www.czasopisma.pan.pl P N www.journals.pan.pl
N
~—

10.24425/acs.2020.134678

Archives of Control Sciences
Volume 30(LXVI), 2020
No. 3, pages 575-597

A new 4-D hyperchaotic system with no equilibrium,
its multistability, offset boosting and circuit simulation

SUNDARAPANDIAN VAIDYANATHAN, IRENE M. MOROZ and ACENG SAMBAS

A new 4-D dynamical system with hyperchaos is reported in this work. It is shown that
the proposed nonlinear dynamical system with hyperchaos has no equilibrium point. Hence, the
new dynamical system exhibits hidden hyperchaotic attractor. An in-depth dynamic analysis of
the new hyperchaotic system is carried out with bifurcation transition diagrams, multistability
analysis, period-doubling bubbles and offset boosting analysis. Using Integral Sliding Mode
Control (ISMC), global hyperchaos synchronization results of the new hyperchaotic system
are described in detail. Furthermore, an electronic circuit realization of the new hyperchaotic
system has been simulated in MultiSim software version 13.0 and the results of which are in
good agreement with the numerical simulations using MATLAB.
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1. Introduction

Hyperchaotic systems are nonlinear dynamical systems with more complex
solutions than chaotic dynamical systems. Hyperchaotic systems are characterized
by the presence of more than one positive Lyapunov exponent (LE). For a 4-D
autonomous hyperchaotic system, there are two positive Lyapunov exponents,
one zero and one negative Lyapunov exponent [1]. Hyperchaotic systems are
applied in several engineering areas such as lasers [2, 3], power systems [4, 5],
oscillators [6—10], neural networks [11-14], cryptosystems [15-18], neurons
[19,20], memristors [21-23], etc.
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Chaotic dynamical systems have been recently classified into two categories
viz. systems with self-excited and hidden attractors [24]. A chaotic attractor is
called self-excited if its basin of attraction involves at least one equilibrium. Oth-
erwise, the chaotic attractor is called a hidden attractor. Chaotic and hyperchaotic
systems with no equilibrium [25,26] or stable equilibrium points [27,28] possess
hidden attractors [1]. In recent years, modelling and control of hidden attractors
have received great interest in the literature [29-32].

In this work, we report a new hyperchaotic dynamical system with no equilib-
rium. Thus, the new dynamical system exhibits hidden hyperchaotic attractor [1].
An in-depth dynamic analysis of the new hyperchaotic system is carried out with
Lyapunov exponents and bifurcation transition diagrams.

Multistability signifies the coexistence of attractors in a dynamical system
for the same parameter values [33]. In recent years, there is great research on
chaotic and hyperchaotic systems with multistability in the literature [34-36]. In
this work, we show that the new hyperchaotic system exhibits multistability with
three coexisting attractors for three different initial conditions. Offset boosting
of chaotic attractors has received good interest in the literature [37,38]. In this
work, we also discuss the offset boosting of the new hyperchaotic system.

As a control application, new results are derived for the global hyperchaos
synchronization of the new hyperchaotic system with itself using Integral Sliding
Mode Control (ISMC). There are many methods for control and synchroniza-
tion of systems such as active control [39, 40], adaptive control [41-43], etc.
The sliding mode control method is an useful method in control applications,
as it has attractive features such as fast convergence, disturbance rejection and
robustness [44,45].

Circuit realization of chaotic and hyperchaotic systems is very useful for their
practical implementation [46—49]. In this work, an electronic circuit realization
of the new hyperchaotic system has been simulated in MultiSim software ver-
sion 13.0 and the results of which are in good agreement with the numerical
simulations using MATLAB.

2. A new 4-D hyperchaotic system with no equilibrium

2.1. System dynamics and properties

In this research work, we consider a new 4-D dynamical system given by

x = a(y—x),

y =2x(1-2)+cy+w,

Z =xy—b, (1
w = —-dx+Yy)
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with states x, y, z, w and real constants a, b, c, d. It is noted that the new system (1)
has a total of ten terms on the right hand side with only two quadratic nonlinear
terms, viz. xy and xz.

