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Abstract—The paper addresses the issue of the Electromagnetic 

Environment Situational Awareness techniques. The main focus 

is put on sensing and the Radio Environment Map. These two 

dynamic techniques are described in detail. The Radio 

Environment Map is considered the essential part of the spectrum 

management system. It is described how the density and 

deployment of sensors affect the quality of maps and it is 

analyzed which methods are the most suitable for map 

construction. Additionally, the paper characterizes several 

sensing methods. 
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I. INTRODUCTION 

HE dynamic development of wireless communication, an 

increasing number of radio devices and occurring 

spectrum deficiencies have necessitated the implementation of 

more and more effective Electromagnetic Spectrum 

Management (ESM) methods. This is particularly important 

when it comes to designing new systems that require higher 

data rates and excellent Quality of Service (QoS) to meet 

growing needs of customers. In such a situation, the existing 

static ESM methods, which use the static allocation of 

frequencies in the form of appropriate licenses for some users, 

are not able to provide frequency allocation for all of them. 

Therefore, the concept of Dynamic Spectrum Access (DSA) 

has been created. Its main proposal is to share the spectrum 

between different systems. It has materialized as Cognitive 

Radio (CR) that autonomously coordinates the use of 

frequency bands. 

The concept of CR appeared for the first time in the 

dissertation by Joseph Mitola III [1]. It was proposed to use the 

potential for self-organization, independent planning and self-

regulation in order to increase the efficiency of the use of 

available spectral resources [2,3]. There are currently various 

definitions of CR depending on the context in which they are 

used, including the definition adopted by the American Federal 

Communications Commission (FCC) [4], Software Defined 

Radio (SDR) Forum or IEEE [5]. 

CR implements the so-called Opportunistic Spectrum Access 

(OSA) based on the use of temporarily unoccupied spectrum 

slots while avoiding interference between systems operating in 
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the same frequency range. This philosophy entails additional 

challenges related to the need to constantly monitor the activity 

of other transmitters in order to turn off Secondary Users’ (SU) 

emissions when transmission appears from Priority (or 

Primary) Users (PU), i.e. those that have licenses to use these 

bands of the spectrum. In the described environment, CR must 

gather and use spectrum knowledge known as Electromagnetic 

Environment Situational Awareness (EESA). 

The main body of this paper provides information on 

creating EESA using various methods, and then characterizes 

these methods in detail. 

II. SPECTRUM AWARENESS 

One of the basic functionalities of CR is gathering 

information about the radio environment and thus building the 

EESA for each element of the network [6]. In the literature 

several methods are considered how to obtain information on 

the status of the spectrum usage. Access to the geo-location 

database  

[7-9] allows us to obtain information about the occupancy of 

specific frequency bands in a defined location as well as about 

operators providing services in a given region and their 

security requirements. The geo-location database access 

method is considered to be the most reliable method providing 

a stable but static source of information on the availability of 

radio resources. Whereas the Radio Environment Map (REM) 

can be a dynamic source of spectrum availability. The REM 

may support the Centralized Dynamic Spectrum Management 

(CDSM) [10-12] to increase the efficiency of spectrum usage. 

Another application of REM can be the enhancement of the 

local frequency management system, e.g. in CR networks. 

Another tool to obtain information about the frequency band 

that can be used at a given time and place is the cognitive pilot 

channel [13]. It is a special broadcast channel that, in addition 

to information about spectrum usage, provides CR with data 

on radio access techniques, operators and radio communication 

systems working in a given location. 

The next kind of methods to build EESA is sensing [14-17], 

i.e. recognition of the electromagnetic environment. It involves 

monitoring broad spectrum bands and detecting unused 

spectrum parts (spectrum holes / white spaces) as well as 

detecting PU, especially in ad-hoc radio networks. It is 

required that the decision about spectrum occupancy should be 

taken with high probability at a given, appropriately low level 

of the PU's signal. It is noteworthy that in most cases SUs may 

have difficulty in distinguishing between PU and other SU 

signals. That is why all of them are collectively treated as a PU 
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signal. Therefore, the signal detection process relies on 

checking the binary hypothesis: 

 𝑦(𝑡) =  {
𝜂(𝑡)              

 𝑠(𝑡) + 𝜂(𝑡)
  

, 𝐻0

, 𝐻1
 , (1) 

where: y(t) – signal received by SU, s(t) – signal transmitted 

by PU, η(t) – Additive White Gaussian Noise (AWGN), 

𝐻0: the signal received by SU is a noise (AWGN) – no PU 

activity; 

• 𝐻1: the signal received by SU is a radio (transmitted) 

signal plus noise (AWGN) – presence of PU signal. 

