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Abstract In this paper, the two-temperature thermoelasticity model is
proposed to a specific problem of a thermoelastic semi-infinite solid. The
bounding plane surface of the semi-infinite solid is considered to be un-
der a non-Gaussian laser pulse. Generalized thermoelasticity analysis with
dual-phase-lags is taken into account to solve the present problem. Laplace
transform and its inversion techniques are applied and an analytical solu-
tion as well as its numerical outputs of the field variables are obtained. The
coupled theory and other generalized theory with one relaxation time may
be derived as special cases. Comparison examples have been made to show
the effect of dual-phase-lags, temperature discrepancy, laser-pulse and laser
intensity parameters on all felids. An additional comparison is also made
with the theory of thermoelasticity at a single temperature.
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1 Introduction

The dynamic theory of thermoelasticity has revolted much significance in
current times. It has found enforcements in various engineering fields such
as geothermal engineering, rising energy element accelerators, nuclear reac-
tor designing, etc. The equation of heat conduction in the classical coupled
thermoelasticity theory is parabolic in nature and thus predicts unlimited
speed of the heat propagation of thermal waves. Obviously, this contrasts
with physical observations. In the past four decades, attention is on theo-
ries which assume a finite speed for the thermal signals.

The problems of heat and thermal sources behave in thermoelastic bod-
ies are the ones of mathematical concern and physical importance. Using
the uncoupled thermoelasticity theory, the problem of dynamic heat source
is considered by Danilovskaya [1]. The problem of moving and instanta-
neous heat sources in semi-infinite and infinite spaces were investigated by
Eason and Sneedon [2], Nowacki [3], and others. Also, based on the ther-
moelasticity coupled theory, Dhaliwal and Singh [4] provided a short time
approximation subjected to a point heat source within an infinite space.

Biot who is the first investigator that introduced a coupled theory to
overcome first shortcoming of classical uncoupled thermoelasticity theory
[5]. This means that there is an additional shortcoming still in need to be
modified. The second shortcoming is that the equation of heat is parabolic
and depending on Fourier’s law of heat conduction. So, Lord and Shul-
man [6] and Green and Lindsay [7] presented their models to overcome
this shortcoming. Additional modification to coupled theory is proposed
by Tzou [8] and known as a dual-phase-lag (DPL) thermoelasticity model.
Fourier’s law in the DPL model is omitted and instead two different temper-
atures for the heat flux and temperature gradient are introduced. Different
thermoelasticity models have been presented and compared to discuss the
three-dimensional thermal shock plate problem by Zenkour [9].

The two-temperature theory (2TT) was widely applied to predict tem-
perature distributions in electrons and phonon in laser processing of very
short metals. A 2TT of heat conduction in deformable bodies is presented
by Chen and Gurtin [10] and Chen et al. [11,12]. This theory contains
two distinct conductive and thermodynamic temperatures. The two tem-
peratures are in general different for time-dependent mediums and this
irrespective of inclusion of a heat supply. However, they are the same with
as neglecting the heat supply. In particular, the difference between these
temperatures is proportional to the heat supply for time-independent prob-
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lems [13]. The wave propagation in 2TT has been presented by Warren and
Chen [14]. Zenkour and his colleagues [15–20] have dealt with the 2TT to
investigate many problems in thermoelasticity theory.

Throughout the last four decades, lasers have been extensively used for
materials processing. As several applications depend on the thermal effects
of laser-material interactions, it becomes very essential to get information
about the temperature fields as a functions of materials properties and
processing parameters. Understanding the effects and interactions of laser
energy on matters is essential to developing new applications. The laser
energy interactions in material are mostly characterized as thermal or pho-
tochemical. The thermal reaction of the laser comes about by absorbing
the laser energy by the objective material.

