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COMBINATION OF ARTIFICIAL NEURAL NETWORKS AND NUMERICAL MODELING 
FOR PREDICTING DEFORMATION MODULUS OF ROCK MASSES

The deformation modulus of the rock mass as a very important parameter in rock mechanic projects 
generally is determined by the plate load in-situ tests. While this test is very expensive and time-con-
suming, so in this study a new method is developed to combin artificial neural networks and numerical 
modeling for predicting deformation modulus of rock masses. For this aim, firstly, the plate load test was 
simulated using a Finite Difference numerical model that was verified with actual results of the plate load 
test in Pirtaghi dam galleries in Iran. Secondly, an artificial neural network is trained with a set of data 
resulted from numerical simulations to estimate the deformation modulus of the rock mass. The results 
showed that an ANN with five neurons in the input layer, three hidden layers with 4, 3 and 2 neurons, 
and one neuron in the output layer had the best accuracy for predicting the deformation modulus of the 
rock mass.
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Modulus of Rock Mass; Arch Dam

1. Introduction

One of the most important parameters in designing the concrete arch dam is the rock mass 
deformation modulus. The deformation modulus of the rock mass can be estimated via several 
methods such as empirical methods and in situ testing. In situ tests are mostly used to determine 
the deformation modulus include the plate loading tests, plate jacking tests, radial jacking tests 
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(Goodman jack test), flat jack tests; cable jacking tests; dilatometer tests; pressure chamber 
(Palmström & Singh, 2001). The in situ tests of the deformation modulus are time-consuming and 
impose notable costs and operational difficulties. Because of this fact, the deformation modulus is 
often estimated indirectly from classification systems, the experience of the engineering geologist 
or from literature data (Finley et al., 1999). The relationship between the deformation modulus 
and rock classification systems has been investigated by some researchers (Bieniawski, 1978; 
Serafim, 1983; Nicholson & Bieniawski, 1990; Hoek & Brown, 1997; Hoek et al., 2002; Zhang 
& Einstein, 2004; Hoek & Diederichs, 2006).

Some researchers have used numerical modeling to simulate in situ tests and obtain defor-
mation modulus (Tajduś, 2009, 2010; Ravandi et al., 2013; Alshkane, 2015). Artificial neural 
networks (ANN) have been applied for solving logical functions in many fields of geomechan-
ics. Roy and Singh are employed ANN for evaluating complex features of rock (Roy & Singh, 
2004). The special model of the ANN method is implemented by Maulenkamp and Grima for 
developing a method of uniaxial compressive strength prediction (Meulenkamp & Grima, 1999). 
Yang and Zhang have developed an ANN system for point load test process (Yang & Zhang, 
1997), and Cai and Zhao used this method for designing underground spaces like tunnels (Cai 
& Zhao, 1997). In addition, the deformation modulus has been predicted with Neuro-fuzzy or 
artificial neural network model (Gokceoglu et al., 2004; Sonmez et al., 2006; Gholamnejad et 
al., 2013). But the combination of ANN and Numerical simulation have not used in previous 
work in this filed.

In this study, the numerical method and artificial neural network are combined to develop 
a method for predicting the deformation modulus of the rock mass. To this aim, firstly, the plate 
load test, which has been performed in the Pirtaghi dam, is simulated by FLAC3D (Fast La-
grangian Analysis of Continua in 3Dimensions). Secondly, the obtained deformation modulus 
with the numerical method is used to train the Artificial Neural Network. Finally, the results of 
the artificial neural network are compared with the actual deformation modulus values that are 
obtained from the plate load test. 

2. Pirtaghi dam 

The Pirtaghi dam is a double curvature concrete arch dam that will be constructed on the 
Ghezelozan river in the Ardabil province of Iran. Pirtaghi dam site will be located on the rock 
masses consisting of andesite, basaltic andesite and rhyolite (belonging to the Oligocene age), 
which are located discordantly on the tuff, volcanic breccias and tuff breccias (belonging to the 
Eocene age). The plate load test is used to determine the geomechanical rock mass properties 
of the Pirtaghi dam abutments. Eight plate load tests are performed in two galleries (LG1 and 
RG1). The location of these galleries is shown on the geology plan in Fig. 1. 

The plate load test, which has wide application in rock engineering practice, involves loading 
two opposite sides of a test gallery, by stiff or flexible plates, and measuring the corresponding 
deflections at the surface and depth below the plate.

