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Abstract
This study was conducted to predict the yield and biomass of lentil (Lens culinaris L.) af-
fected by weeds using artificial neural network and multiple regression models. Systematic 
sampling was done at 184 sampling points at the 8-leaf to early-flowering and at lentil 
maturity. The weed density and height as well as canopy cover of the weeds and lentil were 
measured in the first sampling stage. In addition, weed species richness, diversity and even-
ness were calculated. The measured variables in the first sampling stage were considered 
as predictive variables. In the second sampling stage, lentil yield and biomass dry weight 
were recorded at the same sampling points as the first sampling stage. The lentil yield and 
biomass were considered as dependent variables. The model input data included the total 
raw and standardized variables of the first sampling stage, as well as the raw and stan
dardized variables with a significant relationship to the lentil yield and biomass extracted 
from stepwise regression and correlation methods. The results showed that neural network 
prediction accuracy was significantly more than multiple regression. The best network in 
predicting yield of lentil was the principal component analysis network (PCA), made from 
total standardized data, with a correlation coefficient of 80% and normalized root mean 
square error of 5.85%. These values in the best network (a PCA neural network made from 
standardized data with significant relationship to lentil biomass) were 79% and 11.36% for 
lentil biomass prediction, respectively. Our results generally showed that the neural net-
work approach could be used effectively in lentil yield prediction under weed interference 
conditions.
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Introduction

Lentil is one of the most important pulses in rainfed 
and irrigated systems in different parts of the world 
(Mohamed et al. 1997), and it  is one of the most im-
portant food products in the Middle East and South 
Asia (Sarker and Erskine 2006). The cultivated area 
and the production of lentil in Iran were reported as 
138,739 ha and 83,329 tons, respectively (FAO 2017). 
Low heights, slow establishment, limited vegetative 
growth, and slow canopy closure of lentil gives low 
competition against weeds (Blackshaw et al. 2002; 
Elkoca et al. 2004; Erman et al. 2004). In addition, 
lentil is cultivated at a low density (the recommend-
ed density is between 80 and 100 plants per square 

meter) and has a slow growth rate, so it does not cre-
ate a dense canopy in the early growing stages (Erman 
et al. 2008). The lentil yield reduction due to weed 
competition has been estimated at 20–84% (Yenish 
et al. 2009), depending on the infestation intensity and 
weed species (Knott and Halila 1988). Therefore, the 
control of lentil weeds is essential to prevent crop yield 
loss (Karimmojeni et al. 2015). 

Prediction of crop yield during the growing season 
can optimize field management operations, such as op-
timum fertilizer application, suitable sowing density, 
and effective weed control by increasing the manager’s 
awareness of the conditions on the farm. Different 
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results showed that the back-propagation neural net-
work model could potentially predict the spatial yield 
variability of soybean. In the study of Niazian et al. 
(2018) an artificial neural network and a multiple re-
gression model were applied to predict the seed yield 
and seed yield components of ajowan (Trachysper-
mum ammi L.). The yield prediction of an artificial 
neural network was better than the multiple regres-
sion model. The findings of Niedbała et al. (2019) 
showed a practical possibility of using neural network 
models based on quantitative and qualitative data to 
predict the yield of winter rapeseed (Brassica napus L.). 
In recent years, new methods of machine learning with 
a high accuracy have been used for crop yield predic-
tions such as; Convolutional Neural Networks (CNN), 
Recurrent Neural Networks (RNN), and Long Short-
Term Memory (LSTM) (Sun et al. 2019; Khaki et al. 
2020b), and Neural Collaborative Filtering Approach 
(NCF) (Khaki et al. 2020a).

Generally, no pest and weed management opera-
tions are carried out in most lentil rainfed fields in 
Kermanshah province, Iran. In fact, due to the semi-
arid climate and low rainfall in the study area, no out-
break of diseases or pests has been observed in rainfed 
lentil fields for many years. Therefore, weed infesta-
tion is the most important factor of crop reduction. It 
seems that, crop yield can be predicted by quantifying 
the characteristics of weeds as effective factors under 
common weather conditions using prediction models 
like an artificial neural network. Based on the authors’ 
literature research, so far, no study has been done on 
the prediction of yield affected by weeds using an ar-
tificial neural network. In fact, measuring some weed 
traits such as weed height, density, and canopy cover as 
well as weed diversity and evenness could improve an 
understanding of the relationship between weeds and 
crop yield and consequently be used to predict crop 
yield. It seems that it is possible to predict crop yield 
by using some modeling methods such as an artificial 
neural network and multiple regression. Therefore, ac-
cording to the significant effects of weeds in lentil yield 
reduction, in this research, we tried to compare the 
efficiency of an artificial neural network and multiple 
regression models in predicting lentil yield under mul-
tispecies weed competition.

