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Simulation of the Schrodinger particle non-elastic scattering
with emission of photon in the quantum register
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Abstract. This paper investigates whether a quantum computer can efficiently simulate the non-elastic scattering of the Schrodinger particle
on a stationary excitable shield. The return of the shield to the ground state is caused by photon emission. An algorithm is presented for simu-
lating the time evolution of such a process, implemented on standard two-input gates. The algorithm is used for the computation of elastic and
non-elastic scattering probabilities. The results obtained by our algorithm are compared with those obtained using the standard Cayley’s method.
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1. Introduction

In the near future, quantum calculations are likely to make
a major contribution to the development of informatics [1].
Although practical implementations of quantum computer have
not been built yet, the existence of such seems to be possi-
ble. Therefore, it is worth examining the properties of such
machines [2, 3].

Today we know Shor [4] and Grover [5] algorithms which
are faster than their best classical counterparts. Another prom-
ising application of quantum computer are quantum simula-
tions [6-8], i.e. the computer modeling of behavior of physical
quantum systems. It gives the possibility of effective modeling
quantum processes, which is not possible using classical com-
puters [9]. Quantum computers can simulate a wide variety of
quantum systems, including fermionic lattice models [10, 11],
quantum chemistry [12, 13], and quantum field theories [14].

As is well known, simulations of quantum systems per-
formed using conventional computers are not effective. This
means that for classical computer the memory resources and
time required to simulate grow exponentially with the size of
quantum system. In the case of a quantum computer, the situ-
ation is different. The relationship between the size of quan-
tum computer (register) and the size of the simulated quantum
system is linear. Therefore, a very important task is to find
the appropriate algorithms that can properly simulate complex
quantum systems and non-trivial interactions between them.
This is a difficult issue, because most of the interesting quan-
tum systems is feasible in infinitely-dimensional Hilbert spaces.
In such situations, we can use the technique of the wave func-
tion sampling and build an algorithm based on Quantum Fourier
Transform. This case was tested in [15—18], which examined
the free particle and the harmonic oscillator. The main limita-
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tion of this coding method of the particle state is that it does not
enable implementing an arbitrary potential V(x). It allows only
a few special cases such as the V(x)~ x? potential.

In our earlier works we have shown that also rectangular
potentials (like thresholds and wells) can be simulated using
this method. This provides the ability to examine other inter-
esting processes, such as the tunnel effect [19] and scattering of
two Schrodinger particles to each other [20]. The present study
also makes use of this kind of potential to simulate interaction
between Schrodinger particle and shield.

In order to simulate the Schrodinger particle in the quantum
register a different technique can also be used. For example, in
[21, 22] method based on the quantum lattice-gas model was
examined. It is worth mentioning about [23], where simulation
of noisy Schrodniger equation is examined.

Another important issue is the simulation of quantum fields,
which are the systems with an infinite number of degrees of
freedom. In this case we can replace a continuous band of
energy levels with its discrete counterpart. We use this method
in the current publication and in [24] where we investigated
the possibility of quantum simulation of the excited state decay
with photon emission. Similar problems are also examined in
the works of other authors. For example, processes such as:
beta decay of helium atom [25] and decay of two-level atom
in crystal [26] are tested.

In the present study we investigate whether it is possible
to simulate in the quantum register a more complex process,
which is a combination of processes presented in our previous
works. It focuses on the simulation of non-elastic scattering of
the Schrodinger particle on stationary, massive shield with pho-
ton emission. The process is shown in Fig. 1. The Schrodinger
particle (subsystem A) in the form of the Gaussian packet col-
lides with the massive and motionless shield (subsystem B),
which goes to the excited state (]1)z). Next, the excited system
B” returns to the ground state (]0)z) with emission of photon
(subsystem C).

The simulation conducted in this study aims at imitating
common natural phenomena, e.g. excitation of gas atoms due
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Fig. 1. Three stages of the nonelastic scattering process simulated in the quantum register

to nonelastic scattering of free electrons. Such processes take
place, for example, in gas-discharge lamps. The toy model pre-
sented in this work was developed by the author. But the phe-
nomenon simulated here has been known for a long time (e.g.
Franck—Hertz experiment). Therefore, in literature it is described
using many other approaches (e.g. S-matrix formalism).

Due to the specificity of quantum algorithms, a considerable
simplification of the problem was required. However, an analy-
sis of such a simplified model is still valuable, and allows us to
draw conclusions regarding the possible application of quantum
simulations to more real and complex processes.