The main objective of a plate load test is to determine the deformation modulus of the rock 
mass. This is generally done by interpretation of the measured displacements using the ASTM1 

1 American Society for Testing and Materials.
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D. 4394-08 Suggested method for “determination of the deformation modulus of the rock mass” 
as Eq. (1):

 
Z
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where wz is the vertical displacement (m), R is the radius of the loading plate (m), P is the applied 
stress (MPa), Z is the depth of deformation measurement along the loading plate axis (m), υ is 
Poisson’s ratio and E is the deformation modulus of the rock mass (GPa). 

3. Numerical modeling

In this paper, the in situ plate load test is simulated using Finite Difference Methods (FDM) 
by FLAC3D. The simulations are aimed to generate one set of data for training an artificial 
neural network to evaluate the deformation modulus of the rock mass. The indentation process 
is a simulated loading process of the plate load test in an exploratory gallery. The loading steps 
and measurement points are modeled in real conditions. For a given loading process, the corre-
sponding displacement is extracted for measurement points at different distances from the loading 
place. The deformation modulus of the rock mass is computed by ASTM suggested formulation 
(Eq. (1)). The 3D geometry model is presented in Fig. 2.

Fig. 1. The geometry plan of the Pirtaghi dam and the location of its galleries 
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After verification of the numerical model using real test data, the simulation process is 
repeated for different conditions, and the obtained data are collected for the next stage of the 
solution process. In the next stage, the ANN is trained by the data obtained from the numerical 
model (Table 1).

4. Artificial neural networks (ANNs)

Artifici  al neural networks (ANNs) have a powerful ability to model difficult problems where 
the relationship between the model variables is complex or unknown. ANN is a collection of 
elementary processing units called neurons. Neurons consist of a set of weighted input connec-
tions (ANN learning and training are achieved by this adjustable connection weight (wjn)), bias 
input, state function, transfer function, and output. The neurons are interconnected in a predefined 
topology called layers (Kishan et al., 1997). Typical network topology consists of the input layer, 
one or more hidden layers and the output layer (Fig. 3).

The inpu t and output data given in Table 1 are used for training, validation, and testing the 
model of the neural network. From these, 65% of the data are chosen for training, 15% for valida-
tion and 20% for the final test. The input parameters are Poisson’s ratio (ʋ), elastic modulus of 
intact rock (Ei), Rock Mass Rating (RMR), uniaxial compressive strengths of the rock (UCS), and 
the vertical stress at the centers of the loading plate due to overburden (Sv). In order to determine 
the mechanical parameters (Ei, UCS, and ʋ), 53 numbers of core samples from drilled boreholes 
in Pirtaghi dam site were selected for laboratory tests. The Rock Mass Rating (RMR), given by 
Bieniawski (1989), is calculated based on six field and laboratory parameters that collected in 
aformentioned site. These parameters were UCS, RQD, Spacing of discontinuities, Conditions of 
discontinuities, Groundwater conditions and Orientation of discontinuities. The output parameter 
is the deformation modulus of the rock mass obtained from FLAC3D.

Fig. 2. Geometry model of Pirtaghi dam gallery
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TABLE 1

Rock properties and the measured Em for Pirtaghi dam

ʋ Ei (GPa) UCS (MPa) RMR Sv (Pa) Em (FDM) (GPa)
1 2 3 4 5 6

0.22 49.52 176.43 66 822960 28.09
0.2 34.61 172.69 65 1294095 19.34
0.21 47.54 179.4 65 656625 26.75
0.19 35.23 185.32 67 464400 19.58
0.2 48.76 175.82 66 883485 27.37
0.18 35.6 144.77 64 1339380 19.59
0.19 46.36 158.15 64 2302020 25.81
0.21 44.17 149.11 61 4607880 24.88
0.19 55.93 187.26 68 560640 31.05
0.24 21.04 112.82 61 1439570 12.1
0.19 23.64 177.66 65 1043200 13.11
0.18 70.4 235.69 68 156000 38.88
0.2 39.34 124.13 65 1831395 21.94
0.19 52.19 187 67 1255170 29.01
0.22 51.83 167.37 67 852810 29.46
0.23 22.82 74.77 61 1270815 12.99
0.19 30.77 102.26 63 2640055 17.06
0.19 54.76 167.69 66 3578400 30.33
0.21 34.97 173.65 67 84150 19.67
0.21 28.36 96.06 61 5485870 15.9
0.23 28.58 162.97 66 660400 16.28
0.19 43.5 169.1 68 2378710 24.13

