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Abstract. In the present research, the wear behaviour of magnesium alloy (MA) AZ91D is studied and optimized. MA AZ91D is casted using 
a die-casting method. The tribology experiments are tested using pin-on-disc tribometer. The input parameters are sliding velocity (1‒3 m/s), 
load (1‒5 kg), and distance (0.5‒1.5 km). The worn surfaces are characterized by a scanning electron microscope (SEM) with energy dispersive 
spectroscopy (EDS). The response surface method (RSM) is used for modelling and optimising wear parameters. This quadratic equation and 
RSM-optimized parameters are used in genetic algorithm (GA). The GA is used to search for the optimum values which give the minimum 
wear rate and lower coefficient of friction. The developed equations are compared with the experimental values to determine the accuracy of 
the prediction.
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mal structure of the AZ91 alloy appears to be strengthened by 
exiting the Al-Mg matrix and creating binary atmospheres with 
Mg and manganese [8]. The AZ91D alloy is widely used in the 
construction field and structural applications. It contains Al and 
Zn as major alloying elements. MA is fabricated by die-cast [9]. 
Hardness and wear resistance are improved by deep cryogenic 
heat treatment [10]. Oxidation and abrasion were major wear 
mechanisms at the lowest sliding loads and low sliding speeds. 
Increasing sliding speed and loads led to a combination of oxi-
dation wear, delamination wear, and adhesion wear. The highest 
load applied, high sliding speed plastic deformation, and severe 
plastic deformation were identified [11].

The design of experiments (DoE) is a very precious tool 
used to optimize different variables, correspondence, and their 
outputs with minimal variability [12]. DoE is used to reduce 
the number of tests and to achieve useful variables in research, 
rather than multiple tests, which are time-consuming and dif-
ficult [13]. Response surface methodology (RSM) is a tool to 
find the best and optimum condition for the same system and 
different variables. The RSM is a comprehensive method for 
analyzing and solving problems considering the independent 
variables in response. The RSM has the advantage to find an 
optimal solution [14].

A genetic algorithm (GA) is widely used in different 
research areas for parameter optimization. GA is a search algo-
rithm designed to mimic the principles of biological evolution 

1.	 Introduction

Magnesium alloy (MA) has light weight and high stiffness. 
MA has good castability, high specif ic strength, and good 
creep resistance [1]. MA AZ91D has good use in a wide range 
of applications in factories [2]. It is utilized in automobile 
sectors and has structural applications due to its light weight 
[3]. MA weighs 33% less than aluminum (Al), 61% less than 
titanium (Ti), and 77% less than stainless steel (SS). MA is 
a promising material as a better replacement for the above 
materials [4].

However, MA is not a good replacement in terms of wear 
application when it is in contact or it slides with other materials 
[5]. It has poor temperature stability, poor tribology properties, 
high susceptibility to thermal expansion, inadequate proper-
ties at higher temperatures and it is subject to corrosion [6]. 
At room temperature condition, MA possible application is 
now restricted, due to its poor wear resistance properties [7]. 
MA AZ series are the most common MA, due to their cost, 
high mechanical strength, and corrosion resistance which were 
acquired by adding aluminum, zinc, and manganese. The opti-
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in a natural genetic system, which is also known as a stochastic 
sampling method, and critical or difficult problems are solved 
in terms of objective functions [15]. The GA model is an easy 
tool to find out optimal solutions with multi-objective function. 
It is highly recommended for optimization due to its power, 
simplicity, and higher efficiency. A GA consists of three major 
operations to get the optimum result, namely: reproduction, 
crossover, and mutation [16]. It is a prolific method for solv-
ing linear and non-linear problems, promoted by the process of 
natural selection and genetic evaluation [17].

Even though a lot of literature is available on the tribolog-
ical study of MA, none of the studies has the effect of tribo-
logical parameters of AZ91D MA in dry sliding conditions and 
optimization. The present research focused on the optimization 
of the MA AZ91D tribology properties under dry sliding condi-
tions, and the different parameters which affect the tribological 
properties are sliding velocity, load, and distance. The tribology 
properties are optimized and the optimized model results with 
the RSM and GA validated.

2.	 Experimental methods

2.1. Materials. MA AZ91D was fabricated using the gravity 
die casting method. The muffle furnace was initially heated 
with pure Mg ingots to 750°C [18]. The composition of AZ91D 
is given in Table 1. Mg ingots were purchased from Kastwel 
Foundries and other elements were purchased from Parsh-
wamani Metals.