In our previous work [20] we examined only the elastic
collision of the Schrodinger particles. Here, for the first time,
we simulate an inelastic scattering and return of the shield to the
ground state by the photon emission. The algorithm simulating
the deexcitation process has been developed by the author and
was pre-tested in [24].

In order to simulate a quantum register, we used a simple
environment written in C language for a single processor. How-
ever, there is possibility of using parallel computation methods
for the simulation of a quantum computer [27, 28]. Moreover,
some quantum algorithms can also be studied using neural net-
works and machine learning models [29].

2. Description of the simulated system

The simulation presented here required numerous simplifica-
tions:

e the motion of the Schrédinger particle (subsystem A) and
photon propagation (subsystem C) are simulated only in one
spatial dimension,

e we assume that the interaction between subsystems A and B
is expressed as a rectangular potential (Fig. 2),

e we assume that mpz >>m, and that position in the space of
system B is well-defined. For this reason, system B is simu-

V(x)

X

Xmax

0 a b

Fig. 2. Potential V(x). In our numerical simulation we took: @ = 7/} 6 X,ax
and b = 8/} ¢x,,4c, Where x,,,, is the length of the simulated area
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lated only as a two base state system. State |0)p is a ground
state with energy Ep, = 0. State |1) is an excited state with
energy Ep; = AE.

e the process of returning system B to a ground state with
photon emission is also simulated with simplifications. It
has been examined and presented in [24]. We assume that
system C has ground state |0). and n, excited levels |i)¢
which form a band. The energies of the levels are given by
the formula:

n.+1

EC[:AE+A<1'— > fori=1,..,nc, (1)

where A is the gap between adjacent levels, and AE = E| —

- EBO.

The Hamiltonian of subsystems A and B are chosen in the
following way:

52
iy = 2%‘ +AEDD+ V()@ (T+gib' + b)), @
A
where py, = — 1h6¥, m, is the mass of particle A, b is a de-
creasing energy operator of subsystem B (b[1); = |0)5 and
b10)5 = |1)5), g» is a complex coupling constant between
subsystems A and B.
The Hamiltonian of subsystem C and its interaction with
subsystem B is chosen as follows:

where ¢; is a decreasing energy operator of subsystem C
(¢i]i)c = |0)cand &;]i)c = |0)¢), & is a coupling constant. The
energies E¢ are given by (Eq. 1).

The total Hamiltonian of the system is given by:

]:[tot = Hyp + I:IBC- “4)

3. The algorithm simulating time evolution
of the system

The algorithm is implemented in a n,-qubit register. In the first
n, qubits, the state of subsystem A is stored. In the middle qubit
(denoted as B), the state of subsystem B is stored. The state of
subsystem C is stored in the last n, qubits. The above numbers
fulfill the following relation: n, + n. +1=n,.

Bull. Pol. Ac.: Tech. 68(5) 2020
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In the present method, the wave function of particle
A (w4(x)) is sampled and encoded in the state of the n,-qubit
subregister in the following way:

vi = ya(kAx), ®)

where ;. is probability amplitude of 4-th base state of the
n,-qubit subregister (k=0 ...,2"% — 1), Ax = X,,,,/2™ is sam-
pling interval. Thus, sample y corresponds to w,(0), while
sample w,, | corresponds to Wy (X, — Ax).

The algorithm implementing the Hamiltonian given by Eq. (2)
is shown in Fig. 3. The first three blocks (QFT, FE, QFTT)
implement free evolution of particle A. We use a method based
on the time evolution operator U (dt) approximation:

U(dt)ya(x, t) = exp(—ip} /(2my)2rdt/h)yy(x, t) =

=7 {exp(fszdt/ msh/m)).F {wi(1)}}, ©

where .7 is the Quantum Fourier Transform and v, (¢) is spa-
tially sampled wave function of particle A. Blocks QFT and
QFTT implement the Quantum Fourier Transform and its reverse.

The FE block implements operator exp(—ipidt/(mah/7)).

The above-mentioned blocks have been examined and described
in several previous works, e.g. [20].