Fig. 3. Flowchart of a typical one-hidden-layer and operation of ANNs (Shahin et al., 2001)
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1 2 3 4 5 6
0.22 31.7 135.7 65 3369310 17.94
0.22 42.2 138.8 65 4004880 24
0.23 37.6 115 64 667500 21.37
0.21 52.33 196.44 66 2254920 29.51
0.21 35.4 120.1 63 841500 19.92
0.24 20.9 72.16 61 850500 12.01
0.21 30.6 117.5 67 1389380 17.22
0.2 29.27 141.9 65 514000 16.4
0.21 37.4 91.5 61 527360 21.06
0.23 28.5 102.3 63 336340 16.27
0.19 52.29 159.01 66 1673280 28.98
0.2 53.67 201.46 68 1218694 30.06
0.26 20.15 75.64 61 915325 11.61
0.23 33.45 171.93 64 624960 19.09
0.21 33.43 125.46 63 488560 18.74
0.22 27.97 104.01 62 720000 15.8
0.23 28.35 89.42 61 427680 16.07
0.22 25.22 96.41 63 2191630 14.17
0.22 30.91 126.73 62 3238500 17.52
0.22 34.12 117.3 63 222270 19.17
0.26 21.92 81.36 61 1590880 12.7
0.21 26.32 122.73 62 2926400 14.75
0.19 43.29 148.55 64 4490240 24.03
0.21 34.53 174.57 67 4853760 19.46
0.21 35.15 174.01 67 5392420 19.76
0.19 52.59 168.5 66 679520 29.09
0.19 52.29 153.01 65 1679920 28.99
0.24 26.56 90.69 62 812910 15.16
0.21 52.33 196.44 68 2254920 29.51
0.21 36.17 166.72 67 4335000 20.36
0.22 34.12 117.3 65 222270 19.17

 In this paper, in order to reach an appropriate architecture, several network topologies were 
examined. The Feed-forward back propagation network was chosen because the back-propagation 
algorithm is a strong technique of modeling for input/output pattern identification problems (Javad 
& Narges, 2010; Monjezi et al., 2011).

  The target network should produce a minimum error for the training pattern and give a gener-
alized solution that performs well in the testing pattern. The results are presented in this section to 
demonstrate the performance of the networks. The mean squared error (MSE) and the coefficient 
of correlation between the predicted and observed values are taken as the performance measures.

Several runs were performed to provide the best results. The best results were obtained by the 
Levenberg-Marquardt algorithm and the network with architecture 5-4-3-2-1 (five neurons in the 
input layer, three hidden layers with 4, 3 and 2 neurons, with tangent sigmoid transfer function, 



343

and one neuron in the output layer with pure linear transfer function), which had the minimum 
MSE and maximum correlation coefficient, was considered as the optimum model. The structure 
of the optimum network is shown in Fig. 4. Validation of the results given in Table 2. The errors 
obtained for this validation show the satisfactory quality of the analysis.

TABLE 2

Validation of results

Best Networks Cross-Validation
Run # 2

Epoch # 71
Minimum MSE 2.4133E-05

Final MSE 2.76017E-05

Fig. 4. Suggested ANN for Em prediction

Fig. 5 illustrates the comparison between the measured deformation modulus with FLAC3D 
and the predicted deformation modulus by ANN. The obtained MSE is 0.0098 which is a small 
value.

Finally, the deformation modulus values obtained from the neural network method were 
compared with the real data obtained from the plate load test. The results presented in Fig. 6 
are indicative of a high correlation coefficient between measured and predicted deformation 
modulus (Em). Hence, it can be proved that neural network predictions are close to plate load 
test results.
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Fig. 5. Comparison of measured vs. predicted values

Fig. 6. Correlation between measured and predicted Em

5. Conclusions 

In this study, numerical modeling and artificial neural network were combined to estimate 
the deformation modulus of the rock mass of the Pirtaghi dam site. For this purpose, the plate 
load test was simulated by FLAC3D and the accuracy and reliability of the numerical model were 
verified by field data. Artificial Neural Network has been trained using the data obtained from the 
FDM analysis. The optimum ANN architecture was found to be five neurons in the input layer, 
three hidden layers with 4, 3 and 2 neurons, and one neuron in the output layer. 
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  The high correlation coefficient (0.99) and low mean squared error (0.0098) determined for 
the predicted values by the ANN versus the measured deformation modulus can be demonstrated 
that the proposed method had an excellent capability for predicting the deformation modulus of 
the rock mass as well as the plate load. By update datasets of training stage over the time, the 
suggested optimum neural network structure in this paper can produce results with a higher degree 
of accuracy, and it could be replaced to expensive plate load test to determine the deformation 
modulus in other sites. 
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