Materials and Methods

Study area

This study was conducted in 2016 on a 2 ha lentil 
rainfed field, located on the Campus of Agriculture 
and Natural Resources of Razi University Kerman-
shah, Iran (34.32°N, 47.28°E, at 1374 m above sea level) 
with an average temperature of 13.4°C and an average 

methods have been used to predict crop yield before 
harvest (Seyed Jalali et al. 2016). Bazgeer (2005) used 
several regression models to predict wheat yield in 
Punjab, India. Song et al. (2017) used the reciprocal 
hyperbolic model to predict soybean yield under the 
influence of single- and multiple-weed interference. 
Generally, crop losses caused by weeds are greater than 
those caused by disease and insect pests (Gnanavel and 
Natarajan 2014). Therefore, under normal farm condi-
tions without biotic and abiotic stresses, modeling the 
relationship between weeds and crop yield can be ef-
fective in predicting crop yield (Ali et al. 2013).

Artificial neural networks are known as a preferred 
method in biosciences due to the predictive quality and 
simplicity compared to other empirical models (Joer-
gensen and Bendoricchio 2001; Ozesmi et al. 2006). 
The neural network method is able to predict nonlin-
ear and complex relationships and can show hidden 
connections between input variables (Batchelor et al. 
1997). In fact, they are compromise-analytic me
thods based on the human brain’s neuronal structure 
and have an ability to learn and process information 
(Torrecilla et al. 2004). 

Neural networks generally consist of three layers 
and each layer is composed of some processor units 
called neurons (or cells, units, and nodes). The first 
layer of each network is called the input layer, which 
is the place where the data is entered. In this layer, in-
dependent variables of the model were interred and no 
processing was done. The last layer is the output layer 
in which the output data are deployed (Alvarez 2009; 
Cilimkovic 2015). Also, each network consists of some 
intermediate layers, called hidden layers, which com-
pute the relationship between variables and also create 
the weights associated with each of the independent 
variables (Menhaj 2005). So far, artificial neural net-
works have a high potential in several issues such as es-
timation of leaf area (Movahedian et al. 1386), soil mois-
ture (Chang and Islam 2000), water quality (Zhang et al. 
2002), biomass (Jin and Liu 1997) and also crop yield 
(Liu et al. 2001; Drummond et al. 2003).

In recent years, research on the effectiveness of 
artificial neural network in predicting crop yield has 
increased. Alvarez  (2009) used an artificial neural net-
work for modeling the effects of soil factors and cli-
matology on the average wheat yield in the Pampas, 
Argentina. He showed that an artificial neural network 
was better than regression in crop yield estimation. 
Sajadi and Sabouri (2014) used a multi-layer percep-
tron neural network based on meteorological data 
to predict rapeseed yield. They found that the neural 
network was able to predict canola yield. Irmak et al. 
(2006) also predicted the spatial patterns of soybean 
yield using an artificial neural network and evalu-
ated the role of factors that trigger spatial variations 
of yield, including topography and soil fertility. The 
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annual rainfall of 455 mm. The soil type was silty clay 
with 1.5% organic material and pH of 7.66 (Table 1). 
Two consecutive years before the experiment, the 
studied field was left fallow and under wheat cultiva-
tion, respectively. Soil preparation was done using 
a plow and disk. A local lentil landrace was planted us-
ing a row crop planter with a row spacing of 25 cm on 
March 6, 2016. Similar to most lentil rainfed fields in 
Kermanshah no pesticides or other methods for pest, 
disease or weed management were applied.

