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1. Introduction

Texture recognition has always been a challenging task among
the image processing problems. On the other hand, texture
brings a lot of information to the categorization of the object
in the images. This is the main reason for the investigation of
the algorithms of texture categorization and texture-based ob-
ject segmentation. Over the years, different approaches to the
problem have been used. Due to the relatively long history of
the subject and its diversity, only a few exemplary leading pa-
pers will be presented.

Early approaches to the problem were characterized by the
frequency analysis of the image function [1]. For this pur-
pose, some type of transition between image and frequency
domains were used. To the most popular approaches, the fast
Fourier transform and its derivatives can be included. Next,
the frequency clustering was usually used on the signal re-
ceived from the previous stage. Usually, a spectrum of higher
frequencies was taken with higher precision into consideration
for texture categorization. For this purpose Gabor filtering was
mostly used. A feature vector was composed of a grouped by
a set of Gabor filters frequencies calculated based on the tex-
ture of the region [2]. These algorithms were relatively sim-
ple so that their hardware realizations were feasible [3,4]. With
today’s technology trends, texture analysis is relatively com-
plex and calculations of these algorithms are rather done in
GPUs with the use of CUDA technology if more computa-
tional power is needed. What has to be mentioned at the be-
ginning of the paper is that the algorithms and solutions pre-
sented herein do not serve the task of texture mapping [5] since
this is a very different task. Also the main emphasis of this
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work is not placed on the medical imaging texture recogni-
tion. For this reason only papers from this field will not be
mentioned further on and compared in experiments and con-
clusion.

Historically there has been an enormous amount of research
on texture processing. Since, as was mentioned, in the early
2000s usage of GPU was rather not popular because of its cost
the mainstream of research in texture recognition was based on
fast and accurate texture feature extraction. There has been a
significant amount of work in that area. Thorsten et al. [6] for
example analyze texture features based on the Human Visual
System hypothesis. The most common features form a set of de-
scriptors called a visual texture property of a region and it seems
to be domain-independent. The system is however slow and in-
accurate in non-rich texture regions. A similar approach is pre-
sented in [7] where the authors organize the texture features in
a vector of key-points that allows the forming of a descriptor
for further recognition based on a very well known technique
called bag-of-features. This is convenient since it does not re-
quire a big training set due to the fact that texture descriptors
can be easily clustered. A more robust algorithm of the tex-
ture classification has been used in Guo et al. work [8] where
some invariance to rotation, image illumination, and noise is
achieved. This is done by using the Fisher Separation Criteria
in a learning framework of texture descriptors. This way the
texture features are guaranteed to have optimal distance among
different classes. As a drawback of the solution, one can men-
tion that the system can only be fed with images that present
a single texture, thus, reducing the number of possible usage
scenarios.

Recent works most often use DNNs as a universal feature
of extractor and classifier. These solutions are featured with
very high accuracy and robustness that outnumbers earlier ap-
proaches. However, they differ with the approach taken in or-
der to solve the given problem. This often results in different
system architecture. Comparable works to the application pre-
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sented here can be found in [9–11] where focus of the first two
is on the effective feature extraction for further accurate clas-
sification. This way in [9] we can observe the usage of LBP
again as a pre-processing technique but this time inside a deep
architecture of a neural network. Two major deep architectures
were investigated: late and early fusion where texture features
are being fed to the system at different stages of processing.
This is very interesting since it seems a proper texture feature
handling is the key to the high accuracy and robust recognition.
In [10] focus is put also on the texture features but this time they
are hand-crafted and the rest of the architecture is re-trained to
correctly classify them. Both systems are featured with high
recognition accuracy but they lack the ability to recognize mul-
tiple texture classes in the same image. Zhu et al. [11] on the
other hand deal with the problem of data augmentation which
is very common in training the models with tens of millions of
parameters. The system described in this work has very similar
advantages and disadvantages.

The author’s reasoning was to design and build a texture
recognition system that is featured with high accuracy and ro-
bustness presented in recent papers that is also capable of rec-
ognizing multiple regions in the image as the separate objects.
In addition, the system is designed in a way that allows fully
automated data augmentation and a parallel investigation of ef-
ficient model training parameters.

