
Studia Quaternaria, vol. 37, no. 2 (2020): 121–128 DOI: 10.24425/sq.2020.133756

INTRA-INDIVIDUAL VARIABILITY OF DENTAL ENAMEL δ13C 
AND δ18O VALUES IN LATE PLEISTOCENE CAVE HYENA 

AND CAVE BEAR FROM PERSPEKTYWICZNA CAVE 
(SOUTHERN POLAND)

Michał Czernielewski1*, Magdalena Krajcarz2, Maciej T. Krajcarz3

1 Institute of Paleobiology, Polish Academy of Sciences. Twarda 51/55, 00-818 Warszawa, Poland; Faculty of Geology, 
University of Warsaw. Żwirki i Wigury 93, 02-089 Warszawa, Poland; 
e-mail: m.czernielewski@poczta.pl

2 Institute of Archaeology, Nicolaus Copernicus University in Toruń. Szosa Bydgoska 44/48, 87-100 Toruń, Poland; 
e-mail: magkrajcarz@umk.pl

3 Institute of Geological Sciences, Polish Academy of Sciences. Twarda 51/55, 00-818 Warszawa, Poland; 
e-mail: mkrajcarz@twarda.pan.pl

* corresponding author

Abstract:
An important source of palaeoecological and palaeoenvironmental information is intra-specimen variability of isotopic 
composition of mammal tooth enamel. It reflects seasonal or behavioral changes in diet and climate occurring during 
a life of the animal. While well-known in ungulates, in carnivorans this variability is poorly recognized. However, 
carnivoran remains are amongst the most numerous in the Pleistocene fossil record of terrestrial mammals, so their 
isotopic signature should be of particular interest. The aim of the study was to verify if enamel of a fossil cave hyena 
(Crocuta crocuta spelaea) and a cave bear (Ursus ingressus) records any regular inter- or intra-tooth isotopic variability. 
We examined intra-individual variability of δ13C and δ18O values in permanent cheek teeth enamel of fossil cave hyena 
and cave bear from the site of the Perspektywiczna Cave (southern Poland). We conclude that the isotopic variability 
of the cave hyena is low, possibly because enamel mineralization took place when the animals still relied on a uniform 
milk diet. Only the lowermost parts of P3 and P4 enamel record a shift toward an adult diet. In the case of the cave bear, 
the sequence of enamel formation records periodic isotopic changes, possibly correlating with the first seasons of the 
animal life.
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INTRODUCTION

Stable isotopic composition of fossil teeth enamel is 
widely applied in palaeoecological and palaeoenvironmen-
tal research (Bocherens and Drucker, 2013; DeNiro and 
Epstein, 1978; Koch, 2007; Pederzani and Britton, 2019). 
Among numerous isotopes which occur in the enamel 
mineral, the ratios of carbon and oxygen stable isotopes 
(13C/12C and 18O/16O, respectively) are most usually used. 
Presented as “delta” notations (δ13C and δ18O), they found 
application in reconstructions of palaeoclimate, palaeodiet, 
canopy density, water sources, foraging altitude and niche 
partitioning (e.g., Bocherens et al., 1991, 1995, 2011; Levin 
et al., 2006; Reinhard et al., 1996; Sánchez Chillón et al., 

1994; Shahack-Gross et al., 1999; Skrzypek et al., 2011; 
Tütken et al., 2007). Intra-specimen variability of isotopic 
composition of tooth enamel is an important source of pa-
laeoecological and palaeoenvironmental information. This 
variability was found to be regular and is believed to follow 
the changes of the isotopic composition of food and water 
consumed by an animal during its life (Blumenthal et al., 
2014; Bryant et al., 1996a, 1996b; Cerling and Sharp, 1996; 
Fricke and O’Neil, 1996; Passey and Cerling, 2002). The 
basic premise behind such a conclusion is that the enamel 
of different teeth is not formed and mineralized simulta-
neously, but represents different time frames of the animal 
life (Hillson, 2005). Moreover, the enamel of a single tooth 
is also mineralized non-simultaneously – its mineralization 
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starts at the top of the crown and continues downwards to 
the enamel-root junction (Fricke and O’Neil, 1996; Trayler 
and Kohn, 2017). The enamel is thus sequentially miner-
alized and gets its final isotopic signature some time after 
apposition, shortly before tooth eruption (Hillson, 2005; 
Klevezal, 1996; Trayler and Kohn, 2017).