Table 1 
MA AZ91D chemical composition

Chemical composition of die-cast Mg-alloys

El Al Zn Mn Fe Cu Ni Si Mg

% 9.10 0.64 0.17 0.001 0.001 0.001 0.01 Bal

The other alloying elements of MA AZ91D were preheated 
and added to the furnace. The metal available in the furnace 
slowly melted and the argon gas was continuously supplied 
inside the furnace. Before pouring the molten metal, the die is 
preheated at 250°C for eliminating casting defects. The testing 
specimens were sliced from the AZ91D MA die-cast ingot and 
machined to the required shape and different dimensions. The 
testing specimens were polished by using 600, 800, 1000, and 
1200 grit papers and cleaned by acetone solution.

2.2. Wear test. A tribometer (Ducom pin-on-disc tribometer) 
was utilized to perform dry sliding wear tests on MA AZ91D 
specimens using the pin-on-disc configuration. The specimen 
whose size is 10 mm in diameter with a 20-mm height of pin, 
the track diameter is 100 mm. EN31 steel was used as the 
counter-face disc (with a diameter of 165 mm and 8 mm thick 
plate). The wear test specimen was prepared according to the 
ASTM G99 standard. The specimens were properly cleaned 
with acetone solution using an ultrasonicator for 10 min before 

the tribological tests. The tribological tests were performed at 
various sliding speed of 1, 2, 3 m/s, a various load of 1, 3, 5 kg, 
and various sliding distance of 0.5, 1, 1.5 km at room tem-
perature (25°C). After every test, the counter-face discs were 
cleaned with acetone to remove the wear debris and traces. The 
wear specimen pins were weighed before and after each test 
run using an analytical weighing machine (a resolution of 0.01 
mg). The wear loss of the specimens was measured based on 
the variation in volumetric losses per unit according to a slid-
ing distance before and after the sliding tests. Friction force 
was continuously recorded by a load cell in order to evaluate 
the coefficient of friction (CoF). Each test was repeated three 
times to ensure repeatability in the friction and wear and their 
average was reported.

2.3. Optimization.
2.3.1. Response surface methodology. The tribology input 
parameters for pin-on-disc in dry conditions were optimized. 
The RSM experimental design was developed based on 3 
levels and 3 factors of Box-Behnken design methods [19]. 
The uncoded values are used in this optimization. The vari-
able levels are middle level (0) which represents the centre 
point and the batches of every variable at a lower level (–1) 
or higher level (+1) include verifying of Design Expert 19 or 
Minitab 19.

2.3.2. Genetic algorithm. A GA was developed by Matlab 
2018. It was used to predict the minimum wear rate and CoF 
within the range of the input parameters. The parameters are 
sliding velocity (1 to 3 m/s), load (1 to 5 kg), and distance 
(0.5 to 1.5 km). The optimal variable was validated by using 
a GA. The percentages of errors were compared to the GA 
predicted against experimental values, and the accuracy of the 
prediction was checked and compared.

3.	 Results and discussion

3.1. Mathematical model using RSM. RSM was used to pre-
dict the impact of independent test factors and their correla-
tion for minimum wear rate and minimum CoF with different 
input parameters. Considering quadratic terms, linear terms, 
and all interactions, the second-order RSM model is chosen to 
fit the response surface, and the general shape of the model is 
described in Eqs. (1) and (2)

	
Y = N0 + ∑ n

i = 1 Ni xi + ∑ n

i = 1 Nii xi
2 +

Y + ∑∑ i <  j Nij xi xj + ε
� (1)

where Y represents the estimated response; N0 is the constant 
item; Ni represents the primary coefficient of the independent 
variable xi; Nij is the correlation coefficient between the inde-
pendent variables xi, xj; and Nii represents the quadratic coef-
ficient associated with the independent variable xi [20]. The 
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second-order polynomial quadratic regression equation is given 
in Eq. (2)

	

Y = β0 + β1V1 + β2V2 + β3V3 + β11V12 +
Y + β22V22 + β33V32 + β12V1V2 +
Y + β23V2V3 + β13V1V3

� (2)

where Y is the dependent variable (wear rate, mm3/kg.km and 
CoF); V1, V2, V3 denote the independent variables, viz, slid-
ing velocity (m/s) load (kg), and sliding distance (km). The 
parameters effects and their interactions in response were ana-
lysed by conducting optimal tests and using variance analysis 
(ANOVA) [21].