Sampling

Field sampling was done systematically, based on 
a network of points at a distance of 7 m from each 
other (at 7 to 7 m intervals), which were regularly 
located inside the field. The distance between the 
sampling points was according to the spatial range 
of weeds, which for most important weeds of farms 
was less than 7 m (Bagheri et al. 2014). A 1 m2 was 
used at each sampling point to record lentil and weed 
characteristics. Sampling was done in two stages, so 
each point was sampled twice. Therefore, in order to 
do an accurate sampling, the geographic coordinates 
of each point in the first sampling stage were record-
ed with a GPS (Global Positioning System) device 
(GARMIN eTrex Summit). In addition, wooden nails 
were used to mark the points in order to easily iden-
tify them in the second sampling stage. In this study, 
184 points were monitored and measured at each sam-
pling stage.

Non-destructive sampling was done in the first 
sampling stage, at 8-leaf to the early-flowering pheno-
logical stage of lentil (May 3rd). Weed density and can-
opy cover, as well as lentil canopy cover were recorded. 
Weed density was recorded by counting the number 
of plants per square meter. To measure the canopy 
cover percentage, gridded quadrats were used so that 
the percentage of soil covered by crop and weeds was 
estimated visually and was considered as canopy cover 
percentage (Brim-DeForest et al. 2017). The height 
of the plants was measured using a ruler. The weed 
density data were used to calculate species richness, 
biodiversity indices of Shannon-Weiner (Equation 1), 
Simpson (Equation 2), and evenness indices of Smith-
Wilson (Equation 3) and Camargo (Equation 4):
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	          (1)

where: H’ – the Shannon-Weiner diversity Index, 
pi – the proportion of species i relative to the total 
number of species which is defined as pi = ni/N (ni is 
the number of species i and N are the total number of 
species) and s – the total number of species (Shannon 
and Weaver 1964).
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where: D – the Simpson diversity index, pi – the pro-
portion of species i relative to the total number of 
species which is defined as pi = ni/N, and s – the total 
number of species (Simpson 1949).
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where: Evar – the Smith-Wilson homogeneity index, 
ni – the number of species i in the sample, nj is the 
number of species j in the sample and s – the total 
number of species (Smith and Wilson 1996).
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where: E’ – the Camargo’s evenness index, pi – the pro-
portion of species i in the sample, pj – the proportion 
of species j in the sample, and s – the total number of 
species (Camargo 1993).

In the second stage of sampling, destructive sam-
pling was done at the time of the physiological matu-
rity of lentils when 90% of pods were golden-brown 
(June 4th). The sampling was performed at exactly the 
same points as the first sampling stage. Thus, lentil 
plants in the 1 m2 were harvested from the crown and 
transferred to the laboratory to measure the biomass 
dry weight and grain yield of lentil.

Data preparation

In this study, the data from the first sampling stage 
(lentil canopy cover, weed density, height, canopy 
cover and species richness, as well as Shannon-Weiner 
and Simpson biodiversity indices and Smith-Wilson 
and Camargo evenness indices for weed population) 
were used as input variables to predict lentil yield and 
biomass by studied models. In order to compare the 
accuracy of the models, another data series was pre-
pared by obtaining the relationships of the measured 

Soil texture
Clay 
[%]

Silt 
[%]

Sand
 [%]

K 
[ppm]

P 
[ppm]

N 
[%]

OC 
[%]

EC 
[ds ⋅ m–2]

pH
Sampling 

depth

Silty clay 44.4 43.9 11.7 282 16.2 0.07 1.5 0.64 7.66 0–30

OC – organic carbon; EC – electrical conductivity

Table 1.  Physical and chemical properties of the soil of the studied field 
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variables of the first sampling stage with the yield and 
biomass of lentil. To this end, first, the statistical dis-
tribution of lentil biomass and yield data was tested 
by Kolmogorov Smirnov normality test. The statistical 
distribution of lentil yield was normal, hence the rela-
tionship between lentil yield and measured variables in 
the first sampling stage was investigated based on the 
stepwise regression method. The statistical distribution 
of lentil biomass was not normal and also no function 
was found to normalize this data based on the Johnson 
transformation method. Therefore, Spearman’s cor-
relation method was used to identify the significant 
relationship between lentil biomass and measured vari-
ables. In this way, two sets of input variables including 
overall collected data in the first sampling stage and sig-
nificant variables extracted from stepwise and Spear-
man methods were considered as input variables.