Intra-individual isotopic variability of enamel has been 
well-recognized in ungulates, whose teeth are large and 
therefore easy to sample, and likely record long time inter-
vals. Numerous studies established the expected trends in 
present-day ungulates (Balasse, 2002; Britton et al., 2009; 
Chritz et al., 2009; Fricke et al., 1998; Kohn et al., 1996, 
1998; Trayler and Kohn, 2017; Wang et al., 2008, Zazzo 
et al., 2010) and were followed by studies of fossil rela-
tives (Bernard et al., 2009; Chritz et al., 2009; Fabre et al., 
2011; Feranec et al., 2009; Gadbury et al., 2000; Julien et 
al., 2012; Krajcarz and Krajcarz, 2014a; Velivetskaya et al., 
2011, 2016; Widga et al., 2010; Wiedemann et al., 1999). 
In carnivorans, the intra-specimen isotopic variability is 
poorly recognized. One of the few examples is a study of 
the Smilodon canines (Feranec, 2004), which are, however, 
unusual among carnivorans due to their long enamel profile. 
This lack of interest is an effect of difficulties in sampling 
caused by a relatively low height of the carnivoran tooth 
crowns and thin enamel. An additional reason is a short du-
ration of tooth formation, which restricts the temporal range 
of the isotopic record within a tooth. On the other hand, 
carnivoran remains are common in the Pleistocene fossil re-
cord (Diedrich, 2012; Krajcarz and Krajcarz, 2014b; Kurtén, 
2007a, 2007b; Stiller et al., 2014). Because of this, fossil 
remains of some carnivoran taxa, such as the cave bear or 
the cave hyena, are relatively easily obtainable. Better un-
derstanding the analytical and interpretational limitations of 
their usage for isotopic studies may prove advantageous for 
future palaeoecological research. Therefore in this paper, 

we aim to examine the potential of intra-specimen isotopic 
variability of cave bear and cave hyena tooth enamel.

Enamel formation in carnivorans

As opposed to ungulates, whose individual tooth enamel 
may form for as long as one or two years (e.g., Balasse, 
2002; Bendrey et al., 2015; Fricke and O’Neil, 1996), in car-
nivorans the enamel is formed relatively quickly (Klevezal, 
1996). In the extant spotted hyena the order of permanent 
mandibular cheek teeth eruption is deemed to be M1-P2-
P4-P3, but the eruption spans of different teeth overlap each 
other (Kruuk, 1972; Slaughter et al., 1974; Van Horn et 
al., 2003). Mineralization most probably follows this order. 
According to studies of modern and fossil spotted hyenas 
(Jimenez et al., 2019; Stiner, 1994), the entire formation and 
mineralization of the cheek teeth lasts for several months 
only (Fig. 1). X-ray photography of around 2-months-old 
cub mandibles reveals no signs of permanent cheek teeth 
formation, while at 8–12 months most of the permanent 
teeth are already erupted (Jimenez et al., 2019), so their 
enamel is fully mineralized. The first completed tooth is 
M1, while the last one is P3.

In the cave bear, the formation of the mandibular cheek 
teeth follows the order M1-P4-M2-M3 (Andrews and Turner, 
1992; Debeljak, 1996) (Fig. 1). The enamel of M1 is already 
formed at 2–4 months of postnatal life (Veitschegger et 
al., 2019), but possibly not fully mineralized (Krajcarz and 
Krajcarz, 2014b). The M1 erupts at around 4–5 months 
and then its mineralization is completed, while formation 
of the P4, M2 and M3 enamel is started (Debeljak, 1996; 
Veitschegger et al., 2019). The mineralization of the P4 and 
M2 enamel is completed around 9 months, and of the M3 
enamel around 12 months.

Fig. 1. Formation of enamel in cave hyena and cave bear (based on: Debeljak, 1996; Veitschegger et al., 2019; Jimenez et al., 2019; simplified), not to 
scale. Enamel and other tissues of cheek teeth are shown in black and grey, respectively.
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Impact of nursing on the enamel isotopic signature

Because the enamel in carnivorans mineralizes at a very 
young age, when they still rely on mother’s milk, nursing 
is one of the most important factors responsible for isotopic 
signature (Bocherens, 2004; Herrscher et al., 2017; Jenkins 
et al., 2001). The mother’s milk, similarly to other fat-rich 
tissues, is depleted in 13C (Bocherens et al., 1997; Grandal-
d’Anglade et al., 2019; Nelson et al., 1998). Milk is also the 
main source of water for sucklings and it is 18O-enriched 
compared to the water drunk by the mother (Tsutaya and 
Yoneda, 2015; Wright and Schwarcz, 1998). Therefore, the 
expected situation within the enamel affected by nursing is 
low δ13C values and high δ18O values. Shifting into higher 
δ13C values and lower δ18O values indicates that the animal 
begun relying on the adult diet.