Following the above, there are two possible decisions: 

stating or not stating the presence of the PU signal in the band 

under consideration and only one of them is true at a given 

time. For each of these hypotheses there are two possible 

results: the decision was made correctly or incorrectly, as 

presented in Table I. 

Therefore, sensing efficiency is determined by probability of 

detection (𝑃𝑑) and probability of false alarm (𝑃𝑓𝑎). It is 

desirable for 𝑃𝑑 to be as high as possible, while 𝑃𝑓𝑎 should be 

as low as possible to prevent unused transmission possibilities. 

The literature on the subject of sensing suggests a number of 

different methods to identify the presence of PU signal 

transmission. All these methods can be classified into two 

basic categories: non-cooperative and cooperative sensing 

[18], which is presented in Fig. 1. 

SENSING

Cooperative

Centralized

Distributed

Relay-assisted

Covariance 
detection

Eigenvalues of the 
covariance matrix detection

Matched filter 
detection

Hybrid methods

Cyclostationary 
detection

Energy 
detection

Non-cooperative

Fig. 1. Classification of sensing methods 

A. Non-cooperative sensing 

In the case of non-cooperative sensing, CRs independently 

monitor the spectrum and independently (autonomously) from 

other network users make a local decision about the presence 

of PU signal in the tested frequency band. The non-cooperative 

methods are presented in the third chapter. 

B. Cooperative sensing 

In the spectrum monitoring process, CR has to deal with 

numerous problems occurring in the real world of radio 

communication, such as: shadowing, inaccuracy of system 

parameters, or hidden node problem, which limit the 

effectiveness of non-cooperative sensing methods. In order to 

solve such problems, a solution called the Cooperative 

Spectrum Sensing (CSS) has been proposed [19,20,64]. In this 

case, a group of CRs share the data acquired from autonomous 

(non-cooperative) sensing. Therefore, a decision about the 

occurrence of PU transmission on a given frequency can be 

made, even though some of the CR network nodes are not able 

to detect the occurring transmission correctly. As a result, the 

reliability of the decision is improved. 

Depending on the capabilities of a single CR, the decision 

made locally may be a soft decision or a hard decision. In the 

case of the hard decision method, CR sends a binary decision 

on the result of the local detection, i.e. the presence or absence 

of a signal transmission in the radio channel. However, in the 

soft decision method, the "soft" value of the detection result is 

sent (for example, the estimated energy level in a given band). 

A global decision about the presence of a signal transmission 

in the radio channel is made basing on the fusion of data 

obtained from a group of CRs. Each of them sends (e.g. 

through a reporting channel, a dedicated time slot or using a 

different solution) the local detection result (the hard one or 

the soft one) to the Fusion Centre (FC) or the cluster head. In 

such a place, the results which have been gathered are used to 

develop a global decision by choosing the right strategy for 

making the decision about the presence or absence of the 

signal. Then, the decision which has been taken is sent back to 

each CR. 
Depending on the type of decisions received from local CR 

(the hard one or the soft one), FC makes a global decision 
based on specific rules [21]. In the case of binary (hard) 
decisions sent by CR, the so-called hard decision rules can be 
used: AND (the band is occupied if each local CR has detected 
PU transmission), OR (the band is occupied if any CR has 
detected PU transmission) or the majority rule (the band is 
occupied if most of local CRs have detected PU transmission). 
In the second case, the soft decision rules can be applied: SLC 
(Square Law Combining) and MRC (Maximum Ratio 
Combining) [22]. 

According to [23], CSS can be classified into three categories 
based on how data is shared over the network: centralized CSS 
[24-27], distributed CSS [28-30], and relay-assisted CSS 
[31,32]. 

