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Abstract
Achieving a reliable fault diagnosis for gears under variable operating conditions is a pressing need of
industries to ensure productivity by averting unwanted breakdowns. In the present work, a hybrid approach
is proposed by integrating Hu invariant moments and an artificial neural network for explicit extraction and
classification of gear faults using time-frequency transforms. The Zhao-Atlas-Marks transform is used to
convert the raw vibrations signals from the gears into time-frequency distributions. The proposed method is
applied to a single-stage spur gearbox with faults created using electric discharge machining in laboratory
conditions. The results show the effectiveness of the proposed methodology in classifying the faults in gears
with high accuracy.
Keywords: gear fault, Ahao-Atlas-Marks, time-frequency domain features, Hu invariant moments, ANN.
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1. Introduction

Gears are the essential components of industrial machinery and often subjected to wear and
impact damages due to their high load-carrying capacity. The failure of the gear may cause
an unnecessary shutdown that leads to substantial economic losses. Therefore, the condition
monitoring of the gears is inevitable in ensuring the reliability of the system. Many research
works have been contributed to condition monitoring of gears by extracting gear fault information
from the vibration signals.

Vibration amplitude-based fault identification techniques in gears are inefficient for non-
stationary signals extracted from the faulty gear system. The non-stationary signals are prop-
erly treated by the time-frequency domain analysis [1]. Short-time Fourier transform (STFT),
wavelet transform (WT) and Wigner-Ville distribution (WVD) are commonly used to convert
the non-stationary signals into a time-frequency domain [2, 3]. Urbanek et al. [4] compared the
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effectiveness of various frequency domain-based signal processing techniques for detecting the
faults in a roller bearing. They have concluded that the method using spectral coherence for nar-
rowband envelope analysis was found to be effective in detecting the faults. Zimroz [5] performed
a time-frequency analysis to measure the instantaneous shaft speed of the wind turbine gearbox.
The gear fault identification based on Hilbert-Hung transform was proposed to overcome the
problem of reconstructing a feature matrix of singular value decomposition [6]. Recently, Zhao-
Atlas-Marks (ZAM) transforms are used to analyse the short-range time-frequency distribution
of vibration signals precisely. The ZAM distribution exhibited excellent frequency resolution
and sharp energy concentration [7]. Sun et al. [8] developed a novel signal processing technique
based on structured sparsity time-frequency analysis to identify defects in gears. Zhang et al. [9]
developed a fault diagnosis method based on the Lucy–Richardson Deconvolution (LRD). The
LRD based method identified the fault frequencies in gears and bearing to detect faults. Afia
et al. [10] applied a robust signal processing technique that uses Autogram to extract the fault
signature from vibration signals of gears. Guan et al. [11] proposed a method for gearbox fault
diagnosis using velocity synchronous Fourier transform and order analysis. This method reduced
the interpolation errors that often occurred in the conventional resampling based order tracking
methods.

Hybrid statistical analysis with feature extraction and classification methods are employed by
a few researchers to identify the defects in the machinery. Juan et al. [12] proposed a diagnosis
methodology to find the wear defect in gears using the Fisher score analysis, linear discrimi-
nant analysis and a fuzzy classifier. Krishnakumari et al. [13] used a decision tree and fuzzy
classifier for fault classification of spur gears. They have extracted the statistical features from
the vibration signal and used them for constructing a decision tree. Dhamande and Chaudhari
[14] proposed a fault feature extraction technique for gear fault identification. They evaluated
the statistical features like standard deviation, variance and absolute maximum from Continuous
and Discrete Wavelet Transforms and found improvement in the accuracy of fault classification.
The support vector machine (SVM) for feature extraction in gear fault diagnosis was found to
be insensitive to varying operating conditions and useful to enhance classification accuracy.
Zhang et al. [15] implemented an integrated technique using Empirical Mode Decomposition
and SVM for gear fault diagnosis. Vamsi et al. [16] developed a condition monitoring technique
to determine a fault in a wind turbine gearbox. They have used wavelet analysis to extract the
features from the signals and the SVM technique was used as a feature classification technique.
A decision tree algorithm was used to select the dominant features from the extracted statistical
features.