Furthermore, to obtain the desired results in the 
lentil yield and biomass prediction, data standardiza-
tion was performed. Accordingly, the Wittendorf lin-
ear standardization method (Equation 5) was used to 
standardize the input variable (Anysz et al. 2016). Thus, 
two sets of data including raw and standardized data 
were prepared from the overall collected data in the 
first sampling stage and significant variables extracted 
from the stepwise and Spearman methods. Finally, 
four data sets including total raw data, significant raw 
data extracted from the stepwise and Spearman meth-
ods, total standardized data and significant standard-
ized data extracted from the stepwise and Spearman 
methods were considered as input variables to predict 
yield and biomass of lentil. 
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where: Xi – the standardized value of the data, Xmin – 
the minimum amount of the data, and Xmax – the maxi-
mum amount of the data of each input variable.

Yield and biomass prediction models

Two methods of artificial neural network (ANN) and 
multiple regression were used to predict the yield and 
biomass of lentil. In order to predict yield and biomass 
of lentil by ANN, the four input data sets were used as in-
put layer of neural networks. The number of input neu-
rons was considered nine (total raw and standardized 
data) and six (raw and standardized data derived from 
the stepwise and Spearman methods). The number of 
neurons in the output layer was the prediction values of 
yield or biomass of lentil. ANN performance depends on 
the choice of the number of hidden layers (Ramchoun 
et al. 2017). Therefore, while making the artificial neu-
ral networks, one to ten hidden layers were used and 

tested. The neuron number of the hidden layer of the 
best network was determined, after constructing the 
networks. To find the most accurate networks in len-
til yield prediction, different types of neural networks 
such as Multilayer Perceptrons, Generalized feedfor-
ward, Modular and Principal Component Analysis 
were trained and tested (Bagheri et al. 2019). In ad-
dition, learning rules of Momentum, Levenberg Mar-
quardt, Step, and Quickprop were tested. The transfer 
functions of TanhAxon, SigmoidAxon, TanhAxon 
Linear, SigmoidAxon Linear, SoftMaxAxon, Linear 
Axon, and Axon also were evaluated (Bagheri et al. 
2019). Furthermore, the numbers of hidden layers and 
neurons in each hidden layer were manipulated to find 
the best neural networks. The above-mentioned steps 
to find the most accurate neural networks were done by 
trial and error (Niazian et al. 2018; Bagheri et al. 2019). 
Eighty percent of each data set was used to train the 
neural networks and the  remaining 20% were used for 
accuracy testing. The training process was terminated 
based on the mean squared error below 0.01 threshold 
from one iteration to the next. The software NeuroSo-
lution v. 5.00 was used to build neural networks. Sen-
sitivity analysis was used for extracting the cause and 
effect relationship between the inputs and outputs of the 
networks. This provided feedback as to which input was 
the most effective on networks’ output.

Given the normal distribution of lentil yield data 
and non-normal distribution of lentils biomass data, 
multiple regression models were applied only to pre-
dict lentil yield. Therefore, multiple regression mod-
els were constructed from the four input data series of 
lentil yield using IBM SPSS Statistics v. 26. 

Validation of prediction precision

The correlation coefficient (R) and coefficient of de-
termination (R2) of the observed and predicted values 
were used to determine the accuracy of the neural net-
work and multiple regression models in predicting len-
til yield and biomass. The accuracy of different models 
could be evaluated through the two parameters of the 
correlation coefficient and coefficient of determina-
tion. However, these coefficients cannot describe solely 
the accuracy of the different models. Even though in 
a model there may be a large difference between the 
values of the observed and predicted data, the chang-
ing trend in these data is still the same. In this case, 
although the correlation coefficient and the coefficient 
of determination can accurately reflect the process of 
the changes in the observed and predicted data, they 
do not indicate the numerical matching between them 
(Rahmani et al. 2008). Therefore, in addition to the 
above-mentioned coefficients, the mean square error 
(MSE) (Equation 6), root mean square error (RMSE) 
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(Equation 7), and normalized root mean square error 
(nRMSE) (Equation 8) were also used for accuracy eval-
uation of the models (Haykin and Lippmann, 1994).
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where: Oi – the observed value (lentil yield), Pi – the 
predicted value of the model (neural network), O– – the 
average number of observations, and n – the number 
of observations or repetitions.

