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Abstract. The paper proposes to apply an algorithm for predicting the minimum level of the state of charge (SoC) of stationary supercapacitor 
energy storage system operating in a DC traction substation, and for changing it over time. This is done to insure maximum energy recovery 
for trains while braking. The model of a supercapacitor energy storage system, its algorithms of operation and prediction of the minimum state 
of charge are described in detail; the main formulae, graphs and results of simulation are also provided. It is proposed to divide the SoC curve 
into equal periods of time during which the minimum states of charge remain constant. To predict the SoC level for the subsequent period, the 
learning algorithm based on the neural network could be used. Then, the minimum SoC could be based on two basic types of data: the first one 
is the time profile of the energy storage load during the previous period with the constant minimum SoC retained, while the second one relies 
on the trains’ locations and speed values in the previous period. It is proved that the use of variable minimum SoC ensures an increase of the 
energy volume recovered by approximately 10%. Optimum architecture and activation function of the neural network are also found.
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near the traction substation. The paper describes the superca-
pacitor (SC) energy storage system, which could be installed in 
any place along the electrified railway line, however, usually it 
is installed in the traction substation. The scheme of connection 
of supercapacitor ESS to the DC traction substation is presented 
in Fig. 1.

There exist numerous known methods for modelling of 
supercapacitors [6, 7], sizing and locating of stationary energy 
storage systems [8‒10] as well as the algorithms of energy man-

1.	 Introduction

Growing costs of energy, CO2 emissions as well as the costs 
of CO2 emissions allowances [1] obligate energy suppliers to 
undertake measures towards decreasing energy consumption 
and environmental pollution. The last of these issues played 
a significant role in the development of electric vehicles, which 
are frequently referred to as zero-emission vehicles [2]. On 
electrified railways, one of the most commonly used measures 
to reduce energy consumption significantly is the effective utili-
zation of regenerative braking energy [3, 4]. The energy recov-
ered by the train could be effectively utilized by the DC traction 
power supply system under the conditions of high or sufficient 
overhead catenary receptivity, i.e. the ability of the supply sys-
tem to receive the energy generated by the braking train. The 
condition has to be achieved if there is at least one train drawing 
power from the same supply section; otherwise, the control sys-
tem switches the train into rheostat braking, where the energy 
recovered is dissipated uselessly. Receptivity of the catenary 
system could be insured by installing energy storage systems 
(ESS), which are based on the flywheel, chemical batteries or 
supercapacitors; the latter solution is by far the most favorable 
one due to the decreasing prices. Another potential solution is 
the installation of vanadium-redox flow batteries [5], whose 
advantages lie inter alia in easy and independent energy and 
power capacity scalability, long live cycle, or installation of 
traction inverters for recovering the energy back to the AC grid, 
for example, to supply the vehicles’ charging stations located 

Fig. 1. Generalized scheme of energy storage system connection in 
a 3 kV DC traction substation

*e-mail: wlodzimierz.jefimowski@ien.pw.edu.pl

Manuscript submitted 2019-12-02, revised 2020-02-12, initially accepted  
for publication 2020-03-05, published in August 2020

SPECIAL SECTION



734

W. Jefimowski, A. Nikitenko, Z. Drążek, and M. Wieczorek

Bull.  Pol.  Ac.:  Tech.  68(4)  2020

agement strategy [11, 12]. Among methods used in the algo-
rithms, the determined rule-based algorithms have been used 
as well as AI methods for parameters optimization. They have 
been applied in the real-time mode.

The 750 V DC third rail power supply system of the 2nd 

line of the Warsaw Metro is equipped with supercapacitors ESS 
installed in a traction cabin between traction substations. Traffic 
of metro trains is organized regularly, which could increase the 
usefulness of the method proposed. The results of measure-
ments are currently showing week-day energy savings due to 
operation of ESS in the range of 2 MWh [13]. Similar results 
were reported in [14] for high power capacity battery type ESS 
installed in a metro line in Washington, D.C., with practically 
double the value of energy saved when this ESS was installed 
between two traction substations. But both systems are cur-
rently based on determined algorithms only and do not have any 
learning algorithms, even if they have collected vast statistical 
data and time profiles for all the years of operation. The latter 
provides huge potential for implementation of neutral networks 
and energy optimization of the systems.