To simplify the notation, we denote X = (x, y, z, w) to represent the state of
the system (1).

In this work, we show that the system (1) is hyperchaotic when the system
parameters assume the values

a=31, b=25 =15 d=323. (2)

Using Wolf’s algorithm [50], the Lyapunov exponents of the new system (1)
are numerically estimated for the parameter values (a, b, ¢, d) = (31,25, 15,3.3)
and initial state X (0) = (0.2,0.1,0.2,0.1) for T = 1E6 seconds as follows:

Wi = 1772, vy =0.1092, 43 =0, yu=—17.2834. 3)

Since there are two positive Lyapunov exponents ¢/; and i,, the system (1) is
hyperchaotic. Since the sum of the Lyapunov exponents is negative for the chosen
parameter values and X (0), it follows that the new hyperchaotic system (1) is
dissipative. The Kaplan-Yorke dimension of the new hyperchaotic system (1) is

determined as
Y1+ + s

|4l
The value of Dgy gives a measure of the high complexity of the new hyperchaotic
system (1).
To determine the equilibrium points or rest points of the new system (1), we
solve the following system of equations:

Dgy =3 + = 3.0744. 4)

a(y —x) =0, (5a)
2x(1=2)+cy+w=0, (5b)
xy—b=0, (5¢)
—-d(x+y)=0. (5d)

We solve the equations (5) assuming that a, b, ¢, d are non-zero parameters.
Since a # 0 and d # 0, the equations (5a) and (5d) yield x = y and x = —y.
This can happen simultaneously only when x = y = 0. Substituting x =y =0

in (5¢), we get b = 0, which is a contradiction.

Hence, there is no solution to the system of equations (5). In other words,
the new 4-D hyperchaotic system (1) has no equilibrium. Hence, it follows that
the new 4-D hyperchaotic system (1) has hidden attractor. Thus, (1) is a special
hyperchaotic system.

Figure 1 shows the MATLAB simulations of the phase plots of the new
4-D hyperchaotic system (1) for (a,b,c,d) = (31,25,15,3.3) and X(0) =
(0.2,0.1,0.2,0.1).



www.czasopisma.pan.pl P N www.journals.pan.pl
'

578 S. VAIDYANATHAN, .M. MOROZ, A. SAMBAS

30

(c) (z, w)-plane (d) (x, w)-plane

Figure 1: The phase portraits of the new hyperchaotic system (1) in MATLAB for
(a,b,c,d) = (31,25,15,3.3) and X(0) = (0.2,0.1,0.2,0.1)

2.2. Bifurcation transition diagrams

We now present the bifurcation transition diagrams as each parameter varies
in turn. We show these diagrams as two-panel plots in which the parameter
increases in the upper panel and decreases in the lower panel. This enables us
to spot multiple states, caused by hysteresis. It is of interest to note that the
divergence of the flow of the 4-D hyperchaotic system (1) is

V(X,y,Z,W) =Cc—a.

Therefore volumes contract in phase space provided ¢ < a. For the chosen set
of parameter values, viz. (a, b, c,d) = (31,25,15,3.3), this is indeed the case.
This constraint is apparent in the bifurcation transition plots as the parameter a
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approaches 16, by an up-turn in the maxima of yp.x (see Figure 2). Figures 3 and
4 show sections of this bifurcation transition diagram in order to highlight the
presence of hysteresis, and also multiple attractor states, which will be discussed
in more detail in the next subsection.

a inc

16 18 20 22 24 26 8 30

Figure 2: Bifurcation transition plots of yn,x as a varies in 16 < a < 35. The upper panel
is for a increasing, while the lower panel is for a decreasing.