An Artificial Neural Network (ANN) is a reliable tool for dataset classification and it has
been successfully used in previous studies for fault classification of the rotating machinery.
Saravanan and Ramachandran [17] applied wavelet transform and an ANN to identify the defects
in the gearbox. They have extracted wavelet features from the signals and fed them as input
to the neural network. The results have shown that the neural networks are very accurate in
identifying the faults. Wang and Liao [18] proposed a gear fault diagnosis tool using Bayesian
neural networks that provides an effective diagnosis, while the input information is uncertain and
incomplete. The statistical factors of vibration signals in the time-domain were used to train the
network. Dworakowski et al. [19] developed an ANN-based diagnosis technique to detect the
defects in epicyclic gearboxes. The extracted multi-dimensional features were used for training
the ANN.

The literature reveals that the need for evolution of signal processing and feature extraction
techniques is inevitable to improve the effectiveness of fault identification in gears. Further, the
extraction of nonlinear features that provide critical information about the gear defects from the
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non-stationary vibration signal is still found to be challenging. The aim of this research work
is to present a novel hybrid approach for gear fault detection and classification. The research
work investigates the use of the Hu invariants and the ANN as a tool for feature extraction and
subsequent classification of gear faults. Further, it also highlights the effectiveness of the proposed
approach with the experimental study.

2. Proposed methodology

The overall procedure of the proposed methodology is illustrated in Fig. 1. Initially, an
experimental setup was developed to simulate gear faults. The vibration signals were acquired
using an accelerometer and a signal analyser from the gear fault simulator corresponding to
various gear faults. Consequently, a ZAM transform was applied to convert raw signals into
a time-frequency distribution. Further, Hu moments were adopted to extract the features from
the time-frequency distribution to enhance the fault prediction. Finally, the extracted features
were used to train the ANN and the validated ANN model was used to classify the gear faults
automatically.

Fig. 1. Flow diagram of fault diagnosis of gear using Hu moments.

3. Experimental setup

The experimental test rig consists of a single-stage spur gearbox, which possesses two parallel
shafts and two spur gears, is shown in Fig. 2. The gears are made up of EN 24 steel with a 5 mm

Fig. 2. The gearbox fault simulator.
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module and 20◦ pressure angle involute teeth. The driving shaft of the gearbox is connected
to a three-phase induction motor through a love-joy coupling. The driven shaft of the gearbox
is connected to a setup to apply the load through another love-joy coupling. A piezoelectric
accelerometer (IEPE) is mounted on the bearing housing to collect the vibration signal as shown
in Fig. 2. Vibration data were collected using a four-channel acquisition system (NI 9233). The
speed of the motor is varied using a variable frequency drive.

In this study, three defective pinions were used for collecting vibration signals. The details of
defective gears are shown in Table 1. The various defects were artificially created in the pinions
using Electric Discharge Machining. In order to represent the worn-out tooth, a depth of 1 mm
was removed on either side of a tooth along the flank face in the axial direction of gear. The gear
with a broken tooth was obtained by cutting a portion of the gear tooth with a plane oriented in a
corner edge of the gear tooth. The cutting plane can be represented by projecting a line passing
through the coordinates located at a distance of 2 mm depth from the top land and 6 mm along
face width at a gear tooth corner.

Table 1. Detail of pinions.

Defects Pinion without
defects

Pinion with
worn-out tooth

Pinion with
broken tooth

Image of
defective
pinion

Initially, the speed of the motor was set to 400 rpm using the variable frequency drive. The
defect-free pinion was connected to the gearbox and the vibration signals were collected from
the accelerometer through the data acquisition system and recorded. The sampling rate was set
as 2048 samples/second. Subsequently, the pinion was replaced with pinions with defects and
the data from the signals were recorded. A set of data was also recorded by applying a load of
100 N for the case of the pinion with a broken tooth. The vibration signals for the undamaged and
damaged pinions were illustrated in Fig. 3. By comparing the signals, a little periodic modulation
characteristic was observed for the reference signal shown in Fig. 3a. Whereas, a series of
impulsive responses were observed for the fault conditions illustrated in Figs. 3b, 3c and 3d.
Further, the observed trend was also validated by determining the kurtosis value for the signals.
The kurtosis value for the pinion without defects was found to be 2.7. The pinions with defects
such as a worn-out tooth, broken tooth and broken tooth under load were calculated as 4.3, 4.7
and 5.1 respectively.