Table 2 
The levels of input variables

Factors
Uncoded value

–1 0 +1

Sliding Velocity (m/s) 1 2 3

Load (kg) 1 3 5

Distance (km) 0.5 1 1.5

3.1.1. Modelling and prediction using RSM. The developed 
mathematical equations are listed in Eqs. (3) and (4):

	

WR = 6.11 ¡ 2.245 SV + 1.426 L ¡ 8.02 D ¡
WR ¡ 0.531 SV * SV ¡ 0.3187 L * L + 
WR + 2.953 D * D + 0.4480 SV * L + 
WR + 2.868 SV * D + 0.034 L * D

� (3)

	

Cof = 0.986 ¡ 0.320 SV ¡ 0.2285 L ¡ 0.370 D +
Cof + 0.0527 SV * SV + 0.03541 L * L + 
Cof + 0.0197 D * D ¡ 0.01400 SV * L + 
Cof + 0.1539 SV * D + 0.0237 L * D

� (4)

3.2. Effect of parameters on wear rate.
3.2.1. Effects of sliding velocity, load-on-wear rate. An esti-
mate of the interaction between the dimensional response sur-
face plots and the explanatory variables in the properties of the 
wear is shown. The surface plot shown in Fig. 1a is the effect 
of sliding velocity vs load concerning various sliding distances, 
as regards the distance for 0.5 km when the sliding velocity 
increases (1 to 3 m/s), the wear rate decreases gradually. The 
load increases (1 to 5 kg) the wear rate increases. The minimum 
wear rate is observed at high sliding velocity (1 m/s) and low 
load (1 kg). The maximum wear rate is observed at low sliding 
velocity (1m/s) and high load at (5 kg). The surface plot in 
Fig. 1b shows the distance of 1 km. When the sliding velocity 
increases (1 to 3 m/s), the wear rate is decreased gradually. 
The load is increased (1 to 5 kg) as the wear rate increases. 
The minimum wear rate is observed at high sliding velocity 
(3 m/s) and low load (1 kg) condition. The maximum wear rate 
is observed at high sliding speed (3m/s) and high load (5 kg) 

Fig. 1. Surface plots between sliding velocity vs load-on-wear rate (WR), with respect to various distances: a) D – 0.5; b) D – 1.0; c) D – 1.5 km
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Table 3 
Factors and responses

Sl. 
No

Factors Actual Factors Response

X1 X2 X3 SV  
(m/s)

L  
(kg)

D 
(km)

WR
(mm3/kg.km)

CoF

01 0 0 0 2 3 1 4.372 0.136
02 0 –1 –1 2 1 0.5 1.235 0.327
03 0 –1 1 2 1 1.5 4.589 0.289
04 –1 1 0 1 5 1 2.53 0.280
05 –1 0 –1 1 3 0.5 4.305 0.243
06 1 0 1 3 3 0.5 0.987 0.084
07 1 0 –1 3 3 0.5 0.957 0.068
08 –1 –1 0 1 1 1 2.608 0.335
09 0 1 –1 2 5 0.5 3.005 0.228
10 0 0 0 2 3 1 4.378 0.140
11 0 0 0 2 3 1 4.352 0.131
12 1 –1 0 3 1 1 0.801 0.436
13 –1 0 1 1 3 1.5 5.459 0.176
14 1 1 0 3 5 1 4.307 0.269
15 0 1 1 2 5 1.5 6.495 0.285
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condition. The surface plot shown in Fig. 1c shows the distance 
of 1.5 km. The sliding velocity increases (1 to 3 m/s), the wear 
rate increases gradually. The load is increased (1 to 5 kg) as 
the wear rate increases. The minimum wear rate is observed at 
low sliding velocity (1 m/s) and low load (1 kg) condition. The 
maximum wear rate is observed at high sliding velocity (3 m/s) 
and high load (5 kg) conditions.