Il
Figure 3: Bifurcation transition plots of ym,x as a varies in 18 < a < 20. The upper panel
is for a increasing, while the lower panel is for a decreasing.
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Figure 4: Bifurcation transition plots of ymx as a varies in 26 < a < 28. The upper panel
is for a increasing, while the lower panel is for a decreasing.

We now vary parameter b. Figure 5 shows the corresponding bifurcation plots
for 0 < b < 8. Again, there are slight differences between the upper and lower
panels.

Figure 5: Bifurcation transition plots of ym,x as b varies between 0 < b < 8. The upper
panel is for b increasing, while the lower panel is for b decreasing.
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Figure 6 shows the transition plots as ¢ varies, firstly for 0 < ¢ < 9, and
then an enlargement of the region between 0 < ¢ < 4 is shown in Figure 7. This
second set of plots clearly shows hysteresis.

Figure 6: Bifurcation transition plots of yy.x as ¢ varies between 0 < ¢ < 9. The upper
panel is for ¢ increasing, while the lower panel is for ¢ decreasing.

c dec

Figure 7: Bifurcation transition plots of yn.x as ¢ varies between 0 < ¢ < 4. The upper
panel is for ¢ increasing, while the lower panel is for ¢ decreasing.
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Finally, Figure 8 shows the bifurcation transition plots as d varies between
0 < d < 3.5. Note the marked differences in the plots for d increasing and
decreasing, especially in the neighbourhood of the origin.

0 0.5 1 1.5 2 2.5 3 3.5

0 0.5 1 1.5 ) “ - 2.5 o o 3.5
(b) d dec

Figure 8: Bifurcation transition plots of ynax as d varies between 0 < d < 3.5. The upper
panel is for d increasing, while the lower panel is for d decreasing.

2.3. Period-doubling bubbles

Figure 7 shows evidence of a period-doubling bubble (forward and reverse
period-doubling cascades) for ¢ ~ 1.5. However there are multiple branches
which undergo these bubble-bifurcations simultaneously (when ¢ = 0, there are
7 branches of solutions on the ynax axis), which leads to a complicated scenario.
Figure 9 shows four snapshots of the period-doubling bubbles as the parameter
¢ decreases, but for different values of a. Figure 9(a) for a = 46 shows the
beginnings of the period-doubling bubbles. There are five different branches
which overlap both before and during the formation of the bubbles. In Figure
9(b) for a = 45, the bubbles are shown clearly. Each bubble shows a period-four
cycle, but there are five bubbles, and so the repetition is every twenty. In Figure
9(c) (a = 40) further period-doubling cascades have occurred, but the branches
are starting to cross-over again. When a = 35, we can see period-doubling and
halving bubbles, but the halving sections are curtailed because of the expanding
regions of chaotic dynamics for ¢ > 5.5.
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ymax

6 7 8 9 10
(c) c

Figure 9: Four examples of period-doubling bubbles for (a) a = 46, (b) a = 45, (c) a = 40,
(d) a = 35.

2.4. Multistability and coexisting attractors

Multistability means the coexistence of two or more attractors under different
initial conditions but with the same parameter set. It is an interesting phenomenon
and can usually be found in many nonlinear dynamical systems. It is known that
multistability can lead to very complex behaviors in a dynamical system.

It is interesting that the new hyperchaotic system (1) can exhibit coexisting
attractors when choosing different initial conditions. We take parameter values
as in the hyperchaotic case, viz. (a,b,c,d) = (31,25,15,3.3). We select three
initial conditions as Xy = (0.2,0.1,0.2,0.1), ¥ = (-0.2,0.1,-0.2,0.1) and Z, =
(-0.2,-0.1,-0.2, -0.1), and the corresponding state orbits of the system (1) are
plotted in colors blue, red and green, respectively. From Figure 10, it can be
observed that the new hyperchaotic system (1) exhibits multistability with three
coexisting hyperchaotic attractors.