Further, the recorded signals were imported into the MATLAB software for converting raw
data into time-frequency transform using the ZAM transform. Consequently, Hu moments were
determined for the ZAM transform to extract the features of the faults.
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(a) Pinion without defects (b) Pinion with worn-out tooth

(c) Pinion with broken tooth (d) Pinion with broken tooth under load

Fig. 3. Vibration signals from pinions under various fault conditions.

4. Signal processing and feature extraction

Signal processing techniques enable effective early fault detection by analysing the raw
vibration signal. They must be capable of decomposing the signals that are nonlinear and non-
stationary due to the defects and various loading conditions. The presence of faults in the rotary
system increases the nonlinearity of the vibration signal. Feature extraction techniques allow to
extract the information about faults from the decomposed signals. The results of applying the
ZAM transform to process the signals and Hu invariant moments to extract features from the
decomposed signals are presented in the following section.

4.1. Zhao-Atlas-Marks transform (ZAM)

The ZAM transform distributes the energy of the signals over time and frequency as it is
an energy distribution. Furthermore, it is a powerful time-frequency analysis tool [20] for fault
identification and diagnosis. The frequency resolution and energy concentration of the ZAM
transform is observed to be better than that of the STFT and other time-frequency transforms.
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Further, ZAM can resolve non-stationary signals. Cohen’s Class Time-Frequency Distributions
are a generalized form of phase-space distribution and the other time-frequency distributions
are derived from it. The general form of Cohen’s class of distribution [20] for a signal f (t) is
presented in equation (1). In the equation, φ(ε, τ) is the kernel that defines the time-frequency
transformation

D (t, ω; µ) =
$

e j (εµ−τω−εt)φ(ε, τ) f (µ + τ/2) f (µ − τ/2)d µdτdε, (1)

where, t – instantaneous time, ω – instantaneous frequency, τ – running time, ε – frequency, µ –
position variables used in the integration.

The development of the ZAM “cone kernel” was intended to introduce finite time support
and reduce cross-terms [21]. The kernel equation is defined in equation (2).

φ(ε, τ) =
φ1(τ) sin (ε |τ |/a)

ε/2
, (2)

φ1(τ) is a function to be specified and the parameter ‘a’ value is taken as 1 [20]. The ZAM
distribution is obtained by substituting the kernel equation (2) in Cohen’s class of distribution.

4.2. Feature extraction using Hu invariant moments

The Hu moments are used to characterize visual patterns in images [22]. The set of moments
for different images is found to be unique and useful in the classification of images [23]. The
Hu moments are derived from the geometric moments of an image. The image moments are a
weighted average of image pixel intensities. The pixel intensity of an image (I) at an orientation
(x,y) is given by I(x,y). The moment (M) of the image is calculated by determining the summation
of all pixel intensities in the image (I) and given in equation (3).

M =
∑

x

∑
y

I(x, y). (3)

In equation (3), the pixel intensities are weighted only based on their intensity and irrespective
of their location in the image. The equation is revised by considering the intensity of the pixels
and their location in the image and presented in equation (4).

Mi,j =
∑

i

∑
j

xiyj I(x, y), (4)

where i, j = 0, 1, 2, 3, . . . .
The central moments (µij) of the image are obtained by subtracting off the centroid

(
x̄ȳ
)

from
x and y in the moment equation (4) and presented in equation (5).

µij =
∑

i

∑
j

(x − x̄)i (y − ȳ
) j I(x, y), (5)

x̄ =
M10 (Sum of x coordinates of the pixel in image)

M00 (Area of the image)
, (6)

ȳ =
M01 (Sum of y coordinates of the pixel in image)

M00 (Area of the image)
. (7)
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In feature extraction, the moments must be invariant to translation, scale, and rotation for
pattern recognition. The central moments are invariant with respect to position. In order to
make the moments invariant to scaling, the normalized central moments (ηij) of the image are
determined using the equation (8).

