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Abstract: One of the least expensive and safest diagnostic modalities routinely used is
ultrasound imaging. An attractive development in this field is a two-dimensional (2D)
matrix probe with three-dimensional (3D) imaging. The main problems to implement this
probe come from a large number of elements they need to use. When the number of elements
is reduced the side lobes arising from the transducer change along with the grating lobes
that are linked to the periodic disposition of the elements. The grating lobes are reduced
by placing the elements without any consideration of the grid. In this study, the Binary
Bat Algorithm (BBA) is used to optimize the number of active elements in order to lower
the side lobe level. The results are compared to other optimization methods to validate the
proposed algorithm.
Key words: 2D ultrasound arrays, Binary Bat Algorithm, Genetic Algorithm, Optimization

1. Introduction

A three-dimensional (3D) region of ultrasonic imaging needs sweeping across a volume of
an ultrasound beam. In most available systems, the sweeping is done by manually moving a
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conventional (linear or convex) array. Another way is by using a step motor to drive the probe [1].
However, the operator’s skills affect sensitivity of these techniques and they are characterized by
poor time resolution. To overcome these disadvantages, 2-dimensional (2D) matrix arrays can be
used. The 2D array can be electronically controlled to steer the beams in both the elevation and
lateral directions [2–6]. Unfortunately, the 2D array probe design must obey the spatial sampling
condition (i.e. the pitch < half the wavelength), which imposes small-sized elements. Such 2D
array controlling is technically challenging. Since, it is difficult to connect and drive several
hundred (up to thousands) of elements, not to say unrealistic.

Another method has been suggested to use a random sparse-array technique in order to
reduce the number of elements while maintaining acceptable performance which is proposed in
[7–13]. As the number of active elements is large, the beam produced suffers from more severe
deteriorations. With optimization algorithms the sparse array techniques are typically combined
to activate the most suitable elements.

In literature, in order to find the best trade-offs between the footprint characteristics and the
probe performance several optimization algorithms [14–20] have been applied. Five trade-offs
affect the performance probe, these trade-offs are the number of elements, the energy loss with
respect to the reference full 2D array, the Main Lobe Width (MLW), the Side Lobes Level
(SLL), and the Grating Lobe Level (GLL). Initially by disabling some elements of a full regular
transducer array, sparse arrays are obtained [21–25].

According to the literature [26, 27], the Simulated Annealing (SA) Algorithm and Genetic
Algorithm (GA) are the most used optimization techniques for medium and large 2D ultrasound
arrays which are capable of providing excellent results in the distribution of both active elements
on the arrays’ surface and the beam profiles [28]. The main drawback of the SA lies in the
resources it requires to run. In this work, the Binary Bat Algorithm (BBA) [29] is proposed to
perform the 2D array element optimization. The BBA results are compared to Binary Differential
Evolution (BDE) [30] and the GA to see the potential of the BBA in competing with the BDE and
GA for medium 2D arrays in order to visualize beam profile comparison in terms of beam width
transmitted energy and SSL. A full comparison is done as well as a statistical analysis to verify
the efficiency of the BBA to optimize the array elements and to lower the SLL. The BBA, BDE
and GA are compared in terms of element optimization, the SLL, mean and minimum values for
optimized elements, array configuration and the algorithm complexity. Finally a section about
choosing the tuning parameter for BBA is presented.

2. Deactivated elements effect on 2D array transducer

The beam profile affected by the number of dead elements and their placement to assess the
features of the beam profile, evaluates the performance of an ultrasound transducer. A plot of
the intensity or pressure of lateral distance from the transducer center is the assessment normally
done. In Fig. 1, this is referred to as the main lobe, side lobe and grating lobe. Due to deactivated
elements in 2D array transducer that can appear on the sides of the main lobe, they are called
side lobes and can be visualized. And grating lobes are special case of side lobes. While SL is
directed forward, GL is directed away from the main beam with a large angle SL and GL can give
rise to artifacts.
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Fig. 1. Main, side and grating lobes

3. The proposed 2D array

The array contains sparsely filled 8 × 24 = 192 elements. In this paper the proposed array
uses a pitch larger than the half wavelength. That is because, in the manufacturing of the array,
this pitch guarantees a good trade-off between the GL and ML. Table 1 illustrates the parameters
of the array, and Fig. 2 shows the place of each parameter of the 2D array.