Impact of hibernation on the enamel isotopic signature

By analogy to the extant brown and black bears (U. arc-
tos and U. americanus), the adult cave bears are believed 
spent winters in the state of hibernation, during which nei-
ther ate nor drank, but instead burnt up their fat stores 
(Hissa, 1997; Nelson et al., 1983). This resulted in low δ13C 
values, commonly noticed in cave bears (Bocherens, 2004; 
Bocherens et al., 1994). Females gave birth during winter 
hibernation and cubs likely spent their first winter suck-
ling. The lactation together with hibernation is believed 
to be responsible for low δ13C values in young cave bears 
(Bocherens et al., 1997; Grandal-d’Anglade et al., 2019; 
Nelson et al., 1998). During their first summer, the cubs 
likely started to feed on solid food but probably contin-
ued to suckle until their second winter, when milk again 
became the most important part of their diet (Grandal-
d’Anglade et al., 2019; Lidén and Angerbjörn, 1999; Nelson 
et al., 1998). The isotopic effect of such dietary shifts would 
be periodical oscillation of stable isotope ratios of the body, 
which could be recorded in the enamel mineralized during 
that time (Krajcarz and Krajcarz, 2014b).

MATERIAL AND METHODS

Material

The material comprises three right dentary bones with 
cheek teeth. Two of the mandibles (W-3493 and W-4152) 
belong to C. crocuta spelaea, and the other specimen 
(W-17) belongs to U. spelaeus s.l., precisely U. ingressus 
(Gretzinger et al., 2019). The geological ages of the bones 
have been radiocarbon dated to 40,200 ± 1200 (W-17), 
36,500 ± 800 (W-3493) and 34,700 ± 600 BP (W-4152). 
All of the bones were collected at the Perspektywiczna 
Cave, situated in the Częstochowa Upland, Olkusz County, 
southern Poland (for a summary of the site see: Krajcarz, 
2016).

Sampling

The lingual enamel surface of each studied tooth was 
selected for sampling (the longest preserved and not dam-
aged by wearing). Prior to the sampling, the surface was 
mechanically cleaned using a Dremel diamond-coated bit. 
We removed cementum, dental plaque and any mineraliza-
tion if presented. Also, around 0.3–0.5 mm of the external 
enamel layer was removed, as this outer part was reported 
to be isotopically biased by later mineralization (Trayler 
and Kohn, 2017). The exposed surface was cleaned with 
demineralized water and dried. To avoid contamination 
during sampling, the entire tooth outside the sampling sur-
face was covered with parafilm. Enamel samples were col-
lected by careful drilling about 10 mg of powder (taking 
care to avoid sampling the dentine). Samples were taken in 
sequences reflecting the direction of enamel mineralization 
(from the tip of the crown toward the enamel-root junction). 
The sizes and positions of the sampling spots are shown 
(Fig. 2), and the full list of samples is provided (Table 1).

Chemical pretreatment

In order to clear out the enamel of possible contamina-
tion, 30% H2O2 solution and 0.1M acetic acid (CH3COOH) 
were used, the former to remove organic pollution and the 
latter to purge away exogenous carbonate. The reaction 
lasted for 24h and 48h, respectively, with centrifugation, 

Table 1. List of samples analyzed in this study, weight yield 
after chemical pretreatment and isotopic results.

Taxon Inv. no. Tooth Sample 
no.