The remainder of the paper is organized as follows: Sec-
tion 2 provides information about the system architecture. More
specifically data pre-processing followed by the description of
the data acquisition for training and recognition processes are
presented. Next, the deep learning module and its training pro-
cedures are presented. Paper ends with Sections 3 and 4 where
system recognition results and conclusions are shown.

Fig. 1. Block diagram of the system

2. System description

The input to the system is the gray-scale image of any resolu-
tion. The texture recognition algorithm does not re-scale input
but it works by dividing the input image into non-overlapping
segments and then do the processing within each segment. This
is true for training the model as well as further on-line recog-
nition. Note, that due to this approach the origin of the image
(e.g. its recording/capturing parameters like exposition, resolu-
tion, etc.) are neglected and it is up to the user of the system
to prepare sufficient quality images. In the asphalt dataset pre-
sented herein images were recorded by an automatic image data
capturing vehicle [15] designed especially for this task but other
datasets presented herein are public domain and the procedure
of data capturing process is unknown in these cases. The block
diagram of the systems architecture is presented in Fig. 1.

As can be seen, the system is capable of working in the
two modes: train mode and recognition mode. While the mode
names are self-explanatory, the way they work is much more
difficult. Both of them share the same pre-processing track that
is responsible for forming the input signal (image) to the rest of
the processing pipeline. Then, depending on the mode the way
the system works to change. Both modes are explained below
in more detail.

2.1. Data pre-processing and segment formation. Data pre-
processing segment is shared between the two modes of the ap-
plication. The way it operates is the following:
• calculate the low/high levels of the pixel values (5% of cu-

mulative histogram starting from 0(up)/255(down) respec-
tively);

• applies the histogram leveling accordingly to the detected
levels;
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• removes the noise from the image by applying the Gaussian
filter (by default the Gaussian filter mask is 5×5 pixels with
σ = 0.83);

• detects the edges with Laplace edge detector.
Figure 2 shows the exemplary input image and its pre-

processed version with all the above steps applied.

(a) (b)

Fig. 2. Input pre-processing: (a) original image; (b) pre-processed im-
age

The next step just after the pre-processing is to form image
segments accordingly to the setup parameters. Since the main
processing is based on the image segments system is designed
in a way that allows adjusting the size of it. The default size
of the segment is 25×25 pixels. In addition, the system allows
us to recognize textures at different scales, thus, the image pyra-
mid is built as well. For this reason the window multiplier pa-
rameter is used. The idea of block size and window multiplier
is shown in Fig. 3. Recognition mode also allows us to mark
the regions that are composed of multiple segments. This way,
there is no need to calculate overlapping segments in this proce-
dure. For this purpose, the system accepts an additional param-
eter that tells how many positive segment recognitions should
be inside one window to mark the region as positive.

Fig. 3. Input split idea to segments and windows

In the training mode of the system extracted segments are la-
beled accordingly to the manual annotations given in the auxil-
iary file. This way each element gets a class label that it belongs

to. Based on that system can detect automatically how many
classes must have the model on the output. Obviously, the num-
ber of classes is N +1 due to the fact that a “negative” class is
extracted automatically from the samples that do not belong to
any manual annotation. The information about the number of
classes goes to the model definition segment where the model
is constructed.

2.2. Data augmentation. The number of training samples
in the presented system depends on the input image resolu-
tion (since input images are divided into non-overlapping seg-
ments). Since the size of the window is 25×25 pixels the

number of samples from one input image is: floor
(

W
25

)
·

f loor
(

H
25

)
. In order to train a deep neural network effec-

tively typically, several tens of thousands of training samples
are needed. This is a requirement since the model usually has
about 50 thousands of parameters or more. Small training set
during training results with great train accuracy and perfect
confusion matrix but the model will not work correctly on the
data it has not seen before. Model overfitting with small train-
ing sets happens even if the validation set is defined. To avoid
that data augmentation is used. The way the data can be aug-
mented depends on a specific scenario. The system presented
herein can be adapted from this perspective without changing
its architecture. To achieve this a separate batch script can be
invoked on the data. Its purpose is to create more training data
so it is transparent to the rest of the system. The system imple-
ments two default augmentation techniques: displacement and
rotation. Both prepared as bash scripts for the Linux operating
system.