Table 1. 2D array parameters

Parameters 2D Array

Central frequency 3.9 MHz

Wavelength 0.39 mm

Element number 8 × 24 = 192

Element size (width and height) 0.37 × 0.37 mm2

Pitch 0.4 mm

Fig. 2. Parameters of 2D array
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4. Proposed optimization methods

4.1. Binary Bat Algorithm (BBA)
The echolocation behavior of bats has been inspired by the BBA. There are many types of

bats in nature, they differ in weight and size. When navigating and hunting, bats have similar
behaviors, regardless of their types. They use their natural sonar to navigate and hunt. Bats have
two main characteristics, useful when hunting. When prey is being chased by bats, bats increase
the rate of emitted ultrasonic sound and also decrease the loudness [29]. A mathematical model
will be applied to this behavior.

In the BBA, during the course of iterations an artificial bat updates its velocity, position and
frequency vectors. This update is done using (1), (2), and (3):

Vi (t + 1) = Vi (t) + (Xi (t) − Gbest)Fi , (1)

Xi (t + 1) = Xi (t) + Vi (t + 1), (2)

where the best solution attained so far is Gbest and the frequency of i-th bat is Fi which is updated
over the course of iteration as illustrated in (3):

Fi = Fmin + (Fmax − Fmin) β, (3)

where β is a random number in the interval [0, 1]. The artificial bats diverse propensity to the
best solution is encouraged by different frequencies as shown in (1) and (3). The exploitability
of the BA is guaranteed by these equations. However, to perform the exploitation a random walk
procedure is used as follows in (4):

Xnew = Xold + εAt . (4)

In this formula, ε is a random number in the interval [−1, 1] and A is the loudness of the
emitted sound that bats use to perform an exploration instead of exploitation as it is increased. It
can be stated that the BBA is a balanced combination of Particle Swarm Optimization (PSO) and
intensive local search. The balancing between these techniques is controlled by the loudness (A)
and pulse emission rate (r). These two elements are updated according to (5) and (6):

Ai (t + 1) = αAi (t), (5)

ri (t + 1) = ri (0)[1 − exp(−γ × t)], (6)

where α and γ are the constants and α is analogous to the cooling factor in Simulated Annealing
(SA). Eventually, Ai will equal zero, while the final value of ri is r (0). Note that to guarantee that
the bats are moving toward the best solutions both loudness and rate are updated when the new
solutions are improved. Fig. 3 illustrates the flow chart of the BBA.
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Fig. 3. Flow chart of BBA
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4.2. Advantages and disadvantages of BBA

Advantages of the BBA:
– Few parameters to control (only 2 parameters),
– Fast convergence speed,
– High accuracy,
– Simple, flexible and easy to implement.
Disadvantages are as follows:
– The BBA converges faster in early stages but gets slower at its final stages,
– Algorithm parameters needs tuning for each application,
– Its not the most reliable algorithm for large dimension problems.

4.3. Genetic Algorithm (GA)

Part of the family of algorithms are genetic algorithms, which can be applied to both linear
and non-linear optimization problems [28]. Two main families of the GA exist: the binary and
continuous GA, depending on the type of the optimization problem a suitable family can be
chosen. The common basic optimization problems use the binary GA, and the binary GA contains
in coding binary variables. By using (7) and (8) the offspring of two parent arrays are obtained.
Xi and X j are two parent arrays, the two offspring are obtained through a random parameter α
which belongs to the interval [1, 2]. The flow chart of the GA is illustrated in Fig. 4.

X ′i = αXi + (1 − α)Xi , (7)

X ′j = αX j + (1 − α)X j . (8)

Fig. 4. Flow Chart of GA
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4.4. Binary Differential Evolution (BDE) Algorithm

This section proposes a new approach to solve binary valued problems using BDE. The
BDE borrows concepts from the Binary Particle Swarm Optimizer (BPSO), developed by
Kennedy and Eberhart [30]. The BDE is developed for continuous-valued problems. A new
non-parameter binary mutation operator is obtained. The new mutation process is subscribed
for the g−th iteration of initial individual mutation and the individual mutation is then formu-
lated as:

vi, j,g =


xr0, j,g + (−1)xro, j,g × ���xxr1, j,g − xr2, j,g

��� , if θ < 0.5

xrb, j,g + (−1)xrb, j,g × ���xxr1, j,g − xr2, j,g
��� , otherwise

, (9)

where: r0, r1, r2 ∈ 1, 2, . . . , n and r0 , r1 , r2, rb is the index of the best individual in the
current population. While j is the dimension of feature variables.

