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1. Introduction

The application of fractional-order calculus (FOC) in control
theory and engineering has been the subject of growing inter-
est in recent years, due to its proven advantages over classi-
cal integer-order calculus, especially as a mathematical tool for
the synthesis of dynamical models and the design of sophis-
ticated control laws [1–5]. A number of studies have proven
the robustness, performance, and accuracy of such models and
controllers, most recently [6–11]. Despite the obvious advan-
tages of FOC-based models, a major challenge is still the com-
plexity of calculating fractional differintegral equations. Com-
mon approaches to solving this problem include applying short
memory methods to simplify the calculations or using integer-
order approximations for fractional operator sν . The digital im-
plementation of FOC equations, not only in theory, but in real
devices, has been dealt with in only a small number of works
[10, 12–18].

In this study, a sophisticated laboratory stand for research on
FOC applications was designed, with a fast brushless direct-
current (BLDC) micromotor as the target modeled system.
Based on real system responses, well-known classical integer
models – first order plus dead time (FOPDT), second order
plus dead time (SOPDT) – as well as fractional-order models
were constructed. Identification of the plant was performed us-
ing classic integer-order Küpfmüller models and verified with
the prediction error method (PEM) algorithm in the PID Tuner
applet of the MATLAB System Identification Toolbox [19].
Synthesis of the final fractional-order form of the model was
achieved by minimizing the chosen error cost function, evalu-
ated using the Grünwald-Letnikov algorithm in the FOMCON
toolbox [20–22]. All the models were verified for accuracy
against measurements of real objects.
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In Section 2 of the paper, the mathematical preliminaries re-
lated to fractional calculus and fractional-order systems are laid
out. Next, a physical model of the laboratory stand is described
in detail. Usage of different types of the model for plant iden-
tification are discussed in Section 4. All proposed models have
been verified for accuracy and presented as indicators and per-
formance indices, in terms of max absolute percentages and
square root means. The final section draws conclusions from
the results.

2. Mathematical preliminaries

Three definitions of fractional differintegral operators are
widely known and applied: Grünwald–Letnikov (GL), Rie-
mann–Liouville (RL) and Caputo (C). We will focus on the
first definition, a generalization of the classic derivative of the
n-th (n ∈ N) order to a derivative of an arbitrary real order
ν ∈ R+. This form is most convenient for digital implemen-
tation [1–3, 23].

Definition 1. Grünwald–Letnikov classic fractional differinte-
gral operator
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In practical applications, usually the starting point is t0 = 0
and the values of the function f (t) are not defined in the range
t ∈ (−∞, t0). Therefore, a truncated form of Definition 1 is of
great interest.

Definition 2. Grünwald–Letnikov truncated fractional differin-
tegral operator

GL
t0 Dν

t f (t) = lim
h→0

1
hν

N
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j=0

(−1) j f
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)
(2)

where N =

[
t − t0

h

]
.

To avoid problems relating to the finite range and precision
of numbers in computing, the factorial value in (1) and (2) on
a microcontroller, a slightly modified form shall be considered,
which uses recursively computed weights [2, 24–26]:
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(1)–(3) can be also expressed in matrix algebra form:
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. (4)

In [27, 28], it was shown that by evaluating fractional-order
derivatives of several proposed elementary functions using sim-
plified (finite memory) forms of GL and Horner definitions one
can obtain a better approximation accuracy with fewer coef-
ficients and samples processed using the later algorithm. The
Grünwald-Letnikov formula (3) requires computing discrete
convolution of function f (kh) using a set of coefficients with
lengths over 600 to provide satisfactory results. In general, the
accuracy depends closely on several factors, the most important
of which are the selected value for the fractional order ν [29],
the dynamic range of the input signal, and the precision of the
numerical calculations.

Let us now consider a dynamical system, described by the
fractional-order differential equation:

Definition 3. Fractional-order system, fractional differential
equation, and Laplace transform

an
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The system is of a commensurate order if the αn, βm orders
in the above formula are multiples of a base, real order ν , i.e.

αk,βk = kν , ν ∈ R+. Moreover, if ν =
1
q

, q ∈ Z+ then the sys-

tem is of the rational order.
Assuming zero initial conditions, the Laplace transform of

(1) is defined as:

L
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Hence, the fractional-order system can be also described by
a continuous transfer function of the form:
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If the system is of the commensurate-order, then the transfer
function G(s) can be rewritten as a pseudo-rational function,
H(λ ), λ = sγ , allowing for example simple migration to a state-
space model H(s) =C(sI −A)−1B+D.