T . [
A—F—]l;—
T[] ]
B U] [Ro

Fig. 3. The algorithm simulating subsystems A and B and their inter-
action

Gate Uj is a controlled phase shift gate which operates
according to the scheme: [0,1,1,1) — ¢™|0,1,1, 1) where
¢ = 2zdtV,y/h. It implements the potential V(x) from Fig. 2.
Gate U is a standard phase shift gate (|1) — e ~’¢|1)) where
& =2ndtAE/h. It implements free evolution of subsystem B.
Gate R, (controlled by four control qubits) implements the fol-
lowing operation:

101110) — cos@|01110) + sin6|01111), (7)

|01111) — cos@|01111) + sin@|01110), ®)

where 0 = 27g,V,dt/h and V; is the maximum value of the
potential V(x) (see Fig. 2). The number of control qubits in U,
and R, gates is independent of n,. The control qubits values

Bull. Pol. Ac.: Tech. 68(5) 2020

(0111, = 7) correspond to the selection of the potential V(x)
area in x € (716X pae ¥/16Xmax) s shown in Fig. 2.

In the n.-qubit subregister the state of photon (subsystem C)
is stored. Each qubit stores information only about single energy
level (]0) — free level, |1) — occupied level) from Eq. (1). This
coding method increases the number of qubits necessary for the
simulation, but it simplifies the implementation of the algorithm
on the quantum gates.

The algorithm implementing the Hamiltonian given by Eq. (3)
is shown in Fig. 4. Gates Uy, are phase shift gates. Blocks R,
(shown in Fig. 5) implement the interaction between subsys-
tem B and i-th level of subsystem C (components giaTéi + g*i)éj
from Eq. (3)) for parameter 1 = —27gA"*dt/h.

4|RnHRn

S

R}

] Uq)cz

I U(p(_‘nc

Fig. 4. The algorithm simulating free evolution of subsystem B and
the interaction between subsystems B and C

D
D

Rn/4 Rn/Z Rn/4

Jan)
U

U N

Fig. 5. The implementation of the interacting R,, module

4. The simulation results

This part of the paper examines the implementation of the algo-
rithm using ideal quantum gates. As the initial state of system
A we choose the Gaussian state with the following parameters:
my = 9.11-1073! kg (mass of particle A), dX = 0.02 - x,,,,, (ini-
tial uncertainty of the position of the packet), x, = 0.15- x,,,,
(center of the packet), 7= 8.0 eV (kinetic energy of the packet
center), where x,,,, = 20 nm is the length of the simulated area.
As the initial states of subsystems B and C we take their ground
states (i.e. |0) and |0)¢). The time step for every simulation
is equal to dt =2-10""% s,

Initially, we examine only the evolution of subsystem AB.
We simulate a 10-qubit register (9 qubits for system A and 1
qubit for subsystem B). Examples of results are presented in
Figs. 6-8 and the upper part of Fig. 10.

The probabilities of elastic/non-elastic reflection and trans-
mission of particle A (shown in Fig. 7) are obtained by simul-
taneous measurement of the states of two qubits: the oldest
qubit coding state of system A (which determines whether the
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Fig. 6. Spatial probability distribution for particle A. The left plot shows part of the state which is entangled with state |0), whereas the right
plot shows part of the state entangled with state |1)5. Four successive phases of motion (for # = 1.6 -107!% s (denoted by “17), 3.2-10713 s
(denoted by “2”), 4.8 -107!° s (denoted by “3”) and 6.4 - 10~ s (denoted by “4”)) are shown. The initial state is denoted by “0”. Curves denoted
by “q” are the results of quantum simulation, curves denoted by “c” are the results of a comparative Cayley’s simulation. The numbers on the
horizontal axis correspond to the numbers of the spatial samples of the wave function y,(x) (sample 0 corresponds to x = 0, while sample 511

corresponds to x = x,,,, — Ax). The other parameters of the system are: AE=2¢V, Vy=2eVand g, =-5
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Fig. 7. Probabilities: p, (elastic transmission of particle A), py; (nonelastic transmission of particle A), pr, (elastic reflection of particle A) and

Pr1 (nonelastic reflection of particle A). The left plot is made for AE =2 ¢V, g, =—0.2 and A = 4-1072° J and the horizontal axis represents