ηij =
µij

µ

(
1+ i+j

2

)
00

. (8)

The Hu moments are a set of seven moments [23] which are nonlinear combinations of
normalized central moments (ηij). The seven Hu moments are given in equations (9)–(15).

h1 = η20 + η02 , (9)

h2 = (η20 − η02)2 + 4η2
11 , (10)

h3 = (η30 − η12)2 + (η03 − 3η21)2 , (11)

h4 = (η30 + η12)2 + (η03 + 3η21)2 , (12)

h5 = (3η30 − 3η12) (η30 + η12)
[
(η30 + η12)2 − 3 (η21 + η03)2

]
+ (3η21 − η03) (η21 + η03)

[
3 (η30 + η12)2 − (η21 + η03)2

]
, (13)

h6 = (η20 − η02)2
[
(η30 + η12)2 − (η21 + η03)2

]
+ 4η11 (η30 + η12) + (η21 + η03) , (14)

h7 = (3η21 − η03) (η30 + η12)
[
(η30 + η12)2 − (η21 + η03)2

]
+ (3η12 − η30) (η21 + η03)

[
3 (η30 + η12)2 − (η21 + η30)2

]
. (15)

In the present work, Hu invariant moments are used to extract features from the time-frequency
image of the ZAM transform to identify the gear faults.

4.3. Fault diagnosis using the ZAM transform

The measured time-domain signal was converted into a time-frequency signal using the ZAM
transform as illustrated in Fig. 4. The gear mesh frequency (GMF) was calculated as 0.13 kHz
by multiplying the number of teeth with rotational frequency. For the “healthy” gear, the energy
concentration was observed at 0.11 kHz, as shown in Fig. 4a which is below the GMF. Further,
it was observed from Figs. 4b and 4c that energy concentration was found to be higher than the
GMF. It revealed that the gears were in a faulty condition. In contrast to the above cases, energy
concentration for the gear with a broken tooth under load was found to be unclear as it exhibited
energy-smeared regions in the image as indicated in Fig. 4d. The actual energy concentration is
also shown in Fig. 4d and it is observed to be higher than the GMF.

The ambiguities in the manual prediction of gear fault from the ZAM transform and the need
for automated fault classification of gears demands a superior pattern extraction and classification
technique. In the present work, the Hu invariant moments are used to extract the precise informa-
tion from the ZAM transform about the faults using the equations (9)–(15). A total number of 15
sets of Hu invariant moments (h1, h2, h3, h4, h5, h6 and h7) are extracted for each condition of
gears at various time intervals of the signals measured. Fig. 5 shows the extracted Hu moments
that are used to train the ANN for automatic fault detection.
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(a) Pinion without defects (b) Pinion with worn-out tooth

(c) Pinion with broken tooth (d) Pinion with broken tooth under load

Fig. 4. ZAM Transform of the measured signals in the time-frequency domain.

5. Prediction of gear faults using an ANN

The effective pattern classification is inevitable for fault identification. The ANN is a proven
tool for fault classification and widely used for automated fault detection and diagnosis of machine
conditions. The ANN consists of an input layer, an output layer and hidden layers. The number of
neurons in the input and output layer is equal to that of the number of input and output variables. In
the present work, the Hu moments (h1, h2, h3, h4, h5, h6 and h7) of the time-frequency transform
are considered as inputs and the corresponding defects of the gear are the outputs. The output for
the time-frequency feature considered for each fault is presented in Table 2.

Table 2. Output in ANN for gear faults.

S. No Gear Faults Output in ANN

1 Pinion without defects 0

2 Pinion with worn-out tooth 1

3 Pinion with broken tooth 2

4 Pinion with broken tooth under load 3
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(a) Pinion without defects (b) Pinion with worn-out tooth

(c) Pinion with broken tooth (d) Pinion with broken tooth under load

Fig. 5. Extracted features of gear conditions using Hu moments.

The number of hidden layers and the number of neurons in each hidden layer influence
the prediction accuracy of an ANN. However, they may not be determined through standard
procedures. Hence, various training trials are performed through varying the number of hidden
layers and neurons in the hidden layer to minimize the Mean Square Error (MSE) as illustrated
in Fig. 6. The MSE is defined as the mean of the differences between the output and the target
value of fault classification during the ANN training. It can be interpreted from the Fig. 6 that the
two hidden layers outperform the prediction accuracy of the single hidden layer network. Further,
can be understood from Fig. 6 that the two hidden layers with seven neurons yield the minimum
MSE as it increases the prediction ability of the ANN. Consequently, the network structure is
fixed to two hidden layers with seven neurons in each layer. The ANN architecture for predicting
gear faults is illustrated in Fig. 7.
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Fig. 6. MSE vs number of neurons in the hidden layer.