Yield 
[%]

δ13C 
(VPDB) 

[‰]

δ18O 
(VPDB) 

[‰]

Ursus 
ingressus W-17

P4 1 73.7 -17.49 -5.58
M1 1 60.3 -18.21 -7.78
M2 1 89.2 -17.40 -5.67
M2 2 89.9 -17.07 -5.37
M3 1 65.1 -18.08 -7.17
M3 2 66.4 -17.98 -6.30

Crocuta 
crocuta W-3493

P2 1 63.2 -14.83 -10.10
P3 1 61.1 -15.58 -10.16
P3 2 60.7 -15.00 -10.32
P3 3 63.3 -14.43 -10.48
P4 1 62.7 -15.66 -10.09
P4 2 63.8 -14.51 -10.75
M1 1 77.2 -15.50 -9.43
M1 2 70.7 -14.95 -10.10
M1 3 60.1 -14.80 -10.06

Crocuta 
crocuta W-4152

P2 1 72.4 -14.98 -8.73
P3 1 66.8 -15.55 -8.74
P3 2 68.4 -14.12 -8.90
P4 1 68.4 -15.48 -9.02
P4 2 69.5 -14.99 -9.00
M1 1 71.7 -15.48 -8.70
M1 2 72.4 -15.59 -9.30
M1 3 66.2 -15.25 -8.77
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decantation and rinsing with deionized water several times 
after each step. An enamel sample of the recent cattle (Bos 
taurus) was selected as an internal standard and subjected 
to the same procedure.

Isotopic measurement

Carbon isotopic analysis was conducted with a 
GasBench II apparatus combined with a Thermo MAT 253 

mass spectrometer in the Continuous Flow system, with 
standard analytical procedures being applied, in the Stable 
Isotopes Lab of the Institute of Geological Sciences, Polish 
Academy of Sciences (Warsaw, Poland). CO2 was derived 
from the samples by reaction with orthophosphoric acid 
(H3PO4). Balancing time was 18h, balancing temperature 
70°C. Oxygen isotopic analysis was conducted with the 
same apparatus, with balancing time 18h and balancing 
temperature 32°C. Laboratory standards were NBS19, 
NBS18 and LSVEC. The equation for the δ values, show-

Fig. 2. The location of samples in the studied specimens and obtained isotopic results, arranged according to the order of expected tooth formation. The 
open circles are used for δ18O and black dots for δ13C.
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ing a deviation from the values established as an interna-
tionally accepted standard, is presented as δ(‰) = [(Rsample 
– Rstandard)/Rstandard] × 1000 (Tütken et al., 2007), with 
R being the ratio of heavy to light isotope (18O/16O or 
13C/12C). The δ13C and δ18O values were reported as rela-
tive to the VPDB standard.

RESULTS

Results of isotopic analyses of the samples are pre-
sented (Table 1). The δ13C values fall in the ranges of -18.21 
to -17.07‰ (specimen W-17), -15.66 to -14.43‰ (speci-
men W-3493) and -15.59 to -14.12‰ (specimen W-4152). 
Therefore, the differences between the highest and the low-
est values reach 1.14, 1.23 and 1.47‰ respectively. The 
ranges of δ18O values are -7.78 to -5.37‰ (W-17), -10.75 to 
-9.43‰ (W-3493) and -9.30 to -8.70‰ (W-4152). Thus, the 
differences between the highest and the lowest value equal 
2.41, 1.32 and 0.60‰. The linear correlation between δ13C 
and δ18O values is distinct in the cave bear, while weak in 
the case of the hyena specimen W-3493 and lacking in the 
hyena specimen W-4152 (Fig. 3).

The δ13C and δ18O values obtained for the internal lab 
standard (sample PC-Bos-1) were situated close to the cen-
tre of the distribution established by previous analyses of 
this standard (Table 2). This suggests that the chemical 
pretreatment was conducted properly and the results are 
reliable.

DISCUSSION

Inter- and intra-tooth variability in the cave hyena

Both specimens of the cave hyena exhibit distinct trends 
in both δ13C and δ18O values in M1, P4 and P3 (Fig. 2). Each 
of these teeth shows an increase of δ13C values during the 
tooth formation, starting from an equated level between 
-15.5 and -15.7‰ VPDB near the apex of the crown. This 
suggests that all these teeth started to form at the same 
time. Moreover, the two individuals had almost the same 
diet during that phase of their life. Mineralization of this 
portion of enamel happens when hyenas are 2–8 months 
old and rely exclusively on milk diet (Jimenez et al., 2019; 
Stiner, 1994) (Fig. 1). This is consequent with relatively low 
δ13C values and high δ18O values characteristic for milk 
(Bocherens et al., 1997; Grandal-d’Anglade et al., 2019; 
Nelson et al., 1998; Tsutaya and Yoneda 2015; Wright and 
Schwarcz, 1998).