The displacement script prepares a set of a few images
around the original sample. The number of these additional
samples can vary between zero and eight (default is eight). If
the segment size is the same as the input image it cannot be
used since there is no padding available.

The rotation module is also controlled with a system param-
eter that gives information about the maximal image rotation.
Again, the image ImageMagick library was used. By default
system also adds the horizontal and vertical mirror effects since
they do not cause any aliasing (operations -flip and -flop
in the library).

2.3. Deep learning module – model definition. Having all
the necessary information from the previous stages system au-
tomatically creates a deep neural network model input and out-
put layers. Numbers of layers in the model as well as their
sizes and parameters are defined as a separate sub-model file
and can be redefined there if there is a need for it. The sys-
tem adapts the input and output layers so that they match
the dimensionality of the input/output signals. The backbone
model used as a sub-model uses four convolution layers fol-
lowed by the pooling and normalization layers. The input layer
accepts images of resolution equal to 256×256 pixels (auto-
matic resizing is done for other dimensionality of input im-
ages). The number of convolutional kernels in the following
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layers is respectively: 32, 64, 64, 128. The last two layers
are composed of fully connected neurons with ReLu activa-
tion functions [13]. Their sizes are 200 and N +1 respectively.
The number of layers and parameters in each layer was ad-
justed based on experiments so architecture presented herein
is a resultant of all the experiments performed on this sys-
tem (e.g. in the asphalt dataset recognition experiment number
of parameters in the entire model is 49872). Note, that it can
be adjusted in a separate sub-model file for the more specific
cases. This architecture is the result of many experiments and
is a default setup of the system. Since each time the model is
trained its weights are randomly chosen and there is no guar-
antees in the training algorithm to reach a global minimum
it is impossible to say that this choice is optimal. However,
based on the experiments performed it is quite often a good
choice.

Due to its popularity and ease of use the Caffe library was
used in the project [12]. Presented DNN model definition in the
Caffe library uses Xavier algorithm as a weight initializer [14].
The same technique is used in all the convolution layers. The
model definition is stored in a separate file for further training.
Training parameters are stored in an additional file. The DL
backbone model definition as well as the default training setup
for caffe library can be downloaded as a prototxt definition files
from http://rafal.kapela.pracownik.put.poznan.pl/demos.html#.

2.4. Deep learning module – model usage (training and
recognition). The defined model, depending on the system
mode can be trained or used for recognition. In training mode,
different setups can be used as it was mentioned in Section 2.3.
Exemplary visualization of training processes is presented in
Fig. 4. Separate files for model and solver definitions allow us
to run the training process in the batch mode on a grid of com-
puters. This is very convenient for the exploration of the param-
eter space for the given task of texture recognition.

Once the model is trained it is saved at a given location. Then,
it can be used in recognition mode. Caffe library allows to eval-
uate the model with built-in tools as well. This is done after the
training on the unseen images – not the ones from the valida-
tion dataset. This allows us to quickly and efficiently check if
the results are satisfactory for further recognition.

Fig. 4. Visualization of the training process

3. Experimental results

The experimental results presented herein are based on the as-
phalt image dataset presented in one of the author’s previous
work [15]. It consists of 3000 gray-scale images, 1500× 1080
resolution each. The algorithms presented there have nothing
in common with the automatic texture categorization system
described in this work. Note, that there are multiple, open tex-
ture datasets that are suitable for this system (e.g. [16]). Re-
sults for some of them are also presented herein. To train the
model a ground truth labeled dataset is needed in each case. It
is usually done in two ways – either each image in the database
presents a separate texture (then we do not need image split-
ting into the segments) and is assigned to a particular label
or images are given in a bigger resolution and additionally,
there is an auxiliary file with a description of the image seg-
ments.