Pulsed laser irradiation is utilized over a wide spectrum of materials
processing employments. Wood et al. [21] dealt with the pulsed laser treat-
ment of semiconductors. The stress wave created by laser pulses has been
studied by Wang and Xu [22] in a semi-infinite medium. They take un-
der consideration both non-Fourier effect in heat conduction and coupling
effect of temperature and strain rate. It is to be noted that if a pulsed
laser irradiates a metal surface the characteristic elastic waveforms will
be generated. The significance of thermal diffusion to thermoelastic wave
generation has been studied by McDonald [23]. Allam and Abouelregal
discussed thermoelastic waves created by pulsed laser and varying heat of
microbeam resonators [24].

The aim of the present paper is to investigate the created tempera-
ture and stress components in a thermoelastic half-space. Governing dif-
ferential equations will be derived based upon the 2TT with phase-lags.
The boundary surface is heated by a non-Gaussian laser beam. Analytical
solution is outlined in the Laplace transform domain. Numerical solu-
tion is then obtained by adopting inversion of the Laplace transform. So,
the conductive and thermodynamic temperatures as well as other consti-
tutive stress-strain distributions will be obtained numerically. Effects of
two-temperature, laser-pulse, and laser intensity parameters are all inves-
tigated.
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2 Two-temperature with phase-lags model

The heat flux vector −→q according to the classical Fourier law of thermoe-
lasticity may be contacted to temperature gradient by

−→q = −K∇θ , (1)

in which K denotes thermal conductivity of a solid and θ = T − T0 is
the thermodynamical temperature, T denotes the absolute temperature of
medium, T0 denotes reference temperature of body chosen such |θ/T0| ≪ 1.
The equation of heat conduction is presented as

ρCE
∂θ

∂t
+γT0

∂

∂t
(∇ · −→u ) = −∇ · −→q +Q , (2)

where ρ denotes the density, CE denotes specific heat, −→u represents dis-
placement vector, γ = (3λ+ 2µ)αt, λ and µ represent Lame’s properties,
αt denotes coefficient of linear thermal expansion and Q denotes intensity
of heat source.

The modification of the classical thermoelasticity theory is proposed by
Tzou in which Fourier law is substituted by an approximation of heat flux
vector as (using Einstein’s summation convention) [25]

−→q (x, t+ τq) = −K∇θ (x, t+ τθ) , (3)

in which τθ represents the phase lag of heat flux, and τq represents phase
lag of temperature gradient. Equation (3) becomes [23]

(

1 + τq
∂

∂t

)

−→q = −K∇
(

1 + τθ
∂

∂t

)

θ . (4)

In classification of real material into simple and non-simple materials Chen
and Gurtin have presented a theory of non-simple materials for which ther-
modynamics and conductive temperatures are not identical unlike simple
materials for which they are identical [10]. This theory was further extended
to deformable bodies by Chen et al. [11, 12]. Considering isotropy and the
linearity, for such materials, they have shown that the two temperatures
are related by the relation [26]

ϕ− θ = b∇2ϕ , (5)

where ϕ denotes the conductive temperature, θ denotes thermodynamic
temperature, and b > 0 is temperature discrepancy factor.
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Now, in isotropic medium, it is assumed the following new generalized
heat conduction equation:

(

1 + τq
∂

∂t

)

−→q = −K
(

1 + τθ
∂

∂t

)

∇ϕ . (6)

Taking divergence of both sides of Eq. (6), one gets

(

1 + τq
∂

∂t

)

(∇ · −→q ) = −K
(

1 + τθ
∂

∂t

)

∇2ϕ . (7)

The generalized heat conduction equation with two temperatures in case
of non-simple medium using Eqs. (2) and (7) takes the form [26]

K

(

1+τθ
∂

∂t

)

∇2ϕ =

(

1+τq
∂

∂t

) [

ρCE
∂θ

∂t
+γT0

∂

∂t
(∇ · −→u ) −Q

]

. (8)

This equation is the generalized heat conduction with the temperatures θ
and ϕ. The classical one-temperature theory (1TT) will be given by setting
b → 0 and ϕ → θ.

