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1. Introduction

The extremal value of the state variable x(t) has a fundamental
role in many branches of the industry. In the chemical industry,
the overrising temperature or pressure can lead to explosion. In
the energy industry the overvoltage waves can destroy the in-
stallation. In the economic systems it is the determination of
the maximal profit. The search for extremal values of the con-
trolled quantity was the subject of many papers [5, 6, 10, 11,
12], however, no analytic formulae for their calculation were
found. This paper provides original formulae which allow the
determination of extremal values. For the first time, solutions of
a certain class of transcendental equations are given in the form
of analytical relationships. These formulae make it possible to
estimate the accuracy of the performance of systems described
by differential equations. In this way they fill the gap existing
in the literature on the subject. In the article the theorems are
proved, which give the analytical formulae for the determina-
tion of the maximal positive value of the state variable and the
times in which these occur.

We consider the dynamic systems which are described by the
differential equations

x(n)(t)+a1x(n−1)(t)+ . . .+an−1x(1)(t)+anx(t) =

= u(m)(t)+b1u(m−1)(t)+ . . .+bm−1u(1)(t)+bmu(t) (1)

where:
ai, bi – constant parameters,
x(t) – the dynamic error,
u(t) = δ (t) – Dirac impulse of the external signal.
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The characteristic equation of the equation (1) is

M(s) = (s− s1)(s− s2) . . .(s− sn) = 0. (2)

We assume that the roots of the equation (2) are real, different
and negative [4, p. 120]. We call them the poles.

0 > s1 > s2 > .. . > sn−1 > sn . (3)

The zeroes zi of the polynomial L(s) given below are real, dif-
ferent and negative.

L(s) = (s− z1)(s− z2) . . .(s− zm), m < n. (4)

The essential assumption is that the poles of M(s) and the ze-
roes of L(s) interlace.

0 > s1 > z1 > s2 > z2 . . . > zm > sn . (5)

We denote the transfer function

G(s) =
L(s)
M(s)

(6)

and the solution of the equation (1) in the operational form is

X(s) =
L(s)
M(s)

δ (s). (7)

Then the solution of the equation (1) in the time domain is

x(t) =
n

∑
i=1

L(si)

M(1)(si)
esit . (8)

The initial conditions of the equation (1) depend on the Dirac
impulse δ (t) and the poles and zeroes of the transfer func-
tion G(s).
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2. Statement of the problem

We want to determine the number of the extremal values x(τ)
of the solutions x(t), and the analytic formulae for the extremal
times τ .

We consider the following four cases:
1. L(s) = 1.
2. L(s) = s− z1.
3. L(s) = (s− z1)(s− z2).
4. L(s) = (s− z1)(s− z2) . . .(s− zn−1).

3. Solution of the problem

3.1. Case 1. We assume L(s) =1. It means that m = 0. The
initial conditions of the equation (1) are forced by δ (t) [1]

x(i)(0) = 0 for i = 0,1, . . . ,n−2

x(n−1)(0) = 1

}
. (9)

The solution of the equation (8) is

x(t) =
n

∑
i=1

1
M(1)(si)

esit (10)

and the derivative

x(1)(t) =
n

∑
i=1

si

M(1)(si)
esit . (11)

The necessary condition for the extremum of x(t) is

n

∑
i=1

si

M(1)(si)
esiτ = 0. (12)

In the work [2] it is proved that equation (12) has only one
solution τe2 > 0.

Taking into account the initial conditions (9) we claim that
the equation x(1)(t) = 0 has a solution of the multiplicity (n−2)
for τe1 = 0 and a single solution for τe2 > 0.

Theorem 1. If the roots of the characteristic equation (2) are
located in the constant distance between them, that is

s1, s2 = s1 +∆s, s3 = s2 +∆s, . . . , sn = sn−1 +∆s (13)

then the times τ of the extremums are equal

τe1 = τe2 = . . .τen−2 = 0

τen−1 =
n−1

s1 − sn
ln
(

sn

s1

)


. (14)

Proof. We denote the coefficients of the equation (8)

L(si)

M(1)(si)
= Ai , i = 1,2, . . . ,n. (15)

Multiplying equation (12) by e−snt we have

s1A1e(s1−sn)t + s2A2e(s2−sn)t + . . .+

+sn−1An−1e(sn−1−sn)t + snAn = 0. (16)

The coefficients
B1 = s1A1

B2 = s2A2
...