As presented in [30], a new daptive mechanism based on individual fitness for obtaining a
reasonable factor is presented. The adaptive crossover factor CF(Xi) is shown as:

CF(Xi) =
IFF(Xi) − IEFl (X ) + µ
IFFu (Xi) − IEFl (X ) + µ

, (10)

where the maximum and minimum fitness value of all individuals are expressed by IEFu (X )
and IEFl (X ), respectively. In order to prevent the crossover factor to be 0, the parameter µ is
introduced and it is the absolute value of the difference between the minimum fitness value
and the second minimum. Note that we select a random number from a normal distribution by
η = rand n(CF(Xi), 0 : 1). So the crossover operator is presented as follows:

ui, j,g =

vi. j,g, if randj[0, 1] ≤ η or ( j = jrand)

xi. j,g, otherwise
, (11)

where jrand is the dimension selected randomly from an individual. Hence, we can infer that the
selection of the crossover factor is associate with the fitness value of the individual. In other
words, the number of an inherit element depends on the fitness difference of the individuals. The
new individual selection strategy can be presented as:

xi, j,g+1 =


ui. j,g, if IEF(ui, j,g) < IEF(xi, j,g)

xi. j,g, otherwise
, (12)

where ui, j,g is the i−th offspring individual in the g-th iteration. If the fitness value of a new
individual yields the corresponding parent individual, then ui, j,g is set to xi, j,gC1. Otherwise the
current individual will be inherited in the next generation. The flowchart of the BDE, which is
used in this paper, is shown in Fig. 5.
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Fig. 5. BDE flowchart

5. 2D array optimization

In 2D ultrasound optimization, different configurations exist in the literature. The optimization
can be realized through both the apodization and position of elements or with only the position.
The population of the BBA is defined as the 2D array elements, where the BBA is used to optimize
the number of active elements in the array in order to get a minimum SLL without distorting the
beam width of the ML. The optimization is done using the fitness function presented in [11–20].
The fitness of the BBA corresponds to the beam profile and the constraints on the side lobes
outside the main lobe region and is given by (13)

f (Xi) =
*..,
"
A

(
20 log10(pa(Xi)) − SLdB

)
dθ dϕ

+//-
2

, (13)

where X (X1, X2, . . . , XN ) represents a 3D matrix containing N 2D sparse arrays of NE elements
among which Na is active, the pressure field and SLdB stand for the maximum side lobes allowed
in the space excluding the main lobe area.
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6. Simulation results
6.1. BBA results

The BBA is applied to ten 2D arrays of 192 elements (population number is 10). Each array
is filled with a random number of active elements. The positions of the random elements are then
optimized to obtain best possible beam patterns. The BBA results are shown below in Fig. 6,
Fig. 7 and Fig. 8.

Fig. 6. Lateral direction output of BBA

Fig. 7. Cost function of BBA
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Fig. 8. Active elements (yellow) of BBA

Fig. 6 shows the normalized beam in lateral direction of the optimized 2D array using the
BBA. The optimized array has 87 active elements only. Fig. 7 shows the cost function of the
BBA over the iteration course. It’s observed that the cost function is minimized in a range of
200 iteration, which is low. This shows that the BBA converges faster than other algorithms. The
following Fig. 8 shows the optimized 2D array after the optimization of the original array by
the BBA. The blue elements are the deactivated elements and the yellow elements are the active
elements. It is clear that the optimized array has fewer active elements that the original array.

6.2. GA results

The GA is applied to the same 2D array as the BBA. Each array is filled with a random
number of active elements. The positions of the random elements are then optimized to obtain
best possible beam patterns. The GA results are shown below in Fig. 9, Fig. 10 and Fig. 11.

Fig. 9 shows the normalized beam in the lateral direction of the optimized 2D array, using
the GA.