3.2.2. Effect of sliding velocity (SV), distance (D) and wear 
rate (WR). The surface plot when developed helps to under-
stand the relations between interaction variables easily [22]. 
The optimized sample could expand our understanding [23]. 
The surface plot in Fig. 2a shows the effect of sliding velocity, 
distance, and load for 1 kg. When the sliding velocity increases 
(1 to 3 m/s), the wear rate decreases gradually. When the dis-
tance is increased (0.5 to 1.5 km), the wear rate increases. The 
minimum wear rate is observed at high sliding velocity (3 m/s) 
and low distance (0.5 km). The maximum wear rate is observed 
at high sliding velocity (3 m/s) and high distance (1.5 km) 
condition. The surface plot in Fig. 2b shows the load of 3 kg. 
When the sliding velocity increases (1 to 3 m/s), the wear rate 
decreases gradually. At the distance increases (0.5 to 1.5 km) 
the wear rate also increases. The minimum wear rate is observed 
at high sliding velocity (3 m/s) and low distance (0.5 km) con-
ditions. The maximum wear rate is observed at high sliding 
velocity (3 m/s) and high distance (1.5 km) conditions. The sur-
face plot in Fig. 2c shows the load for 5 kg. When the sliding 
velocity increases (1 to 3 m/s), the wear rate decreases gradu-
ally. When the distance is increased (0.5 to 1.5 km), the wear 

rate also increases. The minimum wear rate is observed at high 
sliding velocity (3 m/s) and low distance (0.5 km) conditions. 
The maximum wear rate is observed at high sliding velocity 
(3 m/s) and high distance (1.5 km) conditions.

3.2.3. Effect of load (L), distance (D) and wear rate (WR). 
The surface plot in Fig. 3a shows the effect of load, distance, 
and sliding velocity of 1 m/s. When the load is increased (1 to 
3 kg), the wear rate is also increased. When the load is further 
increased (3 to 5 kg), the wear rate decreases. When the distance 
is increased (0.5 to 1 km), the wear rate is decreased. The wear 
rate is increased at a distance (1 to 1.5 km). The minimum wear 
rate is observed at a high load (5 kg) and mid-distance (1 km). 
The maximum wear rate is observed at mid-load (3 kg) and high 
distance (1.5 km) conditions. The surface plot in Fig. 3b shows 
the sliding velocity of 2 m/s. When the load is increased (1 to 
3 kg), the wear rate is also increased. The wear rate is slightly 
decreased when the load is increased (3 to 5kg). The distance is 
increased at (0.5 to 1.5 km) and the wear rate is increased. The 
minimum wear rate is observed at low load (1 kg) and low dis-
tance (0.5 km). The maximum wear rate is observed at mid-load 
(3 kg) and high distance (1.5 km). The surface plot in Fig. 3c 
shows the sliding velocity of 3 m/s. When the load is increased 
(1 to 5 kg), the wear rate is increased. When the distance is 
increased at (0.5 to 1.5 km), the wear rate is also increased. The 
minimum wear rate is observed at low load (1 kg) and low dis-
tance (0.5 km). The maximum wear rate is observed at mid-load 
(5 kg) and high distance (1.5 km). The optimized parameters 
and their responses are listed in Tables 2 and 4.

Fig. 3. Surface plots between load vs distance-on-wear rate, with respect to various sliding velocity: a) SV – 1; b) SV – 2; c) SV – 3 m/s
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Fig. 2. Surface plots of sliding velocity vs distance-on-wear rate, with respect to various loads: a) L – 1; b) L – 3; c) L – 5 kg
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3.3. Effect of the coefficient of friction.
3.3.1. Effect of sliding velocity, load on CoF. The coefficient 
of friction is the ratio between the friction and normal force. 
It is constantly and accurately observed by a load cell in order 
to evaluate the CoF in the wear slide [24]. The 3-dimensional 
response surface plots show the evaluation of the interaction 
between explanatory variables on CoF properties. The surface 
plot in Fig. 4a shows the effect of sliding velocity, load, and 
distance for 0.5 km. The CoF decreases while increasing the 
sliding velocity (1 to 3 m/s). When the load is increased (1 to 
3 kg), the CoF is decreased, and load is increased (3to 5 kg), 
the CoF is increased. The minimum CoF value is observed at 
high sliding velocity (3 m/s) and mid load (3 kg). The maxi-
mum CoF observed at a low sliding speed (1 m/s) and low load 
(1 kg). The surface plot in Fig. 4b shows the distance of 1 km. 
The CoF increases while increasing the sliding velocity (1 to 
3 m/s). When the load increases (1 to 3 kg), the CoF decreases. 
The CoF increases as the load increases (3 to 5kg). The mini-
mum CoF is observed at low sliding velocity (1 m/s) and mid 
load at (3 kg). The maximum CoF is observed at high sliding 
velocity (3 m/s) and low load (1 kg) conditions. The surface 
plot in Fig. 4c shows the distance of 1.5 km. The CoF increases 
while increasing the sliding velocity (1 to 3 m/s). When the 
load is increased (1 to 3 kg), the CoF is decreased. The CoF 
is increased as load increases (3 to 5 kg). The minimum CoF 
value is observed at low sliding velocity (1 m/s) and mid load 
(3 kg). The maximum CoF is observed at high sliding velocity 
(3 m/s) and low load (1 kg).