Normalized root mean square error expresses the 
percentage of the difference between the predicted val-
ues and the actual values. On this basis, the network 
prediction power is “excellent” if this value is less than 
10%,  if between 10 to 20% it is “good”, if it is between 
20 and 30% it is “moderate” and, if it is above 30% it is 
“weak” (Shirdeli and Tavassoli 2015).

The t-test was used for statistical comparison of 
neural network and multiple regression in lentil yield 
prediction results within the four sets of input data.

Results 

Significant relationships between yield and 
biomass of lentils with measured variables

The results showed that the stepwise regression model 
was able to describe significantly (p ≤ 0.01) the varia-
tions of the dependent variable affected by independ-
ent variables (Table 2). Weed density and canopy cover 
percentage had negative effects and lentil canopy cover 
percentage had significant positive effects on the lentil 
yield (Table 3).

The stepwise regression model of the effects of weed 
diversity and evenness indices as independent variables 
on lentil yield as the dependent variable was significant 
(p ≤ 0.01) and was able to explain the changes of de-
pendent variable influenced by independent variables 
(Table 4). Based on the results, the Smith and Wilson 
evenness index and Simpson diversity index had a sig-
nificant positive effect on lentil yield (Table 5).

Biomasses of lentil had a significant negative cor-
relation with weed canopy cover and density, while it 

Table 2. Analysis of variance of the stepwise regression for the effect of weed and lentil parameters on lentil yield

Model Sum of squares df Mean square F p

Regression 22,311.380 1 22,311.380 19.670 0.000

Residual 199,632.744 176 1,134.277 – –

Total 221,944.124 177 – – –

Table 3. Significant weed and lentil parameters on lentil yield by stepwise regression

Model Regression coefficient Standard error Beta coefficient p-value

Constant coefficient 201.56 10.88 – 0.000

Weed density –0.69 0.18 –0.25 0.000

Weed canopy –0.40 0.17 –0.16 0.019

Lentil canopy 0.47 0.13 0.25 0.000

The weed height did not have a significant effect on lentil yield therefore, it was removed from the model

Table 4. Analysis of variance of the stepwise regression for the effect of weed diversity and evenness indices on lentil yield

Model Sum of squares df Mean square       F       p

Regression 19,013.889 2 9,506.945 8.247 0.000

Residual 199,436.939 173 1,152.815 – –

Total 218,450.828 175 – – –
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had a significant positive correlation with lentil canopy 
cover (Table 6). It seems that, by increasing the weed 
canopy and density, the competition between weeds 
and lentils was intensified and resulted in lentil bio-
mass reduction. In addition, increasing lentil canopy 
ultimately led to an increase in lentil biomass.

The lentil biomass had a significant negative cor-
relation with weed species richness, while the other 
indices showed no significant correlation with lentil 
biomass (Table 7). The significant measured variables 
of weeds and lentils on lentil yield and biomass were 
used in the construction of neural networks and mul-
tiple regression.

Artificial neural network and multiple 
regression efficiency for predicting lentil 
yield

The results showed that the PCA neural network with 
the least MSE value of the training process, had the 
highest accuracy among the tested neural networks. 
This neural network consisted of hidden layers and 
the TanhAxon transmission function according to the 
Step-Learning Rules. The evolution of the PCA neural 
network output based on four input data sets (total raw 
and standardized input data as well as raw and stand-
ardized data on the stepwise regression output) showed 
that the neural network made from total standardized 
data could describe 0.80 of yield variations. However, 
the networks made from total raw data, raw data ex-
tracted from stepwise regression, and standardized 
data extracted from stepwise regression could describe 

0.65, 0.58, and 0.67 of lentil yield variations, respec-
tively. In addition, the results of the comparison of the 
RMSE and square normalized root mean error of the 
networks also showed that the neural network made 
from total standardized data had the smallest values 
(12.54 and 5.85, respectively) (Table 8). Investigating 
the sensitivity of the output of networks made from 
different input data sets showed that when using raw 
data, the diversity and evenness indices of weeds had 
the most impact on the output of the model. However, 
using standard data increased the impact of other in-
puts, so that weed density and canopy as well as lentil 
canopy had an obvious effect on lentil yield. In fact, 
the effect of standard input data was more homoge-
neous than the raw input data on the model output. 
(Table 9). 