Equations of motion without body forces are given by

(λ+µ) ∇ · (∇ · ui)+µ∇2ui−γθ = ρüi . (9)

where double overdot on u denotes the acceleration vector. The constitutive
relations take the forms

σij = 2µeij+ (λekk−γθ) δij , (10)

where σij represent the stress components and δij is Kronecker’s delta.
In what follow some cases can be deduced from Eqs. (8)–(10) as:

• The coupled thermoelasticity theory with two-temperature (CTE):
τq = τθ = 0.

• The two-temperature thermoelasticity model with one relaxation time
(LS): τq > 0 and τθ = 0.

• The two-temperature thermoelasticity theory with phase-lags (DPL):
τq > τθ ≥ 0. The one-temperature thermoelasticity theories (CTE,
LS and DPL): b → 0 and ϕ → θ.
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3 Formulation

It is considered a conductive thermoelastic isotropic solid that occupies
a half-space x ≥ 0. The half-space is uniformly irradiated by the bounding
plane (x = 0) by a laser pulse with non-Gaussian profile. The system is
initially quiescent with fields depending on x and t.

The displacement field for a 1D medium has ux = u (x, t) and uy =
uz = 0 with the strain e = exx = ∂u/∂x. The constitutive relation will be

σxx = σ = (λ+2µ) e−γθ . (11)

The dynamic equation is expressed as

(λ+2µ)
∂2u

∂x2
−γ ∂θ

∂x
= ρ

∂2u

∂t2
. (12)

or may be re-written as
∂2σ

∂x2
= ρ

∂2e

∂t2
. (13)

The heat conduction and thermodynamic heat formula is given by

ϕ−θ = b
∂2ϕ

∂x2
. (14)

So, Eq. (8) is expressed as

K

(

1+τθ
∂

∂t

)

∂2ϕ

∂x2
=

(

1+τq
∂

∂t

)

[

ρCE
∂

∂t

(

ϕ−b∂
2ϕ

∂x2

)

+γT0
∂e

∂t
−Q

]

. (15)

The following dimensionless parameters:

{x′,u′} = c1η {x, u} ,
{

t
′

, τ
′

θ, τ
′

q

}

= c2
1η {t, τθ, τq} ,

{θ′,ϕ′} = γ
ρc2

1
{θ, ϕ} , σ′ = σ

ρc2
1
, Q′ = Q

Kc2
1η2T0

(16)

may be introduced here in which c1=
√

(λ+2µ) /ρ denotes the longitudinal
wave speed and η=ρCE/K denotes the thermal viscosity. So, Eqs. (11)
and (13)-(15) can be transformed into the dimensionless forms:

σ = e−θ , (17)

∂2e

∂x2
−∂2θ

∂x2
=
∂2e

∂t2
, (18)
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ϕ−θ = β
∂2ϕ

∂x2
, (19)

(

1+τθ
∂

∂t

)

∂2ϕ

∂x2
=

(

1+τq
∂

∂t

)

[

∂

∂t

(

ϕ−β∂
2ϕ

∂x2

)

+ε
∂e

∂t
−Q

]

, (20)

where ε = γ2T0/
(

ρ2CEc
2
1

)

and β = bc2
1η

2. Now, let us consider a
medium with uniformly heated by a laser pulse with non-Gaussian profile
[24] as

I (t) =
L0t

t2p
e−t/tp , (21)

in which tp represents a characteristic time of laser-pulse and L0 denotes
laser intensity. The conduction heat transfer in the medium is represented
as a 1D problem with an energy source, Q (x, t) near the surface, i.e.,

Q (x, t) =
Ra

δ1
e(x−h/2)/δ1I (t) =

RaL0

δ1t2p
te(x−h/2)/δ1−t/tp , (22)

where δ1 represents absorption depth of heating energy and Ra represents
surface reflectivity [27]. It is clear that the laser pulse is lying on the
medium surface (x = 0). So, the energy source will be

Q (t) =
RaL0

δ1t2p
te−h/(2δ1)−t/tp . (23)

4 Problem conditions

The problem will be discussed under the following proper initial and bound-
ary conditions:

θ (x, t) = ϕ (x, t) = u (x, t) =
∂θ (x, t)

∂t
=
∂ϕ (x, t)

∂t
=
∂u (x, t)

∂t
at t = 0 .

