quality [28].

To calculate the FSIM value of two images, it is necessary 
to calculate the phase consistency similarity and the gradient 
magnitude similarity:

	 SPC =   2PC1 ¢ PC2 + T1

PC 2
1 + PC 2

2 + T1

,� (10)

	 SGM =   2GM1 ¢ GM2 + T2

GM 2
1 + GM 2

2 + T2

,� (11)

where, PC1 and PC2 are the PC (phase congruency) values of 
the two images, which reflect the image information of struc-
ture, edge and texture [29]. GM1 and GM2 are the GM (gradi-
ent magnitude) values, which reflect the image information of 
brightness and contrast [30]. T1 and T2 are constants, and their 
function is to avoid the systematic error that occurs when the 
denominator is 0.

By combining (10) and (11), the comprehensive similarity 
of the two images can be expressed as:

	 SL = SPC
α ¢ SGM

β,� (12)

where, α and β are the weight coefficients, generally 1.
If a pixel x has high PC values in the two images, it indicates 

that this pixel has a high influence in the similarity evaluation 
of the two images based on human visual characteristics (HVS). 
Therefore, FSIM can be expressed as follows:

	 FSIM =   x 2 Ω
∑ SL(x) ¢ PCm(x)

x 2 Ω
∑ PCm(x)

,� (13)

where, PCm(x) = max
£
PC1(x), PC2(x)

¤
, and Ω represents the 

entire region of the image.

When comparing two color images, (13) can be written as:

	 FSIM =   x 2 Ω
∑ SL(x) ¢ 

£
SC(x)

¤λ ¢ PCm(x)

x 2 Ω
∑ PCm(x)

,� (14)

where, SC is the chrominance similarity of the two images, 
which is obtained by calculating the image components con-
taining chrominance information according to the similarity 
formula. λ is the weight coefficient.

FSIM values of the original color vegetation canopy images 
(a–t) and their denoised images processed by the three denois-
ing algorithms are calculated, and the results are listed in 
Tables 7‒9.

Table 7 
FSIM of the original color vegetation canopy images  

and the denoised images  (mixed with Gaussian noise with  
average value of 0.1 and variance of 0.01)

FSIM FSIM of images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.9320 0.9600 0.9579

Image b 0.9237 0.9538 0.9520

Image c 0.9025 0.9369 0.9357

Image d 0.9235 0.9532 0.9518

Image e 0.9200 0.9516 0.9511

Image f 0.9074 0.9425 0.9410

…… …… …… ……

Image p 0.9238 0.9503 0.9497

Image q 0.9347 0.9589 0.9574

Image r 0.9096 0.9322 0.9315

Image s 0.9394 0.9579 0.9550

Image t 0.9168 0.9428 0.9421

PNSR
PNSR of  images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 20.4563 21.8636 21.7257

Image b 22.2549 23.4502 23.3974

Image c 22.0138 24.1856 24.1056

Image d 22.4783 23.4587 23.3977

Image e 21.2984 22.4621 22.3458

Image f 21.9223 23.7345 23.6345

PNSR
PNSR of  images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

…… …… …… ……

Image p 23.3459 24.8436 24.8014

Image q 23.4986 25.0457 24.9245

Image r 22.8561 24.7837 23.6954

Image s 22.5465 23.8256 23.7256

Image t 21.3788 22.7524 22.7245

Table 6 
PNSR of the original color vegetation canopy images and the denoised images  (mixed with Gaussian noise which  

average value is 0 and variance is 0.1)
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Table 8 
FSIM of the original color vegetation canopy images  

and the denoised images  (mixed with Gaussian noise with  
average value of 0.1 and variance of 0.1)

FSIM
FSIM of images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.9239 0.9673 0.9535

Image b 0.9045 0.9398 0.9325

Image c 0.9134 0.9424 0.9399

Image d 0.9392 0.9561 0.9514

Image e 0.9235 0.9503 0.9486

Image f 0.9382 0.9579 0.9551

…… …… …… ……

Image p 0.9037 0.9403 0.9389

Image q 0.9187 0.9486 0.9443

Image r 0.9375 0.9535 0.9501

Image s 0.9331 0.9584 0.9573

Image t 0.9284 0.9496 0.9475

Table 9 
FSIM of the original color vegetation canopy images  

and the denoised images  (mixed with Gaussian noise with  
average value of 0 and variance of 0.1)

FSIM
FSIM of images (a–t)

AMF in RGB AMF in YUV Simplified AMF 
in YUV

Image a 0.9183 0.9397 0.9359

Image b 0.9042 0.9489 0.9452

Image c 0.9273 0.9582 0.9553

Image d 0.9274 0.9501 0.9482

Image e 0.9136 0.9398 0.9371

Image f 0.9252 0.9482 0.9463

…… …… …… ……

Image p 0.9317 0.9582 0.9560

Image q 0.9023 0.9402 0.9381

Image r 0.9264 0.9493 0.9479

Image s 0.9291 0.9498 0.9478

Image t 0.9174 0.9532 0.9498

5.3. Analysis of the experimental results. It can be seen from 
Tables 1‒3, Tables 4‒6 and Tables 7‒9 that, for color vegeta-
tion canopy images, the AMF denoising effect in YUV color 
space is better than that in RGB color space. However, because 
of the color space conversion, the running time of the AMF 
denoising algorithm in YUV space is relatively prolonged. After 
the simplification of the denoising process of component V, 

the running time of the denoising algorithm in YUV space is 
greatly reduced, and the good denoising effect is maintained 
at the same time.

6.	 Conclusions

In this paper, AMF algorithm was adopted to denoise the color 
vegetation canopy images. Based on the fact that the images 
have many details, easy to be mixed with Gaussian noise and 
have single color, denoising experiments were carried out in 
RGB and YUV color spaces. It was found in the experiments 
that the denoising effect in YUV was better than that in RGB 
color space, due to the low correlation of the three image 
components in YUV color space. In addition, among the three 
image components in YUV, V component mainly reflects the 
chromatism of cyan-magenta in the image. For the color vege-
tation canopy image with yellow-green as the dominant color, 
the details contained in V component are very few. Therefore, 
this paper proposed a simplified AMF algorithm that only used 
original mean filtering to denoise V component. Experimental 
results show that this method can effectively reduce the run-
ning time of the denoising algorithm while maintaining a good 
denoising effect. Especially when a large amount of images 
needs to be processed, it will have good application value.

The method proposed in this paper can be extended to pro-
cessing of other color images with a single tone feature and has 
certain follow-up research value.
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