Bn = snAn





(17)

are equal to the corresponding coefficients of the equation

(
et −1

)n−2
(

e
(s1−sn)t

n−1 − sn

s1

)
= 0 (18)

which may be verified by inspection. �

Theorem 2. In the particular case when

s1, s2 = 2s1, s3 = 3s1, . . . , sn = ns1 (19)

it holds that

τe1 = τe2 = . . .τen−2 = 0

τen−1 =− 1
s1

ln(n)



. (20)

In the proof of Theorem 2 we have, according to the equation
(18), the simple equation

(
et −1

)n−2 (e−s1t −n
)
= 0. (21)

For example, when: s1 =−1, s2 =−2, s3 =−3 we have

x(1)(t) =−1
2

e−t +2e−2t − 3
2

e−3t = 0. (22)

From the necessary condition for extremum x(1)(t) = 0 after
some manipulations we obtain from (22) the equation

x(1)(t) = e2t −4et +3 = 0. (23)

From the equation (21) we have
(
et −1

)(
et −3

)
= e2t −4et +3 = 0 (24)

which is identical with the equation (23).

Example
In Fig. 1 the time response of the system is shown for:

s1 =−1, s2 =−3, s3 =−5, s4 =−7.

Numerical solution gives:
τe = (0, 0, 0.9729550745), xe = 0.004958717576.

From (14) we have: τe = 0, 0,
1
2

ln(7) = 0.9729550745.
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Fig. 1. Time response of the system for: s1 =−1, s2 =−3,
s3 =−5, s4 =−7

In Fig. 2 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, s4 =−4.

Fig. 2. Time response of the system for: s1 =−1, s2 =−2,
s3 =−3, s4 =−4

Numerical solution gives:
τe = (0, 0, ln(4)), xe = 0.017578125.

From (20) we have: τe = 0, 0, ln(4).

3.2. Case 2. We assume that

L(s) = s− z1 (25)

which means that m = 1, z1 < si < 0 (i = 1,2, . . . ,n).
The initial conditions of the equation (1) in this case are

x(i)(0) = 0 for i = 0,1, . . . ,(n−3)

x(n−2)(0) = 1

x(n−1)(0) =
n

∑
i=1

(si − z1) =−a1 − z1 < 0



. (26)

The solution of equation (1) is

x(t) =
n

∑
i=1

si − z1

M(1)(si)
esit (27)

then the derivative is

x(1)(t) =
n

∑
i=1

si(si − z1)

M(1)(si)
esit . (28)

The necessary condition of the extremum of x(t) is

x(1)(t) = 0. (29)

Theorem 3. Taking into account the initial conditions (26) and
the equation (29) we obtain the equation

(
es1t −1

)n−3
[

e2s1t − (n+1)z1 − (3n−1)s1

z1 − s1
es1t+

+
n(z1 −ns1)

z1 − s1

]
= 0. (30)

The solutions of equation (30) are

t(n−3)
e1 = 0

te2 =− 1
s1

ln

[
1
2
(n+1)z1 − (3n−1)s1 ±

√
∆

z1 − s1

]

where

∆ = [(n+1)z1 − (3n−1)s1]
2−

−4[n(z1 −ns1)](z1 − s1)




. (31)

Examples
In Fig. 3 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, z1 =−1.5.

Fig. 3. Time response of the system for: s1 =−1, s2 =−2,
s3 =−3, z1 =−1.5

Numerical solution gives:
τe = 0.4734671714, xe = 0.168461248.
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From (31) we have:

τe = ln(1.605551276) = 0.4734671718.

In Fig. 4 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, z1 =−2.5.

Fig. 4. Time response of the system for: s1 =−1, s2 =−2,
s3 =−3, z1 =−2.5

Numerical solution gives:
τe = 0.6251451173, xe = 0.2198549368.

From (31) we have:

τe = ln(1.868517092) = 0.6251451173.

In Fig. 5 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, z1 =−3.5.

Fig. 5. Time response of the system for: s1 =−1, s2 =−2,
s3 =−3, z1 =−3.5

Numerical solution gives:
τe = 0.7497709338, xe = 0.2821127704.

From (31) we have:

τe = ln(2.116515139) = 0.7497709338.

3.3. Case 3. We assume that

L(s) = (s− z1)(s− z2) (32)

which means that m = 2,

si < z2 < s2 < z1 < s1 < 0, i = 3,4, . . . ,n.