The optimized array has 95 active elements only. Fig. 10 shows the cost function of the GA
over the iteration course. It’s observed that the cost function is minimized in a range of 200
iteration but as observed in the BBA it converges faster in early stages but gets slower at its final
stages, in the GA it converges very slowly and in all iterations. Also the GA does not reach the
minimum value that the BBA reaches, the minimum value in the GA is 0.00138, the minimum
value in the BBA is 0.0008, as shown in Fig. 10 and Fig. 7.
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Fig. 9. Lateral direction output of GA

Fig. 10. Cost function of GA

Fig. 11 shows the optimized 2D array after the optimization of the original array by the GA.
The blue elements are the deactivated elements and the yellow elements are the active elements.
It is clear that the optimized array has fewer active elements that the original array.
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Fig. 11. Active elements (yellow) of GA

6.3. BDE results

For more validation on the efficiency of the BBA and the effectiveness of its optimization to
the 2D array The BBA is compared to one of the most recent algorithms named BDE. The BDE
is one of the most recent optimization algorithms for binary optimization problems. The BDE is
applied to the same array and under the same conditions to differentiate between both algorithms,
and to know why the BBA is suggested in this work. The BDE results are shown below in Fig. 12,
Fig. 13 and Fig. 14.

Fig. 12. Lateral direction output of BDE
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Fig. 13. Cost function of BDE

Fig. 14. Active elements (yellow) of BDE

Fig. 12 shows the normalized beam in the lateral direction of the optimized 2D array, using
the BDE. It’s observed that there is no significant improvement in the output, as the lowering
of the elements will affect the main beam (MLL) itself not only the SL. Fig. 13 shows the cost
function of the BDE over the iterations course. It’s observed that the cost function is minimized
in a range of 200 iterations and the BDE has a lower value than the BBA in early stages but gets
slower at its final stages, also the BDE has a final value slightly higher than that of the BBA.
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As observed the cost function has lower value than that of the BBA in early stages but it ends
with a higher value than the BBA at the final stage. As for the number of elements as shown in
Fig. 14, the BDE has 87 active elements but with a slightly different configuration than that of
the BBA. It shows that the BDE and BBA reach almost the same optimum array configuration.

7. Performance and statistical analysis

From the above results it can be observed that the BBA gives a better optimized array than
the GA and BDE. For more validation the beam profiles for 192 elements (original array), the
BBA, GA and BDE are shown in Fig. 15.

Fig. 15. Beam profile comparison

Fig. 15 illustrates the effect on the appearance of the side lobe and on the width of the
main lobe that shows beam profiles for 87 elements for the BBA, 95 elements for the GA and
87 elements for the BDE. Fig. 16 illustrates the output comparison in the lateral direction. As
observed, the BBA gives a better SLL output than the GA, BDE and the original array. This is due
to the element optimization of the BBA which lowers the SLL while maintaining the beam profile
and pressure outputs. A comprehensive statistical analysis of the three algorithms the BBA, BDE
and GA are shown in Table 2.

As observed from the above figure, the BBA and BDE almost have the same SLL but due
to the difference in array elements, the BBA configuration has a slightly lower SLL than that of
the BDE.
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Table 2. Statistical analysis of BBA, BDE and GA

Algorithm Number of trials Mean active Minimum active Original arrayelements number elements number

BBA 90 87

GA 50 100 95 192

BDE 91 87

Fig. 16. Comparison of lateral direction output

From the above results it can be observed that all the algorithms and also the original array
have the same width of the main beam. But in terms of the SLL, the BBA gives a lower SLL than
both the BDE and GA. Also it is observed that the BDE gives a slightly higher SLL than the BBA
and almost equal to that of the GA, but it gives a lower number of elements than the GA. So in
terms of element optimization both the BBA and BDE were successful to minimize the number
of elements, but the BDE gives a higher SLL due to the slightly different configuration of the
optimized elements.

Since all the algorithms are stochastic, a statistical analysis of the BBA, GA and BDE algorithm
is done by performing 50 trail runs for each algorithm. The analysis is done to get the mean and
the minimum values for each algorithm in terms of element number optimization. Table 2 shows
the obtained results.

In Table 2, it is observed that both the mean and the minimum number of elements for the
BBA are lower than that of the BDE and GA.
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8. Time complexity

In this section, a full discussion on the proposed GA, BDE and BBA has been presented. In
the discussion, different perspectives were taken into consideration such as algorithm complexity,
execution time, advantages, and disadvantages. Computational complexity of any algorithm can be
measured using different methods. One of these methods is the big O. In optimization algorithms,
the big O is used to clarify algorithms according to how their running time or space requirements
grow as the input size grows. In this section complexity for the proposed GA and BBA will be
discussed.