2.5. Offset boosting of the hyperchaotic attractor

Next, we consider the possibility of offset boosting by replacing the variable
z by z + k in the 4-D hyperchaotic system (1), where k is a constant. This has
implications for amplitude control of the underlying attractor.
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40

(a) (x, z)-plane (b) (y, z)-plane

Figure 10: Multi-stability of the hyperchaotic system (1): Coexisting hyperchaotic at-
tractors for (a, b, c,d) = (31,25, 15,3.3) and initial conditions X, = (0.2,0.1,0.2,0.1)
(blue), ¥y = (-0.2,0.1,-0.2,0.1) (red) and Zy = (-0.2,-0.1,—-0.2, -0.1) (green).

After the transformation z — z+ k, the system (1) can be rewritten as follows:

= a(y —x),
2x(1—z—k)+cy+w,
= xy—b,

= —d(x+Yy).

(6)

o e =
1l

Figure 11 shows the results plotted in the (x, z)-plane for the choices of k = 0
(blue), £ = 10 (red) and k = 10 (green) for the parameter choice (a, b, c,d) =

40

30

20 -

-10+

-20 : ‘ ‘ : :

-30 -20 -10 0 10 20 30
X

Figure 11: Three examples of offset boosting in the (x, z)-plane for the variable z for

k = 0 (blue), k = 10 (red) and k = —10 (green).
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(31,25, 15, 3.3) which produces the hyperchaotic attractor. Varying the parameter
k shifts the attractor up and down the z-axis for the new system (6).

3. Hyperchaos synchronization of the new hyperchaotic dynamical systems

As a control section, this section details the control design of achieving global
hyperchaos synchronization of the new 4-D hyperchaotic dynamical system with
itself (drive-response systems) via Integral Sliding Mode Control (ISMC).

As the drive system of the synchronization process, we adopt the new hyper-
chaotic plant

X1 = alyr —x1),

yi = 2x1(1 —z1) + ey +wi,
Z1 = x1y1—b,

Wi = —d(x1 +y1),

(7)

where X = (x1, y1, 21, w1) is the state and a, b, ¢, d are constant parameters.
As the response system of the synchronization process, we adopt the new
hyperchaotic plant

X2 = a(yzs — x2) + vy,

y2 = 2x2(1 —z2) + cy2 + wa + vy,
2 = Xoy2—b+v,,

Wy = —d(x2+ y2) + vy,

8)

where X5 = (x2, y2, 22, w2) is the state and vy, vy, v,, v, are the sliding controls.
The synchronization error between the drive system (7) and the response
system (8) can be defined in the following manner:

€x = X2 — X1,
€y = Y2— V1,
ez = Z2_Z19
Wy —Wi.

9)

Y
S
Il

The synchronization error dynamics is determined by a simple calculation as
given below.

€x = a(ey_ex)‘l'vx,

€y = 2e, +cey+e, —2(x220 — X121) + Vy,
€; = X2y2 — X1y1 + Vg,

éw = —d(ex +ey)+v,.

(10)
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The integral sliding surface associated with each error state can be defined
according to the following equations.

t
ex + Ay [ ex(r)dr,
0

Ox
oy = ey + 4y | ey(r)dr,

(11)
eZ(T)dTa

N
Il

e, + A,

Of
Of’

e, + /lwf ey (T)dT.
0

Ow

Taking differentiation of each equation in (11), we derive the following:

Ox = éxtAdyey,
Oy = €yt Adyey, (12)
o, = é;,+4;e,,

ey + Ay ey, .

S
<
Il

Using integral sliding mode control theory, we take the feedback control as
follows:

vy = —a(ey —ex) — Ay ex — T sgN(0x) — kx0oy,
vy = —2e, —cey — ey, +2(x222 — X121)
J Ay ey — Tysgn(oy) — kyory, (13)
v, = —xay2 + X1y1 — Az e; — 1p8gn(o;) — ko,
Vi = d(ex +ey) — Ay ey — 1y 8g0(0y) — kyoy, .