3.3.2. Effect of sliding velocity, distance on CoF. The sur-
face plot in Fig. 5a shows the effect of sliding velocity, dis-
tance, and load for 1 kg. The CoF is decreased when the sliding 
velocity increases (1 to 3 m/s). When the distance increases 
(0.5 to 1.5 km), the CoF increases gradually. The minimum 
CoF is found at low sliding velocity (1 m/s) and high dis-
tance (1.5 km). The maximum CoF is observed at high sliding 
velocity (3 m/s) and high distance (1.5 km). The surface plot 
in Fig. 5b shows the load for 3 kg. When the sliding velocity 
increases (1 to 3 m/s), the CoF decreases gradually. When the 
distance increases (0.5 to 1.5 km), the CoF increases suddenly. 
The minimum CoF is observed at high sliding velocity (3 m/s) 
and low distance (0.5 km). The maximum CoF is observed at 
high sliding velocity (3 m/s) and high distance (1.5 km). The 
surface plot in Fig. 5c shows the load for 5 kg. When the sliding 
velocity increases from 1 m/s to 3 m/s, the CoF decreases sud-
denly. When the distance increases from 0.5 to 1.5 km, the CoF 
increases suddenly. The minimum CoF is observed at a high 
sliding velocity of 3 m/s and a low distance of 0.5 km. The 
maximum CoF is observed at a high sliding velocity of 3 m/s 
and a high distance of 1.5 km.

3.3.3. Effect of load, distance on CoF. The surface plot in 
Fig. 6a shows the effect of load, distance, and sliding veloc-
ity of 1 m/s. The CoF is decreased at a load (1 to 3 kg) and 
low distance (0.5 km). The CoF is slightly increased, when the 
load increases (3 to 5 kg) and low distance (0.5 km). The CoF 
decreases as distance increases (0.5 to 1.5 km). The lowest CoF 

Fig. 5. Surface plots of sliding velocity vs distance on CoF with various loads: a) L – 1; b) L – 3; c) L – 5 kg
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is observed at a mid-load (3 kg) and high distance (1.5 km). The 
maximum CoF is observed at a low load (1 kg) and low distance 
(0.5 km). The surface plot in Fig. 6b shows the sliding velocity 
of 2 m/s. The CoF value is dropped suddenly at load (1 to 3 kg) 
and low distance (0.5 km). The CoF is increased while the load 
increases (3 to 5 kg) and at a low distance (0.5 km). The CoF 
increases as distance increases (0.5 to 1.5 km). The lowest CoF 
is observed at mid-load (3 kg) and low distance (0.5 km). The 
maximum CoF observed at low load (1 kg) and low distance 
(0.5 km). The surface plot in Fig. 6c shows the sliding veloc-
ity of 3 m/s. The CoF value is dropped gradually at load (1 to 
3 kg) and low distance (0.5 km). The CoF is increased while 
load increases (3 to 5 kg) and low distance (0.5 km). The CoF 
increases as distance increases (0.5 to 1.5 km). The lowest CoF 
is observed at mid-load (3 kg) and low distance (0.5 km). The 
maximum CoF observed at low load (1 kg) and low distance 
(1.5 km).

3.4. RSM optimization. The optimized parameter’s condition 
is tested using pin-on-disc apparatus. The wear rate and CoF are 
measured in the testing period. The test results are calculated 
and compared with the wear rate and CoF is predicted.