In the centralized CSS, FC collects local information on 
sensing from all the SUs in the network via a reporting 
channel. Then, FC determines the decision about the presence 
of PU transmission. After that, the decision is sent back to all 
the SUs. FC is also present in CSS with relay nodes, but in 
such a case, local data from SUs are sent not only directly, but 
also through other SUs to reduce transmission errors. In the 
case of distributed CSS, the decision is not made by FC. In this 
case, each SU simultaneously (via the reporting channel) sends 
and receives detection data to make a decision based on them 
using the local decision rule. 

TABLE I  

POSSIBLE OPTIONS OF DECISION MAKING PROBABILITY IN SENSING PROCESS 
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C. Radio Environment Maps 

One of the ideas that is aimed at raising the EESA is 

described in the literature as the REM concept [33]. The main 

functionality of the REM is the ability to dynamically 

construct maps presenting the state of the radio spectrum for 

all interesting locations and frequencies. The maps are 

constructed on the basis of multi-domain information gathered 

in dedicated REM databases, e.g. the geographical data, the 

terrain model, the set of known transmitters, service providers, 

spectral regulations and policy. It is expected that REM 

database will enable us to analyse the current condition of the 

electromagnetic environment and to make some predictions on 

the basis of the knowledge from the past. 

In the literature on the topic there are two main categories of 

map construction techniques: direct methods, known as spatial 

statistics based methods and indirect methods that are also 

described as transmitter location based methods [34]. 

Some papers recommend the indirect methods due to the fact 

that the maps constructed with their help are of higher quality 

if the propagation model has been selected properly [33]. It is 

worth mentioning that indirect methods require a set of input 

data, e.g. transmitter location, the TX power and activity 

pattern of the transmitter as a minimum. 

On the other hand, the direct methods use measurement data 

provided by dedicated sensors. It is obvious that deploying 

sensors in all required locations is impracticable. For this 

reason, in direct methods interpolation techniques are applied 

to estimate the signal strength at required locations. The most 

promising techniques for REM construction are as follows: 

Nearest Neighbour (NN), Inverse Distance Weighting (IDW) 

and Kriging. These techniques are described in more detail in 

[36]. 

The main task of REM is the presentation of the 

electromagnetic environment. The problem of the quality 

metric of this presentation has been raised in the literature. The 

Root Mean Square Error (RMSE) has been proposed in [37] as 

a convenient metric calculated for all the locations within the 

area under analysis. In the case of REM, the RMSE indicates 

the similarity between real and estimated Received Signal 

Strength (RSS) values. When the direct methods are applied, 

such an approach assumes two kinds of sensors, namely 

sensors providing measurement results for the interpolation 

process and control sensors [39,40]. 

Our previous analysis led us to the conclusion that the 

quality of REMs created with the direct methods depends 

mainly on the following factors: the regularity of deployment 

of sensors, the distance between sensors, the propagation 

environment and the interpolation technique. 

In the literature on the topic several methods of sensor 

placement are presented [41]: (a) simple random (b) systematic 

(grid-based), (c) stratified, where some regions are saturated 

more heavily than others and (d) a hybrid approach joining all 

the above. In [38] the authors describe the concept of 

deployment of sensors in zones with low saturation of sensors. 

The idea is to use a dedicated algorithm to identify the largest 

area without sensors in the existing network. In the next phase, 

another dedicated algorithm is applied to generate the best 

deployment of sensors for the identified area. 

Our experience shows that the stratified approach to the 

deployment of sensors seems to be reasonable in diverse areas. 

In [39] we analysed the impact of the arrangement of sensors 

on the REM quality. We used the results of some field tests 

done for UHF range with different arrangements of sensors 

and various interpolation techniques to construct maps. In the 

next step, we calculated and compared RMSE for different 

sensor deployment. One of our conclusions was that the 

deployment of sensors plays an important role, particularly 

when the number of sensors is limited. We also showed that 

even a minor rearrangement of sensors can noticeably affect 

the map quality. In our experiment the rearrangement of 2 out 

of 13 sensors deployed on the area of 4 km2 brought about a 

significant drop in the RMSE (by up to 2 dB). For the scenario 

with 13 sensors and a less favourable arrangement the RMSE 

reached 11.9 dB for NN, 10.95 dB for IDW p3 and 9.6 dB for 

Kriging, while for the most favourable arrangement of 13 

sensors the RMSE reached 8.5 dB for NN, 8.7 dB for IDW p3 

and 6.2 dB for Kriging. 