(24)
Other thermomechanical boundary conditions on x=0 of the half-space will
be expresses as

• Thermal boundary condition:
The boundary plane x = 0 is subjected to a thermal shock. That is

θ (0, t) = θ0H (t) , (25)

where H (t) is called the Heaviside’s unit step function and θ0 is
constant.
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• Mechanical boundary condition:
The boundary plane x = 0 is considered to be traction free,

σ (0, t) = 0 . (26)

5 Solution in Laplace space

Laplace transform with variable t may be applied for Eqs. (17)–(20) to get
a transformed system as

σ = e−θ , (27)
(

d2

dx2
−s2

)

e =
d2θ

dx2
, (28)

θ = ϕ−βd
2ϕ

dx2
, (29)

d2ϕ

dx2
= α1

(

θ+εe
)

−G (s) , (30)

where

G (s) =
RaL0e

−h/(2δ1)

δ1t2pKc1 (1+sτθ)

[

tpτq

1+stp
+
tp (tp−τq)

(1+stp)2

]

, α1 =
s (1+sτq)

1+sτθ
. (31)

Eliminating θ and e from equations (27)–(30), one obtains

(

d4

dx4
−A d2

dx2
+B

)

ϕ = 0 , (32)

A =
s2 (1+α1β) +α1 (1+ε)

1+α1β (1+ε)
, B =

s2α1

1+α1β (1+ε)
. (33)

The solution of Eq. (32) is expressed as

ϕ = A1e
−m1x+A2e

−m2x , (34)

where A1 and A2 are parameters of s. The solution of ϕ is used in Eq. (29)
to get the solution of θ

θ =
(

1−βm2
1

)

A1e
−m1x+

(

1−βm2
2

)

A2e
−m2x . (35)



Two-temperature theory for a heated semi-infinite solid. . . 93

The above two solutions are used in Eq. (30) to get the solution of e as

e = F (s) +Ω1A1e
−m1x+Ω2A2e

−m2x , (36)

where

F (s) =
G (s)

εα1
, Ωi=

m2
i (1+α1β) −α1

εα1
, i = 1, 2 . (37)

Substituting Eqs. (35) and (36) into Eq. (27), one gets

σ = F (s) +
(

Ω1+βm2
1−1

)

A1e
−m1x+

(

Ω2+βm2
2−1

)

A2e
−m2x . (38)

The substitution of Eq. (13) and using dimensionless variables as well as
Laplace transforms gives the displacement as

u =
1

s2

dσ

dx
= −m1

s2

(

Ω1+βm2
1−1

)

A1e
−m1x−m2

s2

(

Ω2+βm2
2−1

)

A2e
−m2x .

(39)
Also, the thermomechanical conditions in Laplace space θ (0, s) = θ0/s and
σ (0, s) = 0 with the help of Eqs. (35) and (38), gives

A1 =
Fs
(

βm2
2−1

)

−θ0

(

Ω2+βm2
2−1

)

s
[

Ω1
(

1−βm2
2

)

−Ω2
(

1−βm2
1

)] , A2 =
Fs
(

βm2
1−1

)

−θ0

(

Ω1+βm2
1−1

)

s
[

Ω2
(

1−βm2
1

)

−Ω1
(

1−βm2
2

)] .