Theorem 1. Matignon’s stability theorem.
Let us consider the fractional-order transfer function of the

general form G(s) =
Z(s)
P(s)

. The G(s) transfer function is stable

if in the σ -plane:

|arg(σ)|> q
π
2
, ∀σ ∈ C, P(σ) = 0, σ := sq (8)

and σ = 0 is not a single root of P(s).

3. Physical model of laboratory stand

For the purposes of system modeling using fractional differ-
integral operators, a laboratory stand was created. In the main
part of the stand there are two high-speed brushless DC micro-
motors, commonly used in the construction of flying objects,
installed symmetrically on an adjustable bar (Fig. 1 and Fig. 2).

Fig. 1. Block scheme for identification based on the measurement of
output samples of plant for a known input signal (1 – BLDC micromo-

tor and driver, 2 – high-precision encoder, 3 – microcontroller)
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The first motor acts as the main drive, while the second gen-
erates system disturbances in a controlled manner. The bar is
connected by the axis of rotation with an incremental encoder,
allowing determination of the current angle/position of deflec-
tion. The controllers of the encoder and motor are supervised
by the STM32F746ZG microcontroller [30]. The basic param-
eters of the components of the laboratory stand are displayed in
Table 1.

Fig. 2. Overview of the laboratory device (1 – BLDC micromotor and
driver, 2 – high-precision encoder, 3 – microcontroller)

Table 1
Selected features of the stand components [30–32]

Microcontroller

Model STM32F746ZG

CPU ARM Cortex-M7 32-bit RISC core

CPU frequency 216 MHz

SRAM memory

320KB (including 64KB of data TCM RAM
for critical real-time data)

16KB of instruction TCM RAM
(for critical real-time routines)

4KB of backup SRAM
(available in the lowest power modes)

FLASH memory 1 Mbyte

ADC frequency 108 MHz

ADC sampling time 10 µs

Benchmark 231 DMIPS

Encoder

Model E6B2-CWZ3E

Type Incremental

Resolution 1000 P/R

Motor

Model A2212 2200KV 2-3S

Rotations 2200 RPM/V

Power 220 W

Control PWM

The physics of the system are described as the resultant of
forces acting on its appropriate elements, including the thrust
and gravitation related to each motor, and the forces associated
with the bar installation including bearing resistance and bar
bounce. Due to the system dynamics and lack of detailed spec-
ification of its elements, it is impossible to determine an ana-
lytical description of the system physics, and for this reason the
whole stand is treated as a black box, which takes into account
the motor settings and responses for the current bar position

4. Plant identification

Identification of the approximated linear model of a BLDC mo-
tor treated as a black box (and any other model in general) can
be performed in two ways: 1) indirectly, where model of a con-
troller C(s) in a closed-loop system is known and parameters
of the plant model G(s) are obtained based on a reference input
signal; 2) directly, in an open-loop by measuring output samples
of the plant for a known input signal (Fig. 1) [21,33]. Synthesis
of the final form of the model is based on finding coefficients of
formula (7), so the chosen error cost function (for instance, the
least-squares algorithm (LSA)) is minimized:

e(k) = y(k)− yre f (k),

Ec ≥ LSA = ‖e(k)‖2
2

(9)

where y(k), yre f (k) denote position (angle) of an adjustable bar
determined by encoder pulses for a reference signal u(k) and
the output of the simulated model, respectively (Fig. 1), and
Ec is an arbitrary chosen maximum accepted value of the error
norm. Alternatively, the algorithm may be terminated when the
desired number of iterations is reached. In this study we fol-
lowed method 2).

The output data of the described system was the number of
encoder impulses, indicating the angular position of the raised
arm. The PWM signal connected to the driver of the BLDC had
a constant pulse width of 27%. The results of four independent
series of measurements are presented in Fig. 3. Series 1–3 indi-
cate repeatability of the measurements, while the series 4 suf-
fered from the external disturbances and was omitted in further
analysis.