The results of lentil yield prediction by multiple 
regression models showed that multiple regression 
models were significant in the prediction of lentil yield. 
Nevertheless, comparison of multiple regression with 
neural networks showed that the accuracy of the neu-
ral networks for all four data series was significantly 
higher than the multiple regression models (Table 10).

As it was shown, the correlation coefficient between 
observed data with the predicted data by neural net-
work made from total raw and standardized data was 
0.80 and 0.89, respectively. These coefficients for raw 
and standardized stepwise regression data were 0.76 
and 0.82, respectively. It showed that the input and 
output layers of the network had a relatively high cor-
relation (Table 8). Accordingly, the charts of observed 
and predicted yield also showed a high correlation 

Table 5. Significant weed diversity and evenness indices on lentil yield by stepwise regression

Model Regression coefficient Standard error Beta coefficient p-value

Constant coefficient 127.666 19.016 – 0.000

Smith and Wilson 76.488 18.840 0.436 0.000

Simpson 64.667 21.129 0.329 0.003

The Shannon and Camargo indices did not have a significant effect on lentil yield therefore, they were removed from the model

Table 6. The Spearman correlation between weed and lentil parameters with lentil biomass

Weed canopy [%] Weed density Weed height Lentil canopy [%] Crop biomass

Crop biomass –0.212* –0.147** 0.075 0.586*** 1.000

*, **, *** are significant at the 0.01, 0.05 and 0.1 probability level respectively

Table 7. The Spearman correlation between weed diversity and evenness indices with lentil biomass

Richness Shannon Simpson Camargo Smith and Wilson Crop biomass

Crop biomass –0.199* –0.026 0.038 0.021 0.020 1.000

*is significant at the 0.01 probability level respectively
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between these values and the similarity of the tenden-
cy of changes. There was little difference between the 
actual values of yield and the values predicted by the 
neural network (Fig. 1).

Evaluation of artificial neural network 
efficiency for lentil biomass

The results of the lentil biomass prediction by the neu-
ral networks showed that a PCA neural network with 
two hidden layers and the TanhAxon transfer function 

according to Step’s learning rule, with the least MSE 
of the training process was the best and most accurate 
network. The analysis of the PCA neural network based 
on the four input data sets showed that the neural net-
works made from the total raw and standardized data, 
as well as the raw and standardized data in correlation 
output could describe biomass variation by 0.77, 0.69, 
0.63 and 0.62, respectively. The correlation coefficients 
between the observed and predicted data in the neural 
networks built by the total raw and standardized data, 
as well as the raw and standardized data in correlation 

Table 8. Neural network accuracy in predicting lentil yield using total raw and standardized data and raw and standardized stepwise 
regression data

Network input R R2 MSE RMSE nRMSE [%]

Total data

Raw data 0.805 0.648 308.334 17.559 8.392

Standardized data 0.894 0.799 157.348 12.544 5.855

Stepwise regression data

Raw data 0.762 0.580 285.162 16.887 8.160

Standardized data 0.820 0.672 334.259 18.283 8.637

R – correlation coefficient; R2 – coefficient of determination; MSE – mean square error; RMSE – root-mean-square error; nRMSE – normalized root mean 
square error

Table 9.  The effect of each of the inputs on the output in the networks constructed by different input data sets

Inputs
Sensitivity about the mean

total raw data total standardized data  regression raw data regression standardized data

Weed canopy 0.12 10.02 0.18 15.82

Weed density 0.03 3.07 0.17 18.25

Lentil height 0.14 3.49

Lentil canopy 0.19 15.22 0.20 18.32

Richness 0.81 8.32

Shannon index 5.70 13.90

Simpson index 4.69 4.14 0.44 1.68

Smith and Wilson index 11.03 8.78 13.23 12.46

Camargo index 0.46 4.62    

Table 10. Multiple regression models accuracy in predicting lentil yield using total raw and standardized data and raw and 
standardized stepwise regression data

Input R R2 MSE RMSE nRMSE [%]