Fig. 7. The architecture of the ANN in fault classification.

5.1. Training of the ANN

A Feed Forward Back Propagation (FFBP) neural network is employed to train the ANN.
In the FFBP, the input parameters are applied to the input layer that propagates into the output
layer through the hidden layer using a transfer function through assigning initial weights. Based
on the error between the output and the target value, the weights are adjusted from the output to
the input layer and it is termed backpropagation.

In general, the ANN module is to be trained with available experimental results as input values
in order to predict the results of a new set of parameters. In the present work, a total number
of 60 extracted features from the ZAM transform are used to train the ANN. In the FFBP, the
ANN is trained to achieve the predetermined MSE by performing various trials called epochs.
The MSE of 0.00001 is set as the goal of the training process. The training process is terminated
if the goal is achieved or the maximum number of epochs (trials) reached. The plot showing the
convergence of the MSE with a number of epochs is presented in Fig. 8. The value of 0.0000106
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was obtained as the MSE error after 69999 trials. The plot indicated a gradual decrease in the
MSE and it was almost flattened out at the end. Hence, it was understood that the training was
sufficient for developing an effective predictive model. The parameters of the ANN used in the
present case are presented in Table 3.

Fig. 8. ANN training performance.

Table 3. Parameters used in ANN.

S. No. Parameters used in ANN training Values

1 Network configuration 7-7-7-1

2 Number of neurons in the Input layer 7

3 Number of neurons in the output layer 1

3 Maximum number of epochs 70000

4 Goal (Mean Square Error) 0.00001

5 Activation functions for hidden and output layers Tansig

6 Activation function for input layer Logsig

5.2. Results of the ANN

The developed ANN model is evaluated using a new set of input values in order to establish
its capability of predicting the gear faults. The predicted ANN results for the new features (NF)
corresponding to the normal gear, worn-out tooth, broken tooth and broken tooth with load
conditions are presented in Table 4. The new features used in the evaluation phase were not used
in the training process.

It is evident from Table 4 that the fault classified by the ANN for the new input features was
highly accurate as it made a close agreement with the actual results. Hence, the reliability of the
integrated technique of the Hu invariant moments and the ANN is proven to be good and, as such,
it can be applied to automated monitoring of gear faults.
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Table 4. Effectiveness of gear fault classification by ANN.

S. No.
New

Features
(NF)

Gear Fault classification
Predicted
by ANN Actual fault

1 NF1 0.1480 0 Normal gear

2 NF2 0.0185 0 Normal gear

3 NF3 0.0001 0 Normal gear

4 NF4 1.1958 1 Worn-out tooth

5 NF5 1.9040 2 Broken tooth

6 NF6 2.2072 2 Broken tooth

7 NF7 2.8571 3 Broken tooth under load

8 NF8 2.9048 3 Broken tooth under load

9 NF9 2.9910 3 Broken tooth under load

6. Conclusions

In the present work, the Hu invariant moments were successfully used to extract the nonlinear
features from time-frequency signals of gears under non-stationary conditions. The ZAM trans-
form was used to convert the signals from the time domain into the time-frequency domain. The
ANN model was developed to automate the process of fault classification. The ANN was trained
with fault features extracted by the Hu moments. Subsequently, the ANN was evaluated with new
input features and the predicted results were compared with the actual gear faults. The prediction
accuracy of the ANN was found to be 100% for identifying the gear faults with a new set of
data. The deviation between the actual and the predicted results are within the range of 0.0001 to
0.2072 which is significantly small. The prediction accuracy was attributed to the successful fault
feature extraction using the Hu invariant moments that are used to train the ANN. Further, the
optimum structure of the ANN was also contributed in the classification of faults by improving
the nonlinear capability of the ANN. Hence, the integrated technique of the ZAM transform, the
Hu invariant moments-based feature extraction and the ANN was proven to be an effective tool
in the automated gear fault detection. The presented approach is very viable in the industry if
the data collection and the feature extraction are carried out at both the installation stage and the
routine operation of the gears. Despite the effectiveness of the proposed approach in classifying
the type of faults, there is a scope for extending the research to identify the combination of faults
and the severity of faults in gears.
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