The asphalt dataset used in this research consists of multi-
ple texture classes but for our purposes only six of them were
chosen for system accuracy validation. These were:

1) regular asphalt surface;
2) asphalt crack;
3) curb;
4) gutters;
5) surface contamination;
6) hatch sewer manhole.
The detailed results of the influence on the accuracy of each

class have been presented herein. The main purpose of these
results is to show the system capabilities, mainly that this is a
scalable and flexible application that can be easily run in the
batch mode on the cloud servers. The experiments were con-
ducted for different parameters of the network solver. When one
of the parameters was changed the rest were untouched in order
not to show the influence of the correlation of the parameters.
The default values for all the experiments are as follows:
• training algorithm – Adadelta;
• learning rate (η) – 0.001;
• learning rate modifier ratio (γ) – 1;
• momentum (µ) – 0.9;
• weight decay (λ ) – 0.005.
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3.1. Training algorithm. Different training algorithms have
been tested in order to show the capabilities of the system. It ob-
viously depends on the task but what can be observed in general
is that the adaptive gradient DNN training methods perform bet-
ter than standard gradient descent methods (Fig. 4) [17]. This
is due to the fact that the update of the parameters during the
training is done separately for each one of them (1).

θt+1 = θt −
η√

εI +diag(Gt)
·gt , (1)

where η is the initial learning rate, ε is a scalar, I is the identity
matrix and gt is the gradient of the loss function L calculated at
a given step t (2).

gt =
1
n

n

∑
i=1

(
∇θ L(xi,yi,θt)

)
. (2)

The loss function used in all the experiments is a well-known
hinge (SVM) loss given by Eq. (3).

Gt =
t

∑
τ=1

gτ gT
τ , (3)

where s denote a scalar score value observed at the output of
the network.

The key of this algorithm is a diagonal matrix G which stores
the accumulated gradient during the entire training process (4).

Li = ∑
i�=yi

max(0,s j − syi +1). (4)

Adadelta training algorithm is an improvement of the ada-
grad procedure. It simply replaces the diagonal matrix diag(Gt)
with the decaying average over past squared gradients (5).

θt+1 = θt −
η√

εI +E [diag(Gt)]
·gt . (5)

This way the denominator in (5 becomes a root mean squared
(RMS) error criterion of the gradient. In the task of texture
recognition and, in general, recognition of complex patterns
adaptive subgradient training algorithms declassify basic gradi-
ent descent algorithms. The difference is extremely significant
– over 70% increase of accuracy for the adaptive subgradient
methods.

3.2. Learning rate. Table 1 shows the calculated by the pre-
sented system influence of the learning rate (η) parameter on
the final results of texture classification. As it was shown in the
previous section adadelta algorithm provides the best results so
that it was used as a default training algorithm for all the ex-
periments. For simple and distinctive textures (class 6) the in-
fluence of this parameter is barely visible and almost any value
from the wide range (10−5 to 1) can be safely taken. For more
complex textures there is a clearly visible extremum of the ac-
curacy function. For this reason, a learning rate value investiga-
tion should be always taken into account when new models are

created. The presented system can do that in a fully automated
manner.

Table 1
Learning rate parameter influence on tested class accuracy in the sys-

tem

class
η

10−5 10−4 10−3 10−2 10−1 1

1 0.294 0.591 0.719 0.914 0.936 0.751

2 0.062 0.565 0.699 0.995 0.964 0.882

3 0.886 0.992 0.991 0.999 0.997 0.998

4 0.693 0.983 0.998 0.976 0.996 0.988

5 0.472 0.799 0.851 0.96 0.995 0.792

6 0.843 0.998 0.997 0.999 0.994 0.999

3.3. Learning rate modifier ratio. The second very impor-
tant parameter is the learning rate modifying ratio (γ). Its im-
portance has been shown in Fig. 5. As can be seen, some values
of the parameter can lead to an inability to move out from the
plateau in the loss function during training.

Fig. 5. Influence of the gamma parameter on the training accuracy

Table 2 shows the final influence on each trained class.
Again, for trivial textures that are easily discriminative in terms
of texture features the value of this parameter does not show too

Table 2
Gamma parameter influence on tested class accuracy in the system

class
γ

0.01 0.1 0.5 0.75 0.9 1

1 0.619 0.683 0.641 0.653 0.651 0.732
2 0.193 0.389 0.359 0.471 0.443 0.669
3 0.985 0.977 0.987 0.993 0.991 0.991
4 0.923 0.933 0.97 0.983 0.984 0.988
5 0.793 0.785 0.849 0.748 0.825 0.851
6 0.998 0.995 0.999 0.999 0.999 0.997
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3.1. Training algorithm. Different training algorithms have
been tested in order to show the capabilities of the system. It ob-
viously depends on the task but what can be observed in general
is that the adaptive gradient DNN training methods perform bet-
ter than standard gradient descent methods (Fig. 4) [17]. This
is due to the fact that the update of the parameters during the
training is done separately for each one of them (1).