(40)
Here, a numerical inversion technique for the Laplace transforms, de-

pending on the Fourier series expansion introduced by Durbin [28], is es-
tablished. In this technique, all field quantities can be determined by using
a numerical inversion method based on a Fourier series expansion [29]. The
inverse f (t) of Laplace transform f (s) is approximated by the formula

f (t) =
eζt

t1

[

1

2
f (ζ) +Re

{

N
∑

k=0

f

(

ζ+
ikπ

t1

)

eikπt/t1

}]

, 0 ≤ t ≤ t1 , (41)

where N must be chosen such that

eζteiNπt/t1 Re

{

f

(

ζ+
iNπ

t1

)}

≤ ε1 , (42)

in which ε1 and ζ represent small positive numbers [29].
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6 Numerical results and discussions

To discuss effects of 2TT parameter, laser-pulse, and laser intensity coef-
ficients on wave propagation we used copper material with the following
properties at T 0 = 293 K:

K = 368 N/Ks, αt = 1.78 × 10−5 1/K, CE = 383.1 m2/K,
ρ = 8954 kg/m3, λ = 7.76 × 1010 N/m2, µ = 3.86 × 1010 N/m2.

Results are computed for x(0 ≤ x ≤ 1) at small interval of time
t0 = 0.15. All variables will be displayed in Figs. 1–20. It is assumed
that δ1 = 0.01, τ0 = 0.02, Ra = 0.5, and h = 0.1. The distributions of con-
ductive and dynamical temperatures, stress, strain, and displacement may
be obtained in terms of different parameters such as t, x, 2TT parameter
beta, time of laser-pulse tp, and laser intensity L0. Here, laser intensity is
assumed to be of the form L0 = ξ × 1011 J/m2, where ξ is laser intensity
parameter. Numerical computations are carried out for the following four
cases:

Firstly, Figs. 1–5 show the distributions of displacement (u), thermody-
namical temperature (θ), conductive temperature (ϕ), stress (σ), and strain
e for different 2TT parameter β to highlight the effect of β on all variables.
The value β = 0 points the old situation (1TT) while β = 0.02 or 0.04 in-
dicates the 2TT. Here, one puts τq = 0.2, τθ = 0.1, ξ = 0.1, and tp = 2.
The wave-amplitude of the displacement u decreases as β increases. For
x > 0.1, the thermodynamical temperature θ decreases with the increase
in β. Also, β is increasing as the conductive temperature ϕ is decreasing
in 0 < x < 0.3 and is increasing in interval 0.3 < x < 1. In most positions,
strain e increases as β increases while stress σ increases in 0 < x < 0.28
and decreases in 0.28 < x < 1. This shows the difference between the 1TT
of DPL model (β = 0) and the 2TT (β = 0.02 or 0.04). The figures attend
that this parameter has significant effects on all variables.

In the second case, Figs. 6–10 plot the field quantities with a charac-
teristic time of laser-pulse tp to stand on its effect on all variables. Here,
the temperature discrepancy parameter β remains constant (β = 0.02) and
the lags are setting as τq = 0.2, and τθ = 0.1. The figures illustrate that
tp causes a difference between results in context of 2TT. The conductive
heat, strain and the thermodynamic heat decrease with the increase in tp

while both displacement and stress are increasing. This means that tp has
a significant effect on all variables.

In the third case, Figs. 11–15 plot field quantities for different values of
the laser intensity parameter ξ to highlight the effect of ξ on all variables.
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It is seen that ξ has significant effects with the constancy of β = 0.02 and
tp = 0.2. It is clear that the nature of variations of all variables for laser
intensity parameter is significantly different. All fields are increasing when
ξ is increasing.

Finally, various values of the dual-phase-lags (DPLs) of heat flux and
temperature gradient τq and τθ, respectively, are considered. The graphs
in Figs. 16–20 denote the curves predicted by various theories. The cou-
pled theory (CTE) (τq = τθ = 0), Lord-Shulman (LS) theory (τq = 0.2,
τθ = 0), and generalized theory of thermoelasticity proposed by Tzou (DPL)
(τq = 0.2, τθ = 0.1) are all considered as special cases. It can be noted that
the PL parameters have great effects on distributions of all variables. The
field variables propagate as waves with finite velocity in the medium. The
CTE model is different in comparison with those of other theories. It is
apparent in these figures the fact that in theories of generalized thermoe-
lasticity (DPL and LS) spreads waves at finite speeds. The response to the
three theories is generally quite similar.