The increase of δ13C values is recorded in the younger 
parts of the M1, P4 and P3 enamel, and in the P2 enamel. The 
most extreme value is recorded in the lower part of the P3 
enamel in the W-4152 specimen (Fig. 2). This likely reflects 
the higher amount of 13C-enriched food, an effect of a turn-
ing into the adult diet. This is also confirmed by the simulta-
neous decrease of δ18O values, probably caused by drinking 

more water instead of milk. The negative correlation be-
tween δ13C and δ18O values in the W-3493 specimen, al-
though weak (Fig. 3), stays in accordance with the expected 
change during the milk-to-adult diet turnover. A possible 
chronological sequence of the formation of the isotopic com-
position of the enamel is shown in Fig. 4. Noteworthy, the 
δ18O record differs between the studied specimens. While 
W-3493 records the decrease of δ18O values downwards the 
crown profiles, in W-4152 there is a low δ18O variability and 
rather irregular δ18O distribution within particular teeth as 
well as between different teeth. Also, the correlation be-
tween δ13C and δ18O values is lacking in this specimen (Fig. 
3). This can be interpreted as the result of different modes 

Fig. 3. δ13C/δ18O plot for the studied specimens. The linear correlation 
between δ13C and δ18O is provided separately for each specimen with the 
coefficient of determination (R2).

Table 2. The results for internal lab standard: sample PC-
Bos-1 (this study) and the previous measurements.

Sample δ13C (VPDB) [‰] δ18O (VPDB) [‰]
PC-Bos-1 -12.24 -9.86

IS-1 -12.28 -10.39
IS-2 -11.99 -10.67
IS-3 -12.17 -10.48
IS-4 -12.29 -10.79
IS-5 -12.23 -10.65
IS-6 -12.21 -10.66

Bos 4 CH -12.40 -10.12
Bos 3 -12.13 -10.11
Bos 4 -12.24 -9.50
Bos 5 -12.31 -9.66
Bos 6 -12.35 -8.59
Bos 7 -12.35 -8.92
Bos 8 -12.39 -8.97
Bos 9 -12.24 -9.70
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of milk-to-adult diet shift among individuals, and may also 
indicate different individual use of water sources.

Inter- and intra-tooth variability in the cave bear

In the studied specimen, both δ13C and δ18O signatures 
record periodic changes, starting from low values in M1, 
the tooth which has been formed and possibly mineralized 
first (Fig. 2). In P4 and M2 the values are high, followed by 
low values again in the last-formed M3. This likely records 
the seasonal changes. The sequence M1-P4-M2 could be 
interpreted as representing a change in the isotopic compo-
sition of mother’s milk. The increasing δ13C values likely 
reflect the increasing reliance of the nursing mother on 
her summer diet, instead of using her winter fat storage. 
Similarly, the increasing δ18O values reflect a change in the 
isotopic composition of the meteoric water that the mother 
was drinking, which provides a base for the isotopic com-
position of milk. It cannot be excluded that the elevated 
δ13C and δ18O signature of P4 and M2 may be additionally 
influenced by a self-reliant adult-like diet of the cub during 
the warm season. The values received for M3 may be a 
result of a gradual return of the cold conditions. The isoto-
pic signature of M3 may have also been influenced by the 
altered metabolism during the cub’s hibernation.

CONCLUSIONS

We reported the results showing intra-individual δ13C 
and δ18O variability in the Pleistocene cave hyena and cave 
bear. A limitation of the applied method when dealing with 
carnivoran cheek teeth is a difficulty in obtaining many 
samples from one tooth. This is caused by the relatively 
small height of the teeth and their thin enamel, in com-
parison to the teeth of large ungulates. Moreover, as the 
eruption periods of particular teeth overlap, it would be 
problematic to chronologically correlate the samples taken 
from different teeth in order to reconstruct the life histo-
ries of the examined specimens more precisely. Our results 

 allow, to estimate the relative age of those stages of enamel 
mineralization during which the enamel obtained its final 
isotopic signature. We confirmed the expected uniform 
isotopic signature of the cave hyena’s enamel, except of 
the basal parts of P3 and P4. In the case of the cave bear, 
it seems that each tooth records the milk-dependent diet, 
possibly additionally influenced by a self-reliant adult-like 
diet of the cub during the warm season in P4 and M2. Thus 
the observed periodic changes reflect well the seasonal 
changes in the diet of the nursing mother.
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