θt+1 = θt −
η√

εI +diag(Gt)
·gt , (1)

where η is the initial learning rate, ε is a scalar, I is the identity
matrix and gt is the gradient of the loss function L calculated at
a given step t (2).

gt =
1
n

n

∑
i=1

(
∇θ L(xi,yi,θt)

)
. (2)

The loss function used in all the experiments is a well-known
hinge (SVM) loss given by Eq. (3).

Gt =
t

∑
τ=1

gτ gT
τ , (3)

where s denote a scalar score value observed at the output of
the network.

The key of this algorithm is a diagonal matrix G which stores
the accumulated gradient during the entire training process (4).

Li = ∑
i�=yi

max(0,s j − syi +1). (4)

Adadelta training algorithm is an improvement of the ada-
grad procedure. It simply replaces the diagonal matrix diag(Gt)
with the decaying average over past squared gradients (5).

θt+1 = θt −
η√

εI +E [diag(Gt)]
·gt . (5)

This way the denominator in (5 becomes a root mean squared
(RMS) error criterion of the gradient. In the task of texture
recognition and, in general, recognition of complex patterns
adaptive subgradient training algorithms declassify basic gradi-
ent descent algorithms. The difference is extremely significant
– over 70% increase of accuracy for the adaptive subgradient
methods.

3.2. Learning rate. Table 1 shows the calculated by the pre-
sented system influence of the learning rate (η) parameter on
the final results of texture classification. As it was shown in the
previous section adadelta algorithm provides the best results so
that it was used as a default training algorithm for all the ex-
periments. For simple and distinctive textures (class 6) the in-
fluence of this parameter is barely visible and almost any value
from the wide range (10−5 to 1) can be safely taken. For more
complex textures there is a clearly visible extremum of the ac-
curacy function. For this reason, a learning rate value investiga-
tion should be always taken into account when new models are

created. The presented system can do that in a fully automated
manner.

Table 1
Learning rate parameter influence on tested class accuracy in the sys-

tem

class
η

10−5 10−4 10−3 10−2 10−1 1

1 0.294 0.591 0.719 0.914 0.936 0.751

2 0.062 0.565 0.699 0.995 0.964 0.882

3 0.886 0.992 0.991 0.999 0.997 0.998

4 0.693 0.983 0.998 0.976 0.996 0.988

5 0.472 0.799 0.851 0.96 0.995 0.792

6 0.843 0.998 0.997 0.999 0.994 0.999

3.3. Learning rate modifier ratio. The second very impor-
tant parameter is the learning rate modifying ratio (γ). Its im-
portance has been shown in Fig. 5. As can be seen, some values
of the parameter can lead to an inability to move out from the
plateau in the loss function during training.
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much importance since the entire tested range is equally effec-
tive. However, for more complex textures that are close to each
other in the feature space a swipe through a range of different
values is extremely useful for good accuracy results. Note, that
the table shows the results for γ parameter influence only leav-
ing the rest of the parameters to their default values.

3.4. Momentum. Momentum parameter should also be un-
der deep investigation during the design process of each deep
learning model. It represents a basic idea of adaptive step dur-
ing the loss function optimization. For adagrad algorithm it can
be written as (6).

θt+1 = µθt −
η√

εI +diag(Gt)
·gt . (6)

Table 3 shows the influence of the µ parameter on the ac-
curacy of the classification done for the presented texture im-
age dataset. Again, for complex textures investigation of this
parameter is crucial for accuracy, thus, the system presented
herein has the ability to perform such calculations in the batch
mode.

Table 3
Momentum parameter influence on tested class accuracy in the system

class
µ

0.1 0.5 0.7 0.9 0.99

1 0.629 0.646 0.683 0.914 0.947
2 0.317 0.332 0.45 0.955 0.94
3 0.994 0.996 0.984 0.999 0.997
4 0.988 0.991 0.96 0.986 0.98
5 0.763 0.803 0.823 0.96 0.988
6 0.997 0.999 0.999 0.999 0.999

3.5. Weight decay. Weight decay parameter allows regular-
ization between the system output mean squared function error
and a values of model parameters (i.e. network weights θ ). This
is done in the following way (7).