8.1. GA complexity
The complexity depends on the genetic operators, their implementation (which may have

a very significant effect on overall complexity), the representation of the individuals and the
population, and obviously on the fitness function. The big O representation can be obtained as:

O(GA) = l (nm + (O(selection) + O(mutation) + O(elitism))), (14)

where: l is the maximum generation number, n is the number of chomsomes (population number),
m is the dimension of the problem. The GA complexity depends on the selection, mutation and
elitism. So by simplifying (14) we get the GA complexity as follows:

O(GA) = l (nm + n2). (15)

Thus from Eq. (15), it’s clear that the GA time complexity depends on the number of iterations,
and the population size. As observed, the execution time increases non linearly and it is higher
than other algorithms even under the same simulation conditions.

8.2. BBA complexity
The BBA complexity can be obtained as follows. The computational complexity of the BBA

depends on the number of iterations, number of bats (population) and the problem dimension.
Therefore, the overall time complexity is:

O(BBA) = l (nm), (16)

where: n is the number of bats, l is the maximum number of iterations, and m is the number
of objects. It is observed that BBA complexity depends on the number of bats and the number
of iterations beside the dimension, so when these numbers are large, the complexity increases
and the execution time increases too. Also the complexity is unlike the GA, which increases non
linearly.

8.3. BDE complexity
The computational complexity of the BDE depends on the number of iterations, number of

population and the problem dimension. Therefore, the overall time complexity can be obtained
as stated in [30]:

O(BDE) = n(3 + 2l + 2lm), (17)
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where: n is the population size, l is the maximum number of iterations, and m is the problem
dimension. It is observed that the BDE complexity depends on the number of vectors and the
number of iterations beside the dimension, so when these numbers are large, the complexity
increases and the execution time increases much more than that of the BBA. Table 3 shows the
effect of the increased number of bats on the execution time and the variation in chromosomes on
the execution time of the GA, as well as increasing number of vectors in the BDE. The execution
time is calculated using MATLAB. The iteration number is 200 for all trials and the population
size is the same in all algorithms just to insure a fair comparison.

Table 3. Execution time comparison

Number Execution time Number Execution time Number of Execution time
of bats (n) of BBA vectors of BDE chromosomes of GA

10 1.423 s 10 2.212 s 10 3.241 s

15 1.627 s 15 4.384 s 15 4.752 s

20 2.343 s 20 5.781 s 20 7.378 s

It’s obvious that the BBA is much faster than the GA and BDE. Also, as number of population
increases, the GA and BDE algorithm times increase much more than that of the BBA. So, in this
work the suggestion of using the BBA is illustrated from the point of view of the execution time,
better element number and lower SLL.

9. Parameters selection of BBA

Based on the basic principle of the BBA the pulse emission rate (r) has an effect on the
convergence precision. Loudness (A) effects the convergence rate but each function requires
different loudness (A). Therefore, for different functions, the simulation experiments should be
carried out in order to obtain the appropriate parameter setting. The simulation results show
that the convergence speed of the algorithm is relatively sensitive to the setting of the algorithm
parameters. So, by simulation and testing it is found that the best setting for the pulse emission
rate (r) and loudness (A) is 0.2 and 0.7, respectively. These settings give the best results in terms
of fast and precise convergence of the BBA towards the best solution for this application (2D
array optimization).

10. Conclusion

The optimization of a 2D ultrasound array is a solution to make large arrays usable on
contemporary scanners with acceptable image features. This work evaluates to what extent the
BBA could replace the GA and BDE in the problem of optimizing 2D ultrasound arrays, enabling
fast and reliable results with limited resources. The results obtained confirm the suitability of the
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BBA to be used for optimization problems in small arrays. The BBA, BDE and GA are compared
from the point of view of the number of active elements, the SLL and algorithm complexity. The
results show that the BBA outruns the BDE and GA in terms of the number of active elements,
the SLL, time complexity and array configuration. Moreover, a statistical analysis shows that the
BBA has lower average and minimum values for the number of elements for the optimized array.
So, the suggestion that the BBA is more effective in solving optimization problems of small arrays
has been confirmed.
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