Another essential issue for REM construction is the number 

of sensors in the network providing measurement results for 

the interpolation process and thus affecting the accuracy of 

maps. In most papers several dozens or hundreds of sensors 

per a few square kilometres are taken into account [43,44]. 

Although it is desirable to deploy as many sensors as possible, 

in real scenarios their number may be significantly smaller, 

e.g. in military networks with CRs. 

In [40] we presented how the density of the sensor network 

affects the accuracy of REMs. In our research work we used 

measurement data from real field tests with 39 sensors 

deployed within the area of 4 km2 (the size of the area similar 

to [43]). We analysed the results of the tests with various 

density of the sensor network applied for the interpolation 

process, namely 13, 20 and 26 sensors. It is worth noting that 

for each sensor network density we considered two tests with 

different arrangements of sensors. As the next step, REMs 

were created for the following interpolation techniques: NN, 

IDW and Kriging. Finally, in order to assess the quality of 

maps, the RMSE values were compared and analysed 

(similarly to [44]). Our general conclusion was that the growth 

of the density of the sensor network from 13 to 26 sensors 

brought about a noticeable improvement in the quality of 

REMs. We observed that for the most promising interpolation 

techniques the average RMSE values dropped from 8.7 dB to 

6.3 dB for the Kriging and from 10 dB to 6.5 dB for the IDW 

p3 method respectively. 

There are also new proposals aimed at obtaining higher 

accuracy of maps. In [42] the idea of the hybrid REM 

construction technique that combines direct and indirect 

methods was presented. This method seems promising, 

especially for networks with a limited number of sensors. 

Experiments confirmed that the quality of maps is much higher 

when compared to the results for direct methods. 

III. SENSING METHODS 

Sensing methods can be classified into several basic 
categories depending on the signal features used. The most 
common methods considered in the literature are energy 
detection, detection of cyclostationary features, the use of a 
matched filters as well as a wavelet transform. 
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A. Energy detection 

Due to its low computational complexity and uncomplicated 
implementation the most common method used in the sensing 
process is Energy Detection (ED) [45,48]. ED is also known as 
the semi-blind method since it does not require any prior 
knowledge about the PU signal. ED is also an incoherent 
method based on the assumption that the signal energy at the 
receiver's location is greater than the energy of the noise. The 
detector decision rule is based on a comparison of the 
estimated value of signal energy with a detection threshold 
depending on the SNR value. As a result ED requires 
information on the spectral power density of noise, which 
makes it sensitive to the uncertainty of its estimation [74,49]. 
For this reason the literature on the subject also analyses the 
usefulness of other techniques that do not require take this 
parameter into account. Most often, these methods use 
distinctive features of the useful signal to distinguish it from 
noise. However, such detection methods are not free of 
shortcomings as well. 

B. Covariance detection 

One of the methods insensitive to the uncertainty of spectral 
noise power density estimation is the CAV detector 
(covariance absolute value). This is a blind detection technique 
using time-space correlation to detect the signal. CAV is based 
on the difference in correlation between the received signal 
and the noise, as the values of signal and noise autocorrelation 
are usually different [50,51]. In this case information on signal 
and/or noise levels is not required [52,53]. Although the 
complexity of CAV is much higher than the one of ED, its 
effectiveness in low SNR cases deserves attention. 

C. Eigenvalues of the covariance matrix 

In order to detect the PU signal one can use a method based 
on eigenvalues of the covariance matrix, EGD (eigenvalue-
based detection). Similarly to CAV, it is a blind detection 
method. Numerous types of this method have been proposed in 
the literature, such as MME (Maximum-Minimum Eigenvalue) 
or EME (Energy with Minimum Eigenvalue. The MME 
compares the detection threshold with the ratio of the 
maximum eigenvalue to the minimum eigenvalue of the 
covariance matrix. EME compares the detection threshold with 
the ratio of the average signal strength to the minimum 
eigenvalue of covariance matrix. In contrast to ED, the 
detection threshold is not based on spectral density of noise 
power since it is estimated on the basis of the number of signal 
samples, smoothing factor and probability of false alarm [54]. 