L(θ) =
1
N

N

∑
i=1

Li(xi,yi,θ)+λR(θ), (7)

where R is the regularization function usually defined as (8).

R(θ) =
1
N

M

∑
k=1

θ 2
k . (8)

As can be seen this forms a penalty for high values of the
model parameters, thus, providing a solution for a saturated
neuron output problem.

Table 4 shows the results obtained for investigated image tex-
ture dataset. The same conclusion can be made here, that the
value of this parameter is task dependent and shall be investi-
gated for a given problem.

Table 4
Weight decay parameter influence on tested class accuracy in the sys-

tem

class
λ

5 ·10−6 5 ·10−5 5 ·10−4 5 ·10−3 5 ·10−2

1 0.774 0.733 0.719 0.578 0.369
2 0.669 0.692 0.699 0.288 0.181
3 0.999 0.995 0.991 0.961 0.862
4 0.985 0.994 0.989 0.975 0.812
5 0.983 0.87 0.851 0.787 0.694
6 0.999 0.999 0.997 0.993 0.91

Concluding, in the experiment presented above, each texture
class was recognized with an accuracy above 90%. That was
93.4%, 96.4%, 99.7%, 99.6%, 99.5% and 99.4% for regular as-
phalt, asphalt crack, curb, gutters, asphalt contamination, and
hatch sewer manhole class respectively. The ROC curves for the
entire experiment have been shown in Fig. 6. It can be seen that
classes related to the most complex features rise in the lowest
rate. All the experiments include the tests to the texture scale
and rotation since, as it was mentioned, the system automati-
cally performs data augmentation which, among others, does
image rotation and scaling.

Fig. 6. Receiver Operating Characteristic curves for the asphalt dataset

3.6. Comparison to other solutions and datasets. Previous
section described how the training parameters can be fine-tuned
in order to achieve best performance in the text recognition task.
As an exemplary dataset author used the asphalt dataset with six
categories. In order to compare presented solution against other
projects other datasets had been investigated. Note, that the ap-
proach presented herein relies on pure texture image block that
can be categorized to a particular class. Since in the datasets
used in this comparison a single image presents a particular
texture the segment size in the algorithm presented in this paper
had to be set to the size of the input image. This way a single
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image produces one segment. The remaining part of the algo-
rithm does not need to be altered.

First experiment was conducted on the STI dataset [18]. It
is relatively new dataset that is quite similar in the purpose of
its development to the asphalt dataset presented earlier (i.e. it
contains different surfaces with some defects for further recog-
nition).

Table 5 presents accuracy results for the tested algorithms
in [18] along with the result achieved with DNN approach. As
can be seen, due to the transformation to the grayscale image
DNN classifier struggles in the task of distinguishing between
different colors of travertine texture (columns “Creamy Traver-
tine” and “Orange Travertine”). This leads to the conclusion
that introducing the color information to the algorithm could
make it more robust to various of textures.

Table 5
Comparison of results achieved for the STI dataset

Texture algorithm C. Trav. Hatchet O. Trav. avg.

1DLBP 95.6 96.2 95.7 95.8

MLBP16,2 93.6 92.2 94.4 93.4

1DLBP+SSR 97.3 98.0 95.8 97.1

NrCLBP 96.2 97.3 95.9 96.5

MBP 92.3 90.1 91.2 91.3

DNN 82.6 98.1 81.5 87.4

In the next experiments two datasets have been used: Meas-
Tex and Brodatz. Tables 6 and 7 present achieved results. Re-
sults for other algorithms were presented in papers [19, 20] for
MeasTex and Brodatz dataset respectively.

Table 6
Comparison of results achieved for the MeasTex dataset

Texture algorithm Grass Material OhanDube VisTex Avg.

Fractal 90.7 90.8 90.5 81.3 88.3

Gabor 88.5 95.8 98.1 90.1 93.1

GLCM 90.3 95.4 87.4 84.1 89.3

GMRF 92.2 97.1 98.7 92.6 95.2

DNN 97.6 97.4 99.2 93.2 96.9

Table 7
Comparison of results achieved for the Brodatz dataset

Texture algorithm Avg.