The initial conditions of the equation (1) in this case are

x(i)(0) = 0 for i = 0,1, . . . ,(n−4)

x(n−3)(0) = 1

x(n−2)(0) =
n

∑
i=1

(si − (z1 + z2))< 0

x(n−1)(0) =
n

∑
i=1

(si − z1)(si − z2)> 0





. (33)

The solution of equation (1) is

x(t) =
n

∑
i=1

(si − z1)(si − z2)

M(1)(si)
esit . (34)

Then the derivative is

x(1)(t) =
n

∑
i=1

si(si − z1)(si − z2)

M(1)(si)
esit . (35)

The necessary condition of the extremum x(t) is

x(1)(t) = 0. (36)

Theorem 4. Taking into account the initial conditions (33) and
the equations (35) and (36) we obtain the relation

(
e−s1t −1

)n−4
{
[z1z2 + z1 + z2 +1]e−3s1t−

− [(n+2)z1z2 +3nz1 +3nz2 +7n−4]e−2s1t+

+
[
(2n+1)z1z2 +(n(n+3)−1)z1 +(n(n+3)−1)z2+

+(2n+1)2 +2n(n−4)
]
e−s1t−

−
[
nz1z2 −n2z1 −n2z2 −n3]}= 0. (37)

It can be shown that the time te2 is determined from the equa-
tion (37).

The proof is similar to that of Theorem 1. We state that in the
case 1 the equation for the te2 was linear (21). In the case 2 with
z1 < 0 we obtain for te2 the equation of the 2-nd degree. It can
be shown that te2 can be determined by the equation of the 3-rd
degree when we have two zeroes z1, z2. Finally, when we have
z1, z2, . . . , zn−1, it means that m = n− 1, and no time te2 can
exist [see 2].
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Examples
In Fig. 6 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, s4 =−4, z1 =−1.5, z2 =−2.5.

Fig. 6. Time response of the system for: s1 =−1, s2 =−2, s3 =−3,
s4 =−4, z1 =−1.5, z2 =−2.5

Numerical solution gives: τe = 0.3615498986.
The time te obtained from (37) for n = 4 is:

te = 0.3615498986.
In Fig. 7 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, s4 =−4, s5 =−5,

z1 =−1.5, z2 =−2.5.

Fig. 7. Time response of the system for: s1 = −1, s2 = −2, s3 = −3,
s4 =−4, s5 =−5, z1 =−1.5, z2 =−2.5

Numerical solution gives: τe = 0.6076424554.
The time te obtained from (37) for n = 5 is:

te = 0.6076424551.
In Fig. 8 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, s4 =−4, s5 =−5, s6 =−6,

z1 =−1.5, z2 =−2.5.

Fig. 8. Time response of the system for: s1 = −1, s2 = −2, s3 = −3,
s4 =−4, s5 =−5, s6 =−6, z1 =−1.5, z2 =−2.5

Numerical solution gives: τe = 0.8016102738 .
The time te obtained from (37) for n = 6 is:

te = 0.8016102730.

3.4. Case 4.

Theorem 5. [2, 5]. In the case 4, we consider two polynomials

M(s) = sn +a1sn−1 + . . .+an−1s+an =

= (s− s1)(s− s2) . . .(s− sn) ,

L(s) = sm +b1sm−1 + . . .+bm−1s+bm =

= (s− z1)(s− z2) . . .(s− zm) .

We denote:

Ai =
L(si)

M(1)(si)
, i = 1,2, . . . ,n,

x(t) =
n

∑
i=1

Aiesit .

If
1◦ m = n−1,

2◦ si < 0, i = 1,2, . . . ,n

zi < 0, i = 1,2, . . . ,n−1

si �= s j , zi �= z j for i �= j




,

3◦ the poles of M(s) and the zeroes of L(s) interlace

sn < zn−1 < sn−1 < zn−2 < .. . < s2 < z1 < s1 < 0

then the function

x(t) =
n

∑
i=1

Aiesit

has no extrema.
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Fig. 7. Time response of the system for: s1 = −1, s2 = −2, s3 = −3,
s4 =−4, s5 =−5, z1 =−1.5, z2 =−2.5

Numerical solution gives: τe = 0.6076424554.
The time te obtained from (37) for n = 5 is:

te = 0.6076424551.
In Fig. 8 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, s4 =−4, s5 =−5, s6 =−6,

z1 =−1.5, z2 =−2.5.

Fig. 8. Time response of the system for: s1 = −1, s2 = −2, s3 = −3,
s4 =−4, s5 =−5, s6 =−6, z1 =−1.5, z2 =−2.5

Numerical solution gives: τe = 0.8016102738 .
The time te obtained from (37) for n = 6 is:

te = 0.8016102730.