Table 4 
Optimized parameters using RSM

Sl. No Parameters Value

1 Siding Velocity (m/s) 3.000

2 Load (kg) 2.818

3 Distance (km) 0.500

The RSM optimized condition values are sliding velocity is 
3 m/s, load 2.818 kg and distance 0.5 km as shown in Table 4. 
The optimized condition test results are compared with the 
predicted RSM result. The optimized experimental condition 
wear rate is 0.9529 (mm3/kg.km) and the CoF is 0.1046. The 
optimized condition wear rate is 0.05% of error and the CoF 
gets 0.28% of error shown in Table 9.

3.5. Genetic algorithm. The GA Tool in Matlab 2018 was used 
to predict the lowest wear rate and CoF within the range of 
input parameters. The optimization was designed using standard 

mathematical design with the empirical quadratic mathemati-
cal model. The optimization and associated test validation are 
shown in Table 4. This is observed from the table. The test 
results match GA predictions (less than 5% error in the predic-
tion). GA was used to search for optimal values, which yielded 
the lowest wear rate and lowest the CoF. The parameters (5a, 
5b, 5c) are selected for GA to check the predicted optimal val-
ues. Three tests were performed using the same condition pre-
dicted by GA. The average values obtained were compared with 
the predicted values to determine the accuracy of the prediction 
[25]. The objective equation is shown in Eq. (5).

3.5.1. Genetic algorithm optimization. The purpose of the 
optimization process in this study is to find the optimal input 
parameter conditions were led to the minimum value of the 
wear rate and the minimum CoF. The mathematical model 
proposed in Eqs. (3) and (4) is taken to define the objective 
function and is expressed as follows. The wear rate and CoF 
are minimised.

	

Eq = 6.11 ¡ 2.245 SV + 1.426 L ¡ 8.02 D ¡
Eq ¡ 0.531 SV * SV ¡ 0.3187 L * L +
Eq + 2.953 D * D + 0.4480 SV * L +
Eq + 2.868 SV * D + 0.034 L * D ¡ 0.986 +
Eq + 0.320 SV + 0.2285 L + 0.370 D ¡ 
Eq ¡ 0.0527 SV * SV ¡ 0.03541 L * L ¡
Eq ¡ 0.0197 D * D + 0.01400 SV * L ¡
Eq ¡ 0.1539 SV * D ¡ 0.0237 L * D

� (5)

Subtracting the objective function value of Eq. (5) is subject 
to limitations. The minimum and maximum limits of the test 
design are used to define the listed below for GA optimization 
constraints in Eqs. (5a–5c)

	 1 m/s ∙ SV ∙ 3 m/s� (5a)

	 1 kg ∙ L ∙ 5 kg� (5b)

	 0.5 km ∙ D ∙ 1.5 km� (5c)

Fig. 6. Surface plots of load vs distance on CoF with various sliding velocities: a) SV – 1; b) SV – 2; c) SV – 3 m/s
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Table 5 
GA parameter for the optimal solution

Parameters Data and Function type

Generations 300

Selection type tournament selection

Mutation probability 0.05

Reproduction probability 0.85

Selection probability 0.85

Table 6 
GA predicted variables and responses

Sl. No
Optimum Variables Output Response

SV L D WR CoF
01 3.000 1.04 1 0.7044 0.393
02 3.060 1.14 0.99 0.7236 0.382
03 2.999 1.0 1.024 0.7786 0.403
04 2.967 1.0 1.025 0.8500 0.399
05 3.016 1.005 1.002 0.6083 0.401
06 3.020 0.98 1.032 0.7443 0.411
07 2.913 1.112 0.96 0.7861 0.364
08 2.963 1.031 1.002 0.7750 0.390
09 3.001 1.012 1.026 0.8138 0.402
10 3.001 1.0 1.026 0.7878 0.404

Best and average fitness values show a gradual convergence 
towards the optimum value of 1.0952 after 125 generations 
show in Fig. 7, which implies that copying an individual accord-
ing to their fitness functions leads to a favour probability of 
offering to provide precise offspring in the next generation.

parameters are shown in Table 7. The GA optimized parameters 
are sliding velocity (3.016 m/s), load (2.812 kg), and distance 
(0.515 km).

Table 7 
Optimized parameters using GA

Sl. No Parameters Values

1 Sliding velocity (m/s) 3.016

2 Load (kg) 2.812

3 Distance (km) 0.515

The GA response values of the wear rate and CoF are shown 
in Table 7. The GA optimized response values are compared 
with the experimental values. The percentage of error is lower, 
so the GA validation is highly precious. 