SIFT 91.4

LBP 91.3

WLD 91.2

MLBP 95.1

WLBP 95.7

DNN 98.6

As it can be seen the DNN based algorithm outperformed all
the other algorithms in these datasets. Partially it is due to the
fact that both datasets originally have grayscale images for all
the categories.

4. Conclusions

This paper presents a robust and flexible system for automatic
model training and validation for a task of image texture recog-
nition. The system automatically creates an augmented dataset
based on simple manual annotations that, next to the image
data, are the input for model training. Since the system performs
parametrizable data augmentation, it can be used for scaled and
rotated textures. In addition, due to the modularized approach of
the system architecture particular segments can be replaced or
parametrized accordingly to the given task. The biggest novelty
however that characterizes the system is the ability to perform
analysis of multiple region segmentation for one input texture
image. This is because of the fact that the input is analyzed in
a sub-window manner where texture recognition occurs. The
core of the system is the deep neural network that is automat-
ically configured to match the dimensionality of the input and
output. The internal structure of the model was proposed based
on the number of experiments performed by the system but
can be adjusted since it is stored in an external configuration
file.

Experimental results shown in the Section 3 prove that the
system can be run in the automatic batch mode in which the
influence of the training parameters is investigated. This can be
done in a sequential mode on one machine or in a distributed
solution since there are no architectural constraints that could
disallow it. In the sequential mode, each task is performed back-
to-back where the particular parameters are investigated in or-
der to check their influence on the final accuracy. This way the
best performing setup can be obtained for a single run and then
used in the following experiment. In a distributed approach, the
job dispatcher gives a certain task to the calculation nodes and
then gathers the data. The influence of the parameters to the
model accuracy is then performed by the job dispatcher and
this module decides about the end of the experiment proce-
dure.

In addition, the experimental results show that the parame-
ter search investigation performed by the system can lead to
extremely good final accuracy values. Thanks to the automatic
data augmentation procedure the influence of the image noise
to each class can also be investigated in an automatic manner. In
this experiment, we left the default setup of the noising module
since the main purpose of this paper was to present the system
architecture and capabilities, not the texture recognition task it-
self.

The system also facilitates the so-called cross-validation of
the classification accuracy with respect to the training param-
eters. It can be achieved by validation of the accuracy values
across the tables observed for different experiments. This in-
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image produces one segment. The remaining part of the algo-
rithm does not need to be altered.

First experiment was conducted on the STI dataset [18]. It
is relatively new dataset that is quite similar in the purpose of
its development to the asphalt dataset presented earlier (i.e. it
contains different surfaces with some defects for further recog-
nition).

Table 5 presents accuracy results for the tested algorithms
in [18] along with the result achieved with DNN approach. As
can be seen, due to the transformation to the grayscale image
DNN classifier struggles in the task of distinguishing between
different colors of travertine texture (columns “Creamy Traver-
tine” and “Orange Travertine”). This leads to the conclusion
that introducing the color information to the algorithm could
make it more robust to various of textures.

Table 5
Comparison of results achieved for the STI dataset

Texture algorithm C. Trav. Hatchet O. Trav. avg.

1DLBP 95.6 96.2 95.7 95.8

MLBP16,2 93.6 92.2 94.4 93.4

1DLBP+SSR 97.3 98.0 95.8 97.1

NrCLBP 96.2 97.3 95.9 96.5

MBP 92.3 90.1 91.2 91.3

DNN 82.6 98.1 81.5 87.4

In the next experiments two datasets have been used: Meas-
Tex and Brodatz. Tables 6 and 7 present achieved results. Re-
sults for other algorithms were presented in papers [19, 20] for
MeasTex and Brodatz dataset respectively.

Table 6
Comparison of results achieved for the MeasTex dataset

Texture algorithm Grass Material OhanDube VisTex Avg.

Fractal 90.7 90.8 90.5 81.3 88.3

Gabor 88.5 95.8 98.1 90.1 93.1

GLCM 90.3 95.4 87.4 84.1 89.3

GMRF 92.2 97.1 98.7 92.6 95.2

DNN 97.6 97.4 99.2 93.2 96.9

Table 7
Comparison of results achieved for the Brodatz dataset

Texture algorithm Avg.