Not many studies concern the aspect of the minimum state 
of charge of supercapacitor pack USCmin of the trackside energy 
storage system operation. The minimum SoC of supercapacitor 
ESS in usually assumed on the constant level of 50% or 25% 
[11]. On the one hand, the lower minimum SoC level allows 
to get higher usable energy capacity, on the other hand – the 
power losses in the supercapacitor pack and DC/DC converter 
are significantly higher during operation under low state of 
charge, due to the high pack current values. Therefore the mid-
dle optimum value of the minimum SoC is highly desirable to 
recover the maximum value of regenerative energy in an effec-
tive manner. This paper proposes the solution of the algorithm 
adjusting the minimum state of charge value to the changing 
conditions of ESS operation. The value of the minimum state 
of charge is determined by the algorithm based on the artifi-
cial neural network (ANN). Neural networks have been widely 
used for prediction of the electric load by numerous researchers 
[15, 16]. A significant contribution to this topic has been made 
by the recent breakthroughs in the area of deep learning (DL) 
[17]. USCmin as a basic parameter of the energy storage system 
operation could be determined with use of ANN based on the 
information directly connected to the factors influenced by 
the ESS operation effectiveness. One of the most significant 
issues of this paper is founding the appropriate information for 
teaching, validation, testing and operation of the neural network 
to ensure accurate prediction of the minimum SoC parameter 
USCmin.

2.	 Model of energy storage system

The model of supercapacitor ESS was developed based on [7, 
18, 19]. Special attention was paid to the high accuracy and effi-
ciency of the ESS model. The losses are determined separately 
for supercapacitor pack and DC/DC converter. The scheme of 
the energy storage system consisting of a supercapacitor pack 
and back-bust DC/DC converter is shown in Fig. 2.

2.1. Power losses in supercapacitor pack. The model of the 
supercapacitor pack is based on the model presented in [7], 
where the single supercapacitor cell is replaced by capacitance 
and equivalent series resistance (ESR). Additionally, resistance 
of joint connections Rc between supercapacitors has been 
considered. The power loss inside the supercapacitor pack is 
expressed as:

	 ∆Ppack = I 2
pack ¢ ESRpack� (1)

where ESRpack is the equivalent series resistance of the super-
capacitors connected in series (n) and in parallel (m):

	 ESRpack = 
(ESR + Rc) ¢ n

m
.� (2)

2.2. Power losses in DC/DC converter. The DC/DC converter 
of trackside energy storages is usually based on a back-bust 
scheme, which is shown in  Fig. 2. To calculate its efficiency, 
C. Wang et al. [18] propose to use the model taking into account 
the power losses on equivalent resistances of the main elements 

Fig. 2. General scheme of supercapacitor energy storage system con-
sisting of DC/DC converter and supercapacitor pack
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of the back-bust converter, i.e. transistors, inductors and capac-
itors. Then, the efficiency of the converter in buck mode could 
be calculated as:

	 η = 
Pout

Pin
 =  

U2

A1IL + A2 + 
A3

IL

� (3)

where:

	

A1 = KD1 + Ron1 + (1 ¡ KD1)RD2 + RL

A2 = U2 +  (1 ¡ KD1) UD2

A3 =  
RC2U 2

2(1 ¡ KD1)

12( fs L)2
 + 

(Esw(on) + Esw(off )) ¢  fs

2

� (4)

whereas efficiency of the converter in the boost mode is given 
in [18] as:

	 η = 
Pout

Pin
 =  

U1

B1IL + B2 + 
B3

IL

� (5)

where:

	

B1 = (1 ¡ KD2)Ron2 + KD2RD1 + RL

B2 = U1 +  KD2 UD1

B3 =  
(Esw(on) + Esw(off )) ¢  fs

2

.� (6)