Figure 1: Variation of displacement u ver-
sus two-temperature parameter
β.

Figure 2: Variation of thermodynam-
ical temperature θ versus
two-temperature parameter β.

In general, the amplitude of the wave of the displacement u is decreasing
along the distance x. The thermodynamical (θ) and conductive (ϕ) temper-
atures are directly decreasing along the distance (x). The thermodynamical
temperature (θ) may be vanish at x = 1 while conductive temperature (ϕ)
may be tending to the value 0.1. The stress (σ) is no longer decreasing and
has its absolute minimum at x = 1. However, the strain (e) is no longer
increasing and has its absolute maximum at x = 1. The wave-amplitude of
displacement (u) is decreasing along the distance and may be vanished at
x = 1.
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Figure 3: Variation of conductive temper-
ature ϕ versus two-temperature
parameter β.

Figure 4: Variation of thermal stress σ ver-
sus two-temperature parameter
β.

Figure 5: Variation of strain e versus two-
temperature parameter β.

Figure 6: Variation of displacement u ver-
sus time of laser-pulse tp.

Figure 7: Variation of thermodynamical
temperature θ versus time of
laser-pulse tp.

Figure 8: Variation of conductive temper-
ature ϕ versus time of laser-
pulse tp.
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Figure 9: Variation of thermal stress σ ver-
sus time of laser-pulse tp.

Figure 10: Variation of strain e versus time
of laser-pulse tp.

Figure 11: Variation of displacement u
versus laser intensity parame-
ter ξ.

Figure 12: Variation of thermodynamical
temperature θ versus laser in-
tensity parameter ξ.

7 Concluding remarks

In this article, the two-temperature thermoelasticity analysis is constructed.
The two-temperature in context of dual-phase-lags model is adopted to
solve this problem. The effects of time of laser-pulse, laser intensity and
phase lags τθ and τq as well as the two-temperature parameter on all vari-
ables are investigated.

The results obtained from the above analysis can be briefed as:

1. The influence of phase-lags parameters plays a significant role in all
variables.

2. All field variables are significantly depending on the two-temperature
parameter.
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Figure 13: Variation of conductive tem-
perature ϕ versus laser inten-
sity parameter ξ.

Figure 14: Variation of thermal stress σ
versus laser intensity parameter
ξ.

Figure 15: Variation of strain e versus
laser intensity parameter ξ.

Figure 16: Variation of displacement u ac-
cording to different theories of
thermoelasticity.

3. According to the present two-temperature theory, a new classification
for materials according to their fractional parameter is constructed.

4. Theories of coupled thermoelasticity and generalized thermoelasticity
with one relaxation time can be obtained as limited cases.

5. From our results, the two-temperature theory is considered as an
improvement in deducing elastic materials.

6. The properties of a body depend largely on time duration of a laser
pulse and laser intensity of applied source. Therefore, the presence of
non-Gaussian laser pulse in the current model is of significance.

Finally, the laser contains a variety of applications in modern day tech-
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Figure 17: Variation of thermodynamical
temperature θ according to dif-
ferent theories of thermoelastic-
ity.

Figure 18: Variation of conductive tem-
perature ϕ according to differ-
ent theories of thermoelasticity.

Figure 19: Variation of thermal stress σ
according to different theories
of thermoelasticity.

Figure 20: Variation of strain e according
to different theories of thermoe-
lasticity.

nology, mainly due to its ability to produce high-power beams. Using
this concentrated energy, any known substance can be heated, defrosted
or evaporated. Now, laser applications include drilling, welding, cutting,
heat treatment of metals, machining of brittle or refractory materials, and
fabrication of electronic components, medical surgery, and the production
of charged particles. Most of the theoretical work on laser heat transfer to
date has focused on solving the classical equation of heat conduction for
a moving or stationary semi-infinite mediums.
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