V, parameter (measured in eV). The right plot is made for V, = 2 eV, g, = —5 and A = 4-10% J and the horizontal axis represents excitation

energy AE (measured in eV). Broken lines (denoted additionally by “c”) are the results of Cayley’s simulation, whereas doted lines (denoted
additionally by “q”) represent the results of quantum simulation

particle is on the left or on the right side of the shield) and the Table 1
qubit coding the state of shield B. The values of the & parameter for the cases from Fig. 8.
In order to perform quantitive analysis of the results we The Roman numerals correspond to succesive phases of motion
have introduced ¢ parameter, defined as follows: shown in Fig. 8. The last row shows the case of 7=8.0 eV
again for n, = 11
& = arccos (|<l//c’l//q>’): 9 n, | T(eV) I 11 11 v

where |y, ) is the state of the system obtained by the quantum 10 2.0 0.038 | 0.I36 | 0.594 | 0.671
algorithm, while |y, ) has been obtained by the Cayley’s method. 10 4.0 0.074 | 0.142 | 0.554 | 0.802
The values of ¢ parameter for the results from Fig. 8 are shown 10 8.0 0.185 1 0.469 | 0.974 | 1.094

in Table 1. 11 8.0 | 0.056 | 0465 | 0.812 | 0.844

1220 Bull. Pol. Ac.: Tech. 68(5) 2020
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Fig. 8. Spatial probability distribution for particle A. The top plot
is made for 7= 8 eV, the middle for 7= 4 eV and the bottom for
T =2 eV. In the bottom plot particle speed is negative, dX = 0.04 - x,,,.
and x, = 0.8 x,,,,. The other parameters are the same as in Fig. 6. Four
successive phases of motion are shown (with time interval equal to
t=1.6-10""5 s (for the top and the middle plot) and t = 2.56-10" 15 s
(for the bottom plot)). The initial state is denoted by “0”. Curves
denoted by “q” are the results of quantum simulation, curves denoted
by “c” are the results of a comparative Cayley’s simulation. The num-
bers on the horizontal axis correspond to the numbers of the spatial
samples of the wave function w,(x) (sample 0 corresponds to x = 0,
while sample 511 corresponds to x = x,,,,, — Ax
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Fig. 9. The influence of quantum gates accuracy on the quality of

the obtained results. Markings on both drawings and the values of all

parameters are the same as in the middle plot from Fig. 8. The top plot
is made for & = 1073 and the bottom for g5 = 5-1073

Figure. 9 shows the influence of quantum gates accuracy
on the quality of the obtained results. The continuous param-
eters of U, and R, gates are burdened with errors and drawn
from (o, — r> Bope + €r) and (6, — &g, O, + &g) intervals,
respectively, where ¢,,, and 0,,, are optimal values and &y is
an error level.

In the next part of the work, the full simulation of system
ABC is performed on a 16-qubit register (9 qubits for system A,
1 for system B and 6 for system C). The results are presented
in Fig. 10 (the bottom plot) and Fig. 11.

Energy values (7 and AE) chosen for the simulation corre-
spond to typical processes with visible light photon emission.
The shield size x,,,/16 = 1.25 nm is similar to the typical
chemical molecule diameter. The total simulation time (d¢*3200
(number of time steps)) allows the particle A move a distance
approximately equal to x,,,,. Unfortunately, the value of the g
parameter does not correspond to the values typical for atom
deexcitation process. As is well known, the lifetime of such
an excited state is in the order of 10~%s. This is far too much
in comparison to time of particle A simulation (the order of
104 s). Therefore, the time scale of deexcitation process has
been reduced by several orders of magnitude.
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Fig. 10. The probability of occupying by shield B the ground state (denoted by “..””) and the excited state (denoted by “*”) as a function of time.
The horizontal axis represents time in units equal to 10~ s. The left plot is made for the simulation of subsystem AB (a 10-qubit register), the
right plot is made for the full simulation of system ABC (a 16-qubit register). In the left plot curves denoted by “q” represent the results of the
quantum simulation, whereas those denoted by “c” are the results obtained using Cayley’s simulation. In the right plot successive curves for
& =0.5-10"1°J"> (denoted by “0.5”), 1.0 -10~'° J"* (denoted by “1.0”), 1.5 -10~1° J"* (denoted by “1.5”) and 2.0-10-1° J'* (denoted by “2.0)

are presented. The other parameters of the system: AE=2¢V, V,=2¢V,g,=-5and A=4-10"20]
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Fig. 11. Spatial probability distribution for particle A in four successive phases of motion (for t = 1.6 -10~° s (denoted by “1”), 3.2-10"5 s

(denoted by “2”), 4.8 1073 s (denoted by “3”) and 6.4 -10~ '3 s (denoted by “4”)). Index 0 denotes an initial state of the particle. The curves

denoted by “..” are the parts of states entangled with state |0)z, whereas those denoted by “*” are the parts of states entangled with state |1)3.