At time te = 2.6 s, the PWM control signal was turned off.
The data were further processed in MATLAB software. Since
the sampling period of the acquisition board was not entirely
constant and equaled ts,init = 10 ms±∆1 ms, we received a se-
ries of non-uniformed data in time. Therefore, the series needed
to be resampled, first at a new constant sampling frequency
fs using the linear interpolation method. The value of 1 kHz
was chosen and later used also for configuration of the target
STM32 microcontroller. In MATLAB, one can obtain interpo-
lated samples by the following procedure:

Listing 1: Signal interpolation (resampling) in Matlab

Ts = 0 . 0 0 1 ;
method = ’ l i n e a r ’ ;
dS = t i m e s e r i e s ( msrdData , msrdTime ,
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’Name ’ , ’ Measured da ta ’ ) ;
newTime = msrdTime ( 1 ) : Ts : msrdTime ( end ) ;
uS = r e s a m p l e ( dS , newTime , method ) ;

where:
• Ts – new sampling period [s],
• method – interpolation method (also ‘zoh’ for zero-order

hold),
• dS – measured data series,
• msrdData – N-element vector of measured samples,
• msrdTime – corresponding time vector,
• newTime – desired time vector,
• uS – new series of unified values.

Fig. 3. Measured number of encoder impulses (angle) for the PWM
27% duty cycle

In further experiments, we used Series 1 (see Fig. 3). The uS
vector was then used to obtain an accurate model of the plant.
This procedure resulted in the following formulas:
1. First-order dynamic plant with delay (FOPDT). Identifica-

tion was performed using classic integer-order Küpfmüller
models, verified using the PID Tuner [19].

GP1D(s) =
Kp

1+Tps
e−Tds =

1
1+0.4934s

e−1.2279s (10)

where Kp denotes the gain of the model, Tp is the time con-
stant and Td is the delay of the plant.

2. Second-order dynamic plant with delay (SOPDT). The
identification procedure was carried out in the same as in
previous item.

GP2D(s) =
Kp

(1+Tps)2 e−Tds =
1

(1+0.319s)2 e−1.064s (11)

with the same symbols as in (10).
3. Non-integer order dynamic plant with delay (NIOPDT).

Identification of the fractional order model was performed
in the FOMCON toolbox for MATLAB, analogically to pre-
vious integer order models by minimization of the error cost

function, using the Heaviside unit step response evaluated
in the time domain with implementation of the Grünwald-
Letnikov definition (3)–(4) and Trust-Region for LSA (9)
optimization algorithm [20, 34]. Using formula (11) as the
initial approximation of the model, after several iterations
we obtained the following fractional order transfer function
(FOTF) (see Fig. 4):

GPFD(s) =
Kp

ansνn +an−1sνn−1 + . . .+a0sν0
e−Tds =

=
1

0.18234s1.9909 +0.65536s0.98319 +0.9992
e−s. (12)

Fig. 4. FOMCON identification tool [34] used for obtaining fractional
plant model (4)

It should be noted that in order to simplify the simulations
of the plant models on a microcontroller, the Kp gains in (10)–
(12) were set to 1. In a typical closed-loop control system, the
process variable PV (e.g. temperature of a furnace) depends on
the control signal of the controller actuator (the power of the
heating system), namely the control variable CV , based usually
on a nonlinear characteristic curve [35]. In this application, the
angle assumed by the arm (the number of encoder impulses)
and the rotation speed of the propeller attached to the BLDC
motor are functions of the average power applied to the motor,
specifically the duty cycle of the PWM signal D on the motor
driver input PAVG = PPEAK ·D.
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Stability of the identified models was determined following
the Theorem 1. With tested order q = 0.01 (refer to (5)–(7) in
Definition 3) the non-integer order model (12) remains stable as
can be noticed in Fig. 5. Also, for integer-order models all the
poles are placed on the left half of the complex plane (Fig. 6
and 7).

Fig. 5. Stability analysis for non-integer order model GPFD(s) (12)

Fig. 6. Stability analysis of second-order model GP2D(s) (11)

The accuracy of the models was evaluated based on simula-
tion in time tsim = 5 s and presented as the maximum absolute
percentage error (MaxAPE) and normalized root mean squared
error (NRMSE) indicators and performance indices ISE, IAE,
ITSE and ITAE, listed in Table 2, 3.