SIFT 91.4

LBP 91.3

WLD 91.2

MLBP 95.1

WLBP 95.7

DNN 98.6

As it can be seen the DNN based algorithm outperformed all
the other algorithms in these datasets. Partially it is due to the
fact that both datasets originally have grayscale images for all
the categories.

4. Conclusions

This paper presents a robust and flexible system for automatic
model training and validation for a task of image texture recog-
nition. The system automatically creates an augmented dataset
based on simple manual annotations that, next to the image
data, are the input for model training. Since the system performs
parametrizable data augmentation, it can be used for scaled and
rotated textures. In addition, due to the modularized approach of
the system architecture particular segments can be replaced or
parametrized accordingly to the given task. The biggest novelty
however that characterizes the system is the ability to perform
analysis of multiple region segmentation for one input texture
image. This is because of the fact that the input is analyzed in
a sub-window manner where texture recognition occurs. The
core of the system is the deep neural network that is automat-
ically configured to match the dimensionality of the input and
output. The internal structure of the model was proposed based
on the number of experiments performed by the system but
can be adjusted since it is stored in an external configuration
file.

Experimental results shown in the Section 3 prove that the
system can be run in the automatic batch mode in which the
influence of the training parameters is investigated. This can be
done in a sequential mode on one machine or in a distributed
solution since there are no architectural constraints that could
disallow it. In the sequential mode, each task is performed back-
to-back where the particular parameters are investigated in or-
der to check their influence on the final accuracy. This way the
best performing setup can be obtained for a single run and then
used in the following experiment. In a distributed approach, the
job dispatcher gives a certain task to the calculation nodes and
then gathers the data. The influence of the parameters to the
model accuracy is then performed by the job dispatcher and
this module decides about the end of the experiment proce-
dure.

In addition, the experimental results show that the parame-
ter search investigation performed by the system can lead to
extremely good final accuracy values. Thanks to the automatic
data augmentation procedure the influence of the image noise
to each class can also be investigated in an automatic manner. In
this experiment, we left the default setup of the noising module
since the main purpose of this paper was to present the system
architecture and capabilities, not the texture recognition task it-
self.

The system also facilitates the so-called cross-validation of
the classification accuracy with respect to the training param-
eters. It can be achieved by validation of the accuracy values
across the tables observed for different experiments. This in-
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formation is useful for the job dispatcher task and can serve as
a clue for further investigation of the training parameters. For
example, in Table 2 for class 2 last value is the best perform-
ing γ value for this experiment. It can be seen that a similar
value (weights of the network are randomly chosen at the be-
ginning of each experiment) of the accuracy is shown in Table 1
for the same class in column 3 (η = 10−3) since this is the de-
fault value of learning rate among all the experiments. Based
on these observations the correlation of the training parame-
ters can be investigated as well as the decision of choosing the
most efficient parameter values that can be made. Based on Ta-
bles 1–3 as well as the ROC curves (Fig. 6) a conclusion can
be drawn that some classes are relatively easy for recognition
than others (e.g. class 6 (hatch) performs better than class 5
(surface contamination). This happens due to the fact that some
classes have the regular texture surface plus the additional fea-
tures (e.g. surface contamination or crack consists of the regular
surface plus the searched object). This fact makes the decision
less robust since the detector has to filter out high level of the
background first before categorization of the meaningful fea-
tures.

In summary, the presented system is featured with the abil-
ity to train and validate deep neural network models that are
then used for robust and accurate texture image segmentation.
The trained models can be effectively used in other applica-
tions for image texture-based segmentation [21–23] making the
presented system a universal tool in the scientific work. It has
been proved by performing texture classification experiments
on external datasets. Comparison with other state of the art al-
gorithms shows high efficiency of the solution presented herein.
In addition, due to the automatic way of problem-solving and
parameter tuning the presented system can reduce significantly
the design time related to many issues correlated with the train-
ing of DNNs [24–26].

The backbone network configuration files as well as the de-
fault training setup for caffe library can be downloaded as a
prototxt definition files from:

http://rafal.kapela.pracownik.put.poznan.pl/demos.html#.
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