The left plot is made for & = 0.5-10719 J"2, whereas the right one is made for & = 2.0-1071° J">. The curve denoted by “1*” is not visible

because it is equal to zero. The numbers on the horizontal axis correspond to the numbers of the spatial samples of the wave function (x)

(sample 0 corresponds to x = 0, while sample 511 corresponds to x = x,,,, — Ax. The other parameters of the system: AE=2¢V, V;=2¢eV,
gy=-5and A=4-10"20]

5. Conclusions

® The evidence from this study suggests that even for n, = 16
qubits it is possible to obtain satisfying results. However, the
algorithm is scalable — an increase in the number of qubits
means a higher sampling density of the wave function and,
consequently, more accurate results. Moreover, standard
quantum gates, like NOT-gate and controlled phase-shift
gates with precision close to float number (mantissa 273,
which gives the accuracy of phase argument A¢ at the level of
the order of 10’7) are needed. We expect that such quantum
computers will be built in the near future, perhaps with the

1222

help of semiconductor [30], quantum dots [31, 32] or spin
systems [33] technology.

e Analyzing the values in Table 1, we can conclude that the
results are worse for higher energies of particle A. In this
case, higher values of the particle momentum must be sam-
pled. Therefore, by increasing the number of qubits (the last
row from Table 1), we obtain improvement of the accuracy.

e We should remember that the error value (Eq. 9) is also influ-
enced by the state of the shield.

e On the bottom plot in Fig. 10 (for & = 2.0-1071°) we can see
an unnatural rise of the curve. It is caused by an insufficient
number of qubits used for the simulation of subsystem C.

Bull. Pol. Ac.: Tech. 68(5) 2020
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e As can be observed from the comparison of plots in Fig. 11,
the decay rate of state entangled with |1), increases as the
value of parameter g (connected with the lifetime of the
excited state of B) rises.

e As shown in Fig. 7, the divergence of results obtained by the
quantum and Cayley’s algorithms amounts to several percent.

e Figure 7b shows an obvious decay of pr; and pp, probabilities
for AE > T.

e In order to perform the algorithm on a quantum computer,
initial Gaussian state of the particle A must be entered to the
quantum register. In this work we do not present the appropri-
ate algorithm. (In Listing 2 from Appendix B we present only
a script preparing an initial state for the needs of a classic
simulator). A simple algorithm for inputting these types of
states into the quantum register has been proposed in [34].
Such problems have also been considered in other works,
including both standard approaches [35] and those based on
genetic algorithms [36].

e Analyzing the results from Fig. 9 we can conclude that gates
accuracy should be better than £, = 1073,

e In this work we study only gates unitary errors (coherent
errors). Errors caused by the decoherence are more important,
but the density matrix formalism must be applied in this case.
It causes significant increase in computational effort.

e The quantum algorithm presented here is a little faster than
Cayley’s method even when it is simulated using a classical
computer.

6. Appendix A. Brief description of the classical
algorithm used for comparison

As a comparative method (only for systems A and B), we used
the classical Cayley’s algorithm [37, 38]. It is based on the
Schrédinger equation of motion written in the following form:

(1 + %int/h)‘P(t +dr) = (1 - %int/h) W(1) (10)

where H is the Hamiltonian of the system given by Eq. 2). After
sampling of the wave function of subsystem A and performing
the second derivative by a three-point approximation we obtain:

n n+1 n
Limayn To )= —ia( 0 )4 2ia( Po) -
2 W pit b
n—1 n
—I—iA(lPOl)%—iB( 0 >+ic(x)<%>+
P P Py
e 0 . W
+iD @)( n>+—dXx)< 1),
Yo 0

where A = hdt/(8xmyAx?), B = g AEdt/h, C(x) = xV(x)dt/h
and D(x) = nV(x)g,d¢/h. W§ and W/ are n-th space samples of
the subsystem A wave functions entangled with |0)z and |1),
states, respectively.

(n
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7. Appendix B. The simulation code in pyQuil

All results presented in this work were obtained using the algo-
rithm described in Section 3. Its pyQuil version is shown in
the Listing 1. It was performed on a classic computer using
the autor’s simulator. Listing 2 presents Python script which
calculates the initial state of the quantum register in the form
of complex list ("Psi” variable).