Substitution of the control law (13) into (10) results in the closed-loop error
system given below.

€y = —Ayex — T, 8gN(0y) — ky Oy,

ey = —Aye, —1ysgn(oy) —ky oy, (14)
é; = —Aze;— 1 8gn(oy) — ko,

éyw = —Ay e, — T sgn(oy) — ky, oy .

We apply Lyapunov stability theory to establish the main control result of this
section, which is provided in the following theorem.
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Theorem 1 The new four-dimensional hyperchaos systems (7) and (8) are glob-
ally and asymptotically synchronized for all initial states by the integral SMC
law (13) where Ay, Ay, A5, Ay, ky, ky, k;, ky, Ty, Ty, T, Ty are taken as positive
constants.

Proof. We consider the quadratic Lyapunov function defined by
[ 2 2 2
V(oy, oy, 0,00) = 3 (0')C +toyt+o;+ O'W) . (15)

It is quite evident to observe that V is a positive definite function defined on R*.

The time-derivative of the function V along the error trajectories is calculated
using (12) and (14) as follows:

. 2 2 2 2
V = —1|oy| = 1yloy| =t lo | = nloy| — kxoy — kyO'y —k,o; = kyo,, . (16)

Thus, V is a negative definite function defined on R*,
Hence, by Lyapunov stability theory, it follows that

(O_X(t)’ O-y(t)’ O-Z(t)’ Uw(t)) -0 ast—
for all initial conditions. As a consequence, we conclude that
(ex(t)’ ey(t)’ ez(t)’ ew(t)) - 0 as t — o

for all initial conditions.
This completes the proof. O

For numerical simulations in MATLAB, we consider the parameters as in the
hyperchaos case (2), viz.a =31, b=25,c=15and d = 3.3.

The sliding constants are chosen as follows:

We take k, = ky = k, = k,, = 10.

We also take 7, =7, =7, = 1, = 0.1

Furthermore, we take 4, = 1, = 4, = 4,, = 10.

The initial conditions of the drive system (7) are taken as x;(0) = 4.3,
v1(0) =5.4, z;(0) = 6.5 and w;(0) = 3.1.

The initial conditions of the response system (8) are taken as x>(0) = 9.6,
v2(0) = 1.2, z2(0) = 3.8 and w,(0) = 5.7.

Figures 12-16 illustrate the sliding controller based global hyperchaos syn-
chronization between the new hyperchaos systems (7) and (8).
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-10 1 L 1
0 0.5 1 1.5 2 25 3

Time (sec)

Figure 12: MATLAB simulation showing the synchronization between the states x| and
X7 of the new hyperchaos systems (7) and (8).

25 T T T T T

_y1
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Figure 13: MATLAB simulation showing the synchronization between the states y; and
v, of the new hyperchaos systems (7) and (8).
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25 T T
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0 0.5 1 1!5 2 25 3
Time (sec)

Figure 14: MATLAB simulation showing the synchronization between the states z; and
7 of the new hyperchaos systems (7) and (8).

115 2 2.5 3
Time (sec)

0.5

-

Figure 15: MATLAB simulation showing the synchronization between the states w; and
wy of the new hyperchaos systems (7) and (8).
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Figure 16: MATLAB simulation showing the time-history of the synchronization errors
ex, ey, 7, ey, between new hyperchaos systems (7) and (8).

4. An electronic circuit implementation of the new hyperchaotic system

In this section, the theoretical model of the new hyperchaotic system (1) is
implemented using electronic circuits. This is realized with the Kirchhoff’s circuit
laws approach and Op Amp analysis. The electronic circuit diagram for system

1 1
(1) is depicted in Figure 17. In this section, we set X = Zx, Y = Zy, Z = zz and

1
W = ZW' After the linear scaling, we rewrite the hyperchaotic system dynamics
(1) as

a(Y — X),
2X —4XZ+cY + W,

b 17)
8XY — 3

—-dX - dY.