Finally, total losses in ESS are the sum of losses generated 
in the supercapacitor pack and back-bust converter, expressed 
by the equation below:

	 ∆PESS = ∆Ppack + ∆PDC/DC.� (7)

3.	 Algorithm of ESS operation

3.1. General information. The basic algorithm of the super-
capacitor ESS operation is shown in Fig. 3 [10]. The algorithm 
belongs to the group of rule-based determined strategies, which 
are commonly used in practice because of their simplicity; it 
is also applied in the study. The manner of ESS operation is 
determined by the value and sign of the power of traction sub-
station PTS and by the voltage on the supercapacitor pack ter-
minals. The power of traction substation PTS is calculated using 
the instantaneous values of busbar voltage and current. The 
maximum value of the supercapacitor voltage USCmax could be 

defined by the nominal voltage of a single SC cell and by the 
number of cells connected in series (n). As it was mentioned 
above, the main criterion in the center of attention of this paper 
is USCmin, highlighted in Fig. 3. The influence of USCmin on ESS 
operation is described in the next subsection.

3.2. Minimum state of charge. As it is known, the minimum 
state of charge USCmin determines the usable energy capacity of 
the supercapacitor ESS. On the one hand, the lower the USCmin 
is, the higher its usable energy capacity, but on the other hand, 
the operation of ESS in low state of charge is associated with 
high values of supercapacitor current ISC. The supercapacitor 
pack current could be determined as:

	 ISC =  
UCat

USC ¢ ηDC/DC
� (8)

where UCat is voltage between the catenary and rails, ηDC/DC is 
efficiency of the DC/DC converter, and USC is voltage of the 
supercapacitor pack expressed as:

	 USC = USoC ¡ ISC ¢ ESRpack .� (9)

Figure 4 shows the comparison of power losses in energy 
storage between two variants of minimum SoC – 40% and 
60% of the nominal voltage of the supercapacitor pack for the 
same energy storage power profile. Figure 4a and Fig. 4b are 
shown in the same scale for better comparability of the val-
ues. It is seen that in the case of the 40% SoC the maximum 
losses are approximately two times higher than in the case of 
the 60% SoC. The analysis presented in this paper is based 
on the case study described in [10]. The supercapacitor pack 
consists of 1167 cells connected in series and 3 branches con-
nected in parallel. The parameters of each cell are C = 3000 F 
and Un = 2.8 V. The power of the DC/DC converter is 0.8 MW. 
Simulation of the traction load has been carried out for the elec-

Fig. 3. Basic algorithm of supercapacitor ESS operation (the minimum 
SoC, being under consideration in this paper, is highlighted with white 

background)
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trified railway line with five types of trains operating – multiple 
electric units and carriage passenger trains.

To investigate the influence of minimum SoC on regener-
ative braking energy recovery, the following analysis has been 
carried out. Based on the traction power profile obtained in 
the previous stage, operation of the energy storage has been 
simulated for different variants of minimum SoC to get the rela-
tionship between the daily input and output energy of ESS and 
the minimum SoC; the results are shown in Fig. 5. The differ-
ence between input (black line) and output energy (green line) 
is equal to the daily energy losses inside ESS, which include 
both types of losses – those in the DC/DC converter and super-
capacitor pack. The minimum state of charge corresponding 
to the maximum value of output energy could be assumed as 
the optimum value of USCmin for the given time profile of the 
traction load during a 24-h cycle.

connection to the catenary due to the limitation of receptivity 
of the catenary system. The time profile of power on traction 
substation busbars has been obtained by means of the simula-
tion model of the electrified railway line with the limitation of 
receptivity to the level of real conditions [10, 20].

Apart from regenerative braking energy recovery, the cri-
teria of supercapacitors degradation should also be taken into 
account. The main factor influencing the supercapacitor aging 
process is the temperature of its operation. The model of super-
capacitor aging is described in [21] and [22]. The aging factor 
should be considered by means of a dynamic thermal model of 
the supercapacitor pack. The danger of exceeding temperature 
limits occurs during the low minimum state of charge.