An electronic version of this code can be obtained from:
https://zenodo.org/record/3872769\#.XtYHpcDgqUk

Listing 1
One step of the simulation
#phys const:
hbar = 1.0522e—-34
me = 9.11e-31
eV = 1.6e—19

#symulation control:

nq = 14

nb = 2xxnq

nc = 4

na = nq—nc—l1

dt = 2e—18

xmax = 2.0e—8#20nm

#system parameters:

alfa = —2.0xmath.pixmath.pixdtxhbar/(xmaxxxmax*me)
VO = 2.0%xeV

beta = —VOxdt/hbar

dE = 2.0xeV#energy of B excited state
xi = —dExdt/hbar#free evol of B

= —5.0

theta = —gb*VOxdt/hbar

gtilda = le—10#decay const

delta = 4e—-20

gg = math.sqrt(delta)x gtilda

#tables :
TabPhi=1list ()
for i in range(na):
TabPhi.append (math. pi/(2%x*1i))
TabPhi2=1ist ()
for i in range(2xna):
TabPhi2 . append(alfax(2x*x(i+1)))
TabPhi3=1list ()
for i in range(na):
TabPhi3 . append (alfax(2%x(2x1i)))
ECl=1list ()
for i in range(nc):
energia=dE+delta*(i+1—-0.5%(nc+1))
ECl.append(energia)
phiCl=1list ()
for i in range(nc):
phi=—ECI[i]+dt/hbar
phiC1l .append (phi)
phiT=—ggx*dt/hbar

p = Program ()
#QFT algorithm :
ki=0
for i in range(nq—1,nq—na—1,—1):
kj=ki
for j in range(nq—1,i,—1):
p.inst (CPHASE(—TabPhi[kj], i, j))
kj—=1
p.inst(H(i))
ki+=1
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#FE algorithm:

ki=0
for i in range(nq—1, nq—na—1, —1):
kj=0
for j in range(nq—1, i, —1):
p.inst (CPHASE(TabPhi2 [ki+kj], i, j))
kj+=1
p.inst (PHASE(TabPhi3[ki], i))
ki+=1
ki=0

for i in range(nq—1, nq—na, —1):
p.inst (CPHASE(—TabPhi2[ki+na],
ki+=1

#RQFT algorithm:

for i in range(nq—ma, nq,
p.inst (H(i))
kj=1
for j in range(i+1, nq, 1):

p.inst (CPHASE(TabPhi[kj],i,j))
kj+=1

#POT algorithm :

p.inst(X(nq—1))

i, nq—na))

1):
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for

i in range(npp):

xi=deltax*i
probka=—(xi—Xs)*(xi—Xs)/(4xdX*dX)+1 j*Pshxxi
PsiA[i]=np.exp(probka)

PsiA/=norma(PsiA)

Psi=

for

np.zeros (nb, dtype=complex)
i in range (npp):
Psi[i*(2%*(nc+1))]=PsiA[1i]

REFERENCES

(1]
(2]

(3]

p.inst (PHASE(beta, nq—1).controlled ([nq—2,nq—3,nq —4]

p.inst (RY(2xtheta ,
p.inst(X(nq—1))
#subsystem B evol:
p.inst (PHASE(xi, nc))
#subsystem C evol:

nc).controlled ([nq—1,nq—2,nq—3,nq-

(6]
(7]
(8]

for i in range(nc):
p.inst (PHASE(phiCI[i], 1))
p.inst (CNOT(i, nc))
p.inst (RY(phiT/2, nc))
p.inst (CNOT(nc, 1))
p.inst (RY(phiT/1, nc))
p.inst (CNOT(nc, 1))
p.inst (RY(phiT/2, nc))
p.inst (CNOT(i, nc))

print (p)

Listing 2

The initial state preparation

import numpy as np
#phys const:

hbar = 1.0522e—-34
me = 9.11e-31
eV = 1.6e—19

#symulation control:

nq=8#number of qubits

nc=0#system C qubits
na=nq—nc—1#system A qubits
nb=2xxnq#base states
npp=2**xna#number of spatial samples
#parameters of the initial Gaussian state:
Xmax 2.0e—8;#20nm

dX 0.02xxmax#packet position uncertainty
Xs 0.15xxmax;#center of the packet

T = 8.0xeV#kinetic energy of the packet
dE 2.0xeV#excitation energy of B

PsiA=np.zeros (npp,
delta xmax/npp
Psh = np.sqrt(2.0xmexT)/hbar

dtype=complex )

def norma(reg):
wynik=0
for i in range(npp):
wynik+=(reg[i].real)**2+(reg[i].imag)*x*2
return no.sart(wvnik)
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