TN =X
TR
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Figure 17: Dynamics of the Lyapunov exponents of the 3-D chaotic system
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By applying Kirchhoff’s circuit laws, we get its circuital equations as follows:

. 1 1
X = Y_ X7
CiR; CiR;
. 1 1 1 1
Y = X - XZ + Y + W,
CyR; CyRy CyR5 Gy R
1 1 1 (18)
Z = XY — Vi,
C3R; CiRg
. 1 1
Z = — X - Y.
C4R9 C4R

The values of the circuit components have been chosen as: Ry = R, = 12.9kQ,
R3; = 200 kQ, Rs = 26.67 kQ, Rs = 400 kQ, R; = 50 kQ, Rg = 32 kQ,
R9 = Rijp = 121.2kQ, R4 = R;1 = Ri2 = Ri3 = R4 = Ri5 = Rig = 100 kQ,
Vi=1voltand C; = C, = C3 = C4 = 1 nF.

The phase portraits of the circuit are represented in Figure 18. A very good
similarity between MATLAB simulation results (shown in Figure 1) and Multi-
Sim version 13.0 simulation results (shown in Figure 18) can be observed.

Oscilloscope-XSC1 X Oscilloscope-XSC2 X

< > < >

1 €| Cemes  Chamnel A — 1 @[ Ceme B CremelA ——

2 &9 IaCE

Lraits save | e trigger 12T Sl trgger

Timebase Channel A Channel B Trigger Timebase Channel A Channel B Trigger

Range:| 200 ms Scale: | 2 V/Div Scale: |2 VDiv. Edge: [F][%][A] Range:| 200 ms Scale: | 2 VD Scale: |2 VD Edge:  [E]X][2]

X pos. (Div): Ypos.0n): [0 |3 Ypos.Ow): [0.2 Level: [o [v X pos. (Div): ¥ pos.O): |0 Ypos.On): [28 |5 Level: [o v

vir|laca| B AR [Ac][0 5] Ac| o|[oc]-| - [Snge Normal [uto[Nene] vir|lacd ] B | [ac][ 0 |[oc] acl o]~ - [Snoe] Nomal /At [none]
(a) (X,Y)-plane (b) (¥, Z)-plane

< >

1 (@9 Ceme s Chamel A

11 (@[ omeis  Cromela e o
RS 2 €
T2T1 Stvel Ext. trigger 2L - St Fooer
Timebase Channel A Channel B Trigger Timebase Channel A Channel 8 Trigger
Range:| 200 ms Scale: |2 VD Scale: | 2 V/Dw Edge: [F][%][a] Range:| 200ms. Scale: |2 VOW Scale: |2 VIO Edge: % [A])
X pos.OW): ¥ pos.On): [ -2 ¥ pos.Ow): [ 0.2 Level: [ [v Xpos.OV): ¥ pos.Ow): [0 ¥ pos.Ow): [0 Levet: [
Y/ [Add ag| [ac] o |[oc] aco |[oc][- single || Normal | Auto  [None | /7 [add| [B/A] (A | [ac] 0 |[oc] ac][o |[oc][- Single || Normal  Auto [None |
(c) (Z,W)-plane (d) (X, W)-plane

Figure 18: The phase portraits of the new hyperchaotic system in MultiSim version 13.0
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5. Conclusions

We reported a new 4-D hyperchaotic dynamical system with no equilibrium in
this work. This special chaotic system belongs to the class of dynamical systems
with hidden attractors. We carried out a detailed qualitative analysis of the new
hyperchaotic system with bifurcation transition diagrams, multistability analysis,
period-doubling bubbles and offset boosting analysis. As a control application,
we got new results for the global hyperchaos synchronization of the new 4-D
systems using integral sliding mode control. Furthermore, an electronic circuit
realization of the new hyperchaotic system was simulated in MultiSim software
version 13.0 to verify the practical feasibility of the new system.
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