As it was mentioned above, Fig. 5 shows the situation in 
which minimum SoC is constant. For comparison’s sake, the 
application of different values of minimum SoC during opera-
tion was performed, where the minimum SoC changed its value 
every 20 min. For each 20-min. period of ESS operation, the 
optimum state of charge was found to obtain maximum output 
energy. The results of this simulation, allowing to get maximum 
output energy in each 20-min. period, are presented in Fig. 6. 
The results were obtained for the same case study and ESS 
parameters shown in Fig. 5. The total 24 hour energy recovered 

Fig. 4. Power losses in supercapacitor ESS for different minimum SoC
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by usage of the variable minimum states of charge is around 
10% higher than for the case where the minimum SoC value 
was constant.

3.3. Prediction of minimum state of charge. Minimum SoC 
values shown in Fig. 6 have been obtained based on the known 
power time profiles for the corresponding 20-min. periods. In 
the process of real operation, the exact time profile of traction 
power is not known, hence it depends on the future chain of 
events on the railway track, which are stochastic in their char-
acter. To predict the optimum value of the minimum state of 
charge USCmin, it is proposed to use the artificial neural net-
work. In the learning processes the 20-min. traction load profile 
for the previous period of operation was discretized with the 
step of 1 s, which gave a total of 1200 samples, i.e. 1200 input 
neurons of input layer of the neutral network. To analyze these 
data, the neural network with a single hidden layer was used. 
The input and hidden layers of the neural network have been 
activated by the ReLU function. Determination of USCmin was 
performed by means of regression and classification functions 
for the comparison of effectiveness of algorithm operation. For 
the regression problem, a single output neuron without the acti-
vation function has been used. Then the classification problem 
included the 61 output neurons with sigmoid activation func-
tion, determining the probability of the particular USCmin value 
with the accuracy of 1% in the range of (21÷80% and 0%). 
Application of the presented multi-class classification approach 
showed more efficient results than the regression approach. The 
neutral network described above for the classification approach 
is shown in Fig. 7.

Finally, the training, validation and test data have been 
prepared based on 7 different 24-h time profiles of ESS. The 
different 1200 s traction power profiles have been obtained by 
shifting the 1200 s length window. For each period, the train 
labels have been found by determining the optimum minimum 
state of charge.

The results showed that the neural network for the model 
with 128 neurons in a hidden layer could achieve the accuracy 
of 23% of the classification. The result is satisfactory, tak-
ing into account that in the particular multi-class classification 
problem the results of energy recovery are comparable in the 
wide range of values of minimum state of charge, which is 
shown in Fig. 5.

4.	 Conclusions and future work

This paper presents the possibility of control of stationary ESS 
using the variable minimum state of charge. The simulation 
results show that this solution could increase the use of regener-
ative energy by even 10%, considering the equal duration peri-
ods in which the minimum state of charge is constant – 20 min. 
The main problem of the algorithm is prediction of the USCmin  
value for the subsequent time period. Yet an appropriately 
trained neural network could classify the optimum minimum 
state of charge based on the given traction load profile. This 
method could be used under the condition of the periods of con-
stant USCmin becoming much shorter than the periods with the 
power profiles of similar character. This condition is met if rail-
way traffic is regular. Otherwise the minimum state of charge 
could not be accurately determined using the traction power 
profile. For that situation other quantities should be selected 
for prediction of the minimum state of charge. Parameters of 
railway traffic – trains location and speed values – appear most 
promising for this purpose. In practice, they could be obtained 
by the GPS system. For better operation of ESS, the variable 
duration of the periods with constant USCmin could be used. 
Comparative analysis should be carried out in the future to 
investigate the influence of applying variable duration of the 
periods on energy recovery as compared to the constant mini-
mum state of charge. Moreover, the power losses influence on 
supercapacitor temperature and the aging effect should also be 
taken into account.
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