D. Cyclostationary detector 

The cyclostationary detector (CD) exploits the fact that 

statistical parameters of modulated PU signals change 

periodically as a function of time [55]. The main advantage of 

this type of solutions is that they make it possible to 

distinguish whether the energy comes from a deterministic 

signal or from noise. In addition, due to the fact that the signals 

exhibit cyclostationary features for different shift values and 

different cyclic frequencies, it is also possible to distinguish 

the signals from different emitters. The detector of 

cyclostationary features is based on the use of the 

autocorrelation function and power spectral density. However, 

AWGN noise is a wide sense stationary process without 

correlation and that is why this method is resistant to 

interference and can be used at low SNR values. Nevertheless, 

it should be noted that CD is characterized by a high degree of 

computational complexity and a long detection time [56-59]. 

E. Matched filter detector 

When using the methods presented above one assumes the 
lack or only partial information on the PU signal. In contrast, 
the detection using a matched filter is based on the assumption 
that the description of the PU signal in the time domain is 
completely known [60,61]. This type of detection is a coherent 
one. The detector maximizes SNR in the presence of Gaussian 
noise. This effect is achieved as a result of an operation 
equivalent to a correlation of a known signal waveform with a 
received signal. The mutual correlation function is a measure 
of the statistical relationship of two different signals. The 
detector determines the value of the correlation of the signal 
received with the locally stored replica of the signal being 
detected. This is the optimal method of spectrum sensing [62], 
which compared to other methods provides greater efficiency 
and shorter detection time [63]. However, its basic 
disadvantage is the need to have full prior information on the 
parameters of the signal transmitted by PU. It should be 
noticed that various PU transmissions with different signal 
characteristics may occur in a given area. Thus, the considered 
detector would have to consist of numerous individual 
detectors designed for separate detection of individual signals. 
Therefore, the complexity of implementation of such a detector 
is impractical [64]. Another disadvantage of this method is the 
high energy consumption resulting from the fact that at the 
same time different algorithms must be performed in order to 
decide on the presence or absence of PU transmission. 

F. Wavelet transforms 

In [65] the use of wavelet transform (WD) is considered to 
detect discontinuities or edges in power spectral density (PSD) 
of a broadband channel that corresponds to a transition from an 
occupied band to an empty one or vice versa. By detecting 
irregularities in PSD it is possible to determine which sub-
bands are not occupied. Spectrum sensing based on a wavelet 
detector is primarily aimed at rough estimation of the 
spectrum. The advantage of this method is the relatively short 
detection time. On the other hand, it is characterized by high 
computational complexity. 

G. Hybrid methods 

Each of the sensing methods described above has some 

advantages and disadvantages. Hence, studies on the 

effectiveness of hybrid sensing, which is a combination of 

different signal detection methods, have been undertaken. 

Various proposals for HD architecture have already appeared 

in the literature, depending on the types of systems for which 

they would be dedicated [66-70]. HD methods have been 

precisely defined and described and researched in the PhD 

thesis [71]. The most commonly considered solution is a two-

phase detector [72,73], in which energy detection is used in the 

first phase. However, ED is sensitive to the uncertainty of the 

spectral noise power density estimation. For this reason, 

researchers consider combining ED with methods resistant to 

this uncertainty, which will increase the reliability of the 

detection. Therefore, in the second phase of HD the most 

commonly proposed methods are: cyclostationary feature 

detection, matched filter, covariance detector or detection 

using the eigenvalues of covariance matrix. 
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CONCLUSION 

The article concerns EESA in CR systems. It presents the 

reasons for the emergence of such solutions and the reasons for 

building situation awareness in the frequency domain. The 

authors have thoroughly reviewed the literature. Based on this 

and their own research, they have identified the most 

promising methods for carrying out this task, both 

autonomously and cooperatively. They have also presented the 

potential of the REM, which is currently proposed in the 

military communications environment as a solution facilitating 

the coordination of activities of various entities using the 

spectrum. It is worth noting here that the usefulness of the 

REM is currently being investigated within NATO by the 

Research Task Group 069, in which the authors participate. 

The IST-146 project aims to evaluate the operational benefits 

for NATO in line with the Electromagnetic Spectrum Strategy 

and to evaluate the REM technology. 

The article also discusses the pros and cons of a large group 

of spectrum sensing methods, which are a tool used in nearly 

all the EMSA systems and that allows ESM systems to 

increase their efficiency, i.e. improve spatial and temporal 

spectrum reuse and even pre-empt spectrum conflicts. 
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