Fig. 7. Stability analysis of second-order model GP1D(s) (10)

Table 2

ISE




t∫

0

e2(t)dt


, IAE




t∫

0

|e(t)| dt


 and ITSE




t∫

0

te2(t)dt




matching the models with acquired data series

Type ISE IAE ITSE

FOPDT 6.9119E-03 1.2005E-01 1.2433E-02

SOPDT 3.0031E-03 7.8585E-02 5.6329E-03

NIOPDT 9.6876E-04 4.6558E-02 1.5373E-03

Fig. 8. Comparison of step responses of the proposed models
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Table 3

ITAE




t∫

0

t |e(t)| dt


, NRMSE


1−

√
∑T

t=1 e(t)2

T (ymax − ymin)


 and

MaxAPE

(
max

∣∣ym,i − yp,i
∣∣

ym,i

)
matching the models with acquired

data series

Type IITAE NRMSE MaxAPE

FOPDT 2.4559E-01 91.15% 1.1725E+03

SOPDT 1.5759E-01 94.17% 1.9555E+04

NIOPDT 9.7150E-02 96.68% 6.4508E+03

5. Conclusions

This paper has presented a comparison that provides a basis
and supports possibilities of novel approach to modelling using
fractional-order differential equations, which was applied in the
case of an electrical driver with a brushless micro-motor. Based
on real system responses, well-known classical integer mod-
els (FOPDT, SOPDT) as well as fractional-order models were
designed. Identification of the plant was performed using clas-
sic integer-order Küpfmüller models and verified with MAT-
LAB Toolboxes. Synthesis of the final fractional-order form
of the model was achieved in the FOMCON toolbox using the
Grünwald-Letnikov algorithm with minimization of the chosen
error cost function [19,34]. The results (incl. NRMSE 96.68%)
show that the fractional-order model has the best fit with the
original brushless DC motor response. However, the application
of fractional-order operators has some performance vulnerabil-
ities, due to the huge number of calculation operations required
for each iteration of the algorithm. This means that when deal-
ing with fast changing systems or processes, there is the risk
of insufficient microcontroller computing power. Optimization
of the digital implementation of fractional-order models on a
microcontroller is further described in [36].
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[28] D.W. Brzeziński and P. Ostalczyk, “About accuracy increase of
fractional order derivative and integral computations by apply-
ing the Grünwald-Letnikov formula”, Commun. Nonlinear Sci.
Numer. Simul. 40, 151–162 (2016).

[29] P. Ostalczyk, “Remarks on five equivalent forms of the frac-
tional-order backward-difference”, Bull. Pol. Ac.: Tech. 62 (2),
271–278 (2014).

[30] STMicroelectronics, “STM32F745xx STM32F746xx ARM-
based Cortex-M7 32b MCU+FPU, 462DMIPS up to 1MB
Flash/320+16+4KB RAM, USB OTG HS/FS, ethernet, 18TIMs,
3ADCs, 25 com itf, cam & LCD Datasheet – production data”,
2016, [Online]. Available: https://www.st.com/resource/en/
datasheet/stm32f746zg.pdf [Accessed: 17-Apr-2020].

[31] Omron, “E6B2-CWZ6C 1000P/R 2M | OMRON Industrial Au-
tomation”, 2019, [Online]. Available: http://www.ia.omron.com/
product/ item/2450/ [Accessed: 17-Apr-2020].

[32] ABC-RC, “A2212 – 1000KV BLDC Brushless Motor 2-3S –
135W”, 2020, [Online]. Available: https://abc-rc.pl/product-
pol-6764-Silnik-ABC-Power-A2212-1000KV-2-3S-135W-ciag-
820g.html [Accessed: 17-Apr-2020].

[33] S. Kamalasadan and A. Hande, “A PID Controller for Real-Time
DC Motor Speed Control using the C505C Microcontroller”, 17
th International Conference of Computer Applications in Indus-
try and Engineering 850, 34–39 (2004).

[34] A. Tepljakov, E. Petlenkov, and J. Belikov, “FOMCON: Frac-
tional-Order Modeling and Control Toolbox for MATLAB”, in
MIXDES 2011, 18th International Conference “Mixed Design
of Integrated Circuits and Systems”, Gliwice, Poland, 2011,
pp. 684–689.

[35] W.Y. Svrcek, D.P. Mahoney, and B.R. Young, A Real-Time Ap-
proach to Process Control, John Wiley & Sons, Ltd, 2nd ed.,
2007.

[36] M. Matusiak, M. Bąkała, and R. Wojciechowski, “Optimal
Digital Implementation of Fractional-Order Models in a Micro-
controller”, Entropy 22, 366 (2020).

Bull. Pol. Ac.: Tech. 68(3) 2020 7