Total data

Raw data 0.549 0.301 3,976.995 63.063 30.980

Standardized data 0.601 0.362 3,773.594 61.429 29.553

Stepwise regression data

Raw data 0.594 0.359 5,515.969 74.269 35.730

Standardized data 0.593 0.352 5,512.358 74.245 35.718

R – correlation coefficient; R2 – coefficient of determination; MSE – mean square error; RMSE – root mean square error; nRMSE – normalized root mean 
square error
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Evaluation of observed and predicted biomass val-
ues in Figure 2 indicated that despite the higher corre-
lation in total raw and standardized data than the cor-
relation standardized data, the numerical resemblance 
of them was lower. It seems that that is why RMSE 
of the networks built from total raw and standard-
ized data is higher and the neural network accuracy 
is lower than the network built from the correlation 
standardized data.

output were 0.88, 0.83, 0.79 and 0.79, respectively. The 
results of the comparison of RMSE between the con-
structed networks showed that the neural network made 
by the standardized correlation data was the most accu-
rate with the lowest RMSE of 65.75 and lowest nRMSE 
of 11.36 (Table 11). The lentil biomass sensitivity to the 
different model inputs showed that the effect of weed 
species richness was greatest when using raw data, and 
the effect of other inputs increased when using standard 
data, as seen in lentil yield (Table 12).

Table 11. Neural network accuracy in predicting lentil biomass using all raw and standardized data and raw and standardized 
correlation data

Network input R R2 MSE RMSE nRMSE [%]

Total data

Raw data 0.88 0.77 5,111.66 71.49 12.01

Standardized data 0.83 0.69 5,304.87 72.83 12.5

Correlation data

Raw data 0.79 0.63 5,490.7 74.1 12.22

Standardized data 0.79 0.62 4,324.21 65.76 11.36

R – correlation coefficient; R2 – coefficient of determination; MSE – mean square error; RMSE – root mean square error; nRMSE – normalized root mean 
square error 

Fig. 1. Comparison between observed and predicted lentil yield by the neural network using: A – total raw data, B – total standardized 
data, C – raw stepwise regression data and D – standardized stepwise regression data

A                                                                                                                                B

C                                                                                                                                 D
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Table 12.  The effect that each of the inputs on the output in the networks constructed by different input data sets

  Sensitivity about the mean

Inputs total raw data total standardized data correlation raw data correlation standardized data

Weed canopy 0.62 37.16 0.39 21.13

Weed density 0.16 12.57 1.63 25.83

Lentil height 0.93 17.68

Lentil canopy 1.62 103.82 1.20 150.10

Richness 2.78 18.91 5.48 106.64

Shannon index 6.56 7.94

Simpson index 2.27 0.85

Smith and Wilson index 0.74 1.75

Camargo index 0.78 1.92    

Discussion

According to the results, increasing the weed density 
and canopy percentage had a significant negative effect 
on lentil yield. Song et al. (2017) in a study on the ef-
fects of single and multiple weed interactions reported 
that soybean yield was significantly affected by weed 
density. In fact, plants are affected by increasing the 

level of the adjacent canopy (Cressman et al. 2011). As 
a result, we can say that increasing the weed canopy 
can reduce the active photosynthesis of crops, result-
ing in reduced photosynthesis and ultimately loss of 
yield.

The Smith and Wilson evenness index expresses 
the contribution of each species in an ecosystem. The 
range of this index is between 0 to 1 with 1 repre-
senting maximum species evenness in an ecosystem. 

Fig. 2. Comparison between observed and predicted biomass by the neural network using: A – total raw data, B – total standardized 
data, C – raw correlation data and D – standardized correlation data

A                                                                                                                                B

C                                                                                                                                 D



Alireza Bagheri et al.: Artificial neural network potential in yield prediction of lentil (Lens culinaris L.)… 293

Evenness indicates the distribution of plant species 
within an occupied niche space (Archibald 2019). In 
an ecosystem where the share of a species is approxi-
mately similar, dominance will decrease (Jost 2010). In 
fact, high evenness limits the abundance of dominant 
and competitive weeds inducing yield losses (Storkey 
and Neve 2018). The significant positive effect of the 
evenness index on lentil yield indicates that the more 
homogeneous presence of a species in the field not only 
has no negative effect but also could have a positive ef-
fect on the yield. Greater evenness of weed community 
reduces the intensity niche overlap of weeds with the 
crop (Adeux et al. 2019). In this situation competi-
tion between weed species can reduce the severity of 
the negative effect of weed dominant species, thereby 
it could have an indirect positive effect on yield. The 
results of our study were in accordance with Cierjacks 
et al. (2016) and Adeux et al. (2019) who reported 
a significant positive relationship between the crop 
yield with weed diversity.