3.4. Case 4.

Theorem 5. [2, 5]. In the case 4, we consider two polynomials

M(s) = sn +a1sn−1 + . . .+an−1s+an =

= (s− s1)(s− s2) . . .(s− sn) ,

L(s) = sm +b1sm−1 + . . .+bm−1s+bm =

= (s− z1)(s− z2) . . .(s− zm) .

We denote:

Ai =
L(si)

M(1)(si)
, i = 1,2, . . . ,n,

x(t) =
n

∑
i=1

Aiesit .

If
1◦ m = n−1,

2◦ si < 0, i = 1,2, . . . ,n

zi < 0, i = 1,2, . . . ,n−1

si �= s j , zi �= z j for i �= j




,

3◦ the poles of M(s) and the zeroes of L(s) interlace

sn < zn−1 < sn−1 < zn−2 < .. . < s2 < z1 < s1 < 0

then the function

x(t) =
n

∑
i=1

Aiesit

has no extrema.
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Proof. By the assumptions 1◦, 2◦, 3◦, Ai > 0 (i = 1,2, . . . ,n).
From the assumption 3◦ it results that




ai > 0 i = 1,2, . . . ,n

bi > 0 i = 1,2, . . . ,n−1

M(0)> 0, L(0)> 0

M(1)(s1)> 0, M(1)(s2)< 0, M(1)(s3)> 0, . . . ,

(−1)n−1M(1)(sn)> 0

L(s1)> 0, L(s2)< 0, L(s3)> 0, . . . ,

(−1)n−1L(sn)> 0.

From this we have that

Ai =
L(si)

M(1)(si)
> 0, i = 1,2, . . . ,n,

dx
dt

=
n

∑
i=1

siAiesit < 0 for each t ∈ R.

The initial condition x(0) = 1 and x(t) tends monotonically to
zero as time t → ∞ and no extremum exists. �

Example
In Fig. 9 the time response of the system is shown for:

s1 =−1, s2 =−2, s3 =−3, z1 =−1.5, z2 =−2.5.

Fig. 9. Time response of the system for: s1 = −1, s2 = −2, s3 = −3,
z1 =−1.5, z2 =−2.5

The Theorem 1÷5 represent the sufficient conditions of the
positive solutions of the state variable x(t).

The necessary conditions of the positive solutions can be de-
termined in the following way.

We consider the equation (1) with the right hand side equal
zero:

a0x(n)(t)+a1x(n−1)(t)+ . . .+an−1x(1)(t)+anx(t) = 0 (38)

and the general initial conditions

x(i)(0) = ci for i = 0,1,2, . . . ,n−1 . (39)

We assume that if the solution of the equation (38) x(t)≥ 0 for
0 ≤ t ≤ ∞, then the integral of the x(t)

J =

∞∫

0

x(t)dt (40)

is also positive.
Integrating each single term of the equation (38) we have

a0

∞∫

0

x(n)(t)dt +a1

∞∫

0

x(n−1)(t)dt + . . .+

+an−1

∞∫

0

x(1)(t)dt +an

∞∫

0

x(t)dt = 0. (41)

From the equation (41) we obtain

a0

[
x(n−1)(∞)− x(n−1)(0)

]
+a1

[
x(n−2)(∞)− x(n−2)(0)

]
+

+ . . .+an−1

[
x(1)(∞)− x(1)(0)

]
+

+an

∞∫

0

x(t)dt = 0. (42)

Taking into account the stable condition (3) that

x(i−1)(∞) = 0 for i = 1, . . . ,n (43)

and the relation (42) and (40) we have that

J =

∞∫

0

x(t)dt =
a0cn +a1cn−1 + . . .+an−1c1

an
, an > 0. (44)

Theorem 6. If the solution of the equation (38) x(t) ≥ 0 for
0 ≤ t ≤ ∞ then the integral J ≥ 0 for 0 ≤ t ≤ ∞ and taking into
account (44) we obtain the necessary condition for x(t)≥ 0

a0cn +a1cn−1 + . . .+an−1c1 ≥ 0, an ≥ 0 (45)

Unfortunately the necessary and sufficient conditions for the
positive x(t) are not yet known.

4. Conclusions

If the dynamic system is controlled by the Dirac impulse δ (t)
and the poles and zeroes of the transfer function interlace, then
only one extremum of x(t) can exist for m < n− 1. All the so-
lutions are positive. For m = n−1 no extremum exists.

These results are very important in automation and in case of
the long electrical lines. The positiveness of x(t) is important in
economics [6–10].

It is evident that with the increasing of the degree “n”, the
extremal value of time also increases τ = ln(n) and the value of
x(τ) diminishes.
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