The Simpson diversity index takes into account 
the number of species present, as well as the relative 
abundance of each species. With this index, 1 repre-
sents infinite diversity and 0, no diversity. That is, the 
larger the value of this index, the higher the diversity 
of a plant population. The positive effect of the Simp-
son diversity index on lentil yield revealed that in plots 
with larger values of this index, lentil yield was higher 
than in plots with lower values. Increasing weed di-
versity could reduce the probability of dominant and 
competitive weeds through inter-specific competition 
and consequently limit the negative impacts of weed 
competition on crop yield (Hooper et al. 2005). In the 
study of Adeux et al. (2019) higher weed diversity li
mited yield losses through reduced weed biomass pro-
duction. Cierjacks et al. (2016) found a significant po
sitive correlation between weed Simpson diversity and 
crop yield of coconut and banana. Ferrero et al. (2017) 
demonstrated a positive increase of soybean yield with 
increasing weed diversity. 

Generally, constructed neural networks were able 
to predict lentil yield with more accuracy than multi-
ple regression models. Niazian et al. (2018) compared 
the accuracy of neural network and linear regression 
in predicting seed yield of ajowan. They found that the 
neural network was more accurate. The artificial neu-
ral network could explore nonlinear and complex re-
lationships between input variables and their connec-
tion with output variables (Batchelor et al. 1997) which 
is why the results showed more accuracy of the neural 
network than multiple regression models. The neural 
network generated by total standardized data had the 
highest precision. In the study of Kaul et al. (2005) 
neural network was able to predict maize and soybean 
yield with the precision of 0.77 and 0.81. Rahmani 
et al. (2008) also predicted oat yield using the Multilayer 

Perceptrons neural network with four hidden layers, 
based on meteorological parameters and drought in-
dicators in different parts of East Azerbaijan, with the 
accuracy of 93 and 91%. 

In this study, the most accurate network to predict 
lentil biomass was a network made from the standard-
ized input data. However, network validation showed 
that the correlation between the observed data with 
predicted output data in this network was less than 
the other built networks. The correlation between the 
observed and predicted output of the network is not 
a complete criterion for determining the accuracy of 
the neural network. It is possible that there is a large 
difference between the observed and predicted data; 
however, the trend of variations is consistent with 
each other. In this case, although the correlation coef-
ficient and the coefficient of determination can show 
the coordination of variation between the observed 
and predicted data well, numerical matching between 
observed and predicted data may not be acceptable 
(Rahmani et al. 2008). Figure 2 shows the numerical 
match between observed and predicted data. As can be 
seen, numerical matching of the network made from 
the standardized correlation data compared to other 
networks is more appropriate. Based on the nRMSE 
of the neural networks made for lentil biomass, it can 
be concluded that these networks had a relatively high 
predictive power (Table 9). The nRMSE is expressed as 
the percentage of the difference between the observed 
and predicted values, so that values <10%, between 
10 and 20%, 20 to 30%, and >30%, respectively, indi-
cated excellent, good, moderate and poor network per-
formance (Shirdeli and Tavassoli 2015). Comparison 
of the neural network made for yield and lentil bio-
mass showed that the neural network built for lentil 
yield was more accurate than the neural network built 
for lentil biomass prediction (Tables 8 and 9). Jin and 
Liu (1997) used one hidden layer of the Multilayer Per-
ceptrons neural network to predict the wheat and oat 
biomass and results showed an appropriate correlation 
between predicted and observed data.

Conclusions

A lack of understanding the effects of weeds on lentil 
yield has led to inadequate weed management in Iran 
(personal observation). Weeds are one of the reasons 
that the average yield in Iran is lower than the world 
average. Different methods have been used to predict 
crop yield. So far, the neural network has not been used 
to predict crop yields using weed traits as input data. 
Given the fact that in the studied area, many rainfed 
farms are abandoned after sowing until harvest, and 
there are no pest and weed management operations, 
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the experiment was conducted to understand the effect 
of weeds on predicting lentil yield. The results showed 
that the artificial neural network method constructed 
from weed traits as input data for predicting lentil yield 
and biomass was significantly more accurate than mul-
tiple regression. The neural network was an acceptable 
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