Table 8 
Validation of  responses

Wear 
predict

CoF 
predict

Wear 
experiment

CoF 
experiment

% Error 
(wear)

% Error 
(CoF)

0.9554 0.1061 0.9553 0.1062 0.01 0.09

Table 9 
Comparison of  RSM and GA

Optimization 
method

WR 
(Pred)

WR 
(Exp)

CoF 
(Pred)

CoF 
(Exp)

% Error 
(WR)

% Error 
(CoF)

RSM 0.9524 0.9529 0.1049 0.1046 0.05 0.28

GA 0.9554 0.9553 0.1061 0.1062 0.01 0.09

This comparison helps to find which optimization method 
had a high accuracy in the prediction. The RSM and GA opti-
mize processes comparison between predicted versus experi-
ment results. In comparison to the GA, the RSM has a higher 
error percentage of the wear rate (0.05%), compared to the GA 
error percentage of the wear rate (0.01%). The RSM CoF error 
percentage (0.28%) is higher than the GA CoF error percentage 
(0.09%). From this comparison, the GA optimization has higher 
accuracy than the RSM optimization method.

3.6. Wear mechanisms. The wear study shows mainly five 
different wear mechanisms: abrasive wear, oxidation wear, 
delamination wear, plastic deformation wear, and adhesion 
wear with less time. The AZ91D MA wear gradually increases 
while increasing the load and sliding velocity [26]. Based on 
Archard’s equation, the increased hardness enhances the resis-
tance of wear rate and improves the resistance of the materials 
against plastic deformation [24]. A higher load and higher slid-
ing velocity will make the wear rate high. The lower condition 
of sliding velocity is 1 m/s, load 1 kg, and distance 0.5 km. The 
worn surface is shown in Fig. 8, where the plough and grooves 
are seen on the surface. The hard particles’ hardness is higher 
than the wear specimen, so hard particles make a line on the 

Fig. 7. GA optimise variation of fitness function plot
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In a GA, various mutation operators and cross-overs were 
used to predict the optimized wear rate and CoF conditions. 
The optimized wear parameters predicted by a GA for obtaining 
the wear rate and CoF are shown in Table 9. The optimized 



8

M. Beniyel, M. Sivapragash, S.C. Vettivel, P. Senthil Kumar, K.K. Ajith Kumar, and K. Niranjan

Bull. Pol. Ac.: Tech. 69(1) 2021, e135835

specimen’s surface [5, 27]. The deep grooves in the surface 
represent abrasive wear [28].

The medium condition of sliding velocity is 2 m/s, load 
3 kg, and distance 1 km. The sliding velocity and mid load 
increased the contact surface. This condition clearly represents 
the delamination and oxidation wear that occurred on the spec-
imen’s surface. The surface of AZ91D MA is slightly removed 
at the edge of grooves. The extended or removed material flakes 
from the worn surface is called delamination wear. The oxide 
particles are present on the worn surface shown in Fig. 9 the 
removed wear debris metal particles transform oxide due to rise 
in friction temperature. The oxide particles significantly reduce 
metal to metal contact. The wear rate is low with the presence of 
oxide particles and provides better resistance against wear. As 
per the EDX results shown in Fig. 10 and Table 10, the Oxygen 
peak shows the 14.5% oxygen content present in the oxidation 
wear zone. This condition oxidation wear was observed [29].

Fig. 8. SEM micrographs at lower condition (sliding velocity 1 m/s, 
load 1kg and distance 0.5 km)

Fig. 9. SEM micrograph at medium condition (sliding velocity 2 m/s, 
load 3 kg and distance 1 km)

Fig. 11. SEM micrograph of high condition (sliding velocity 3 m/s, 
load 5 kg, and distance 1.5 km)

Fig. 10. EDS analysis area surface at SV – 3 m/s, L – 5 kg, and D 
– 1.5 km and Graphs

The higher condition of sliding speed is 3 m/s, load 5 kg, 
and distance 1.5 km.

Table 10 
EDS identified elements

Elements Weight  
%

Atomic  
%

O 14.5 20.9
Mg 76.2 72.5
Al 6.4 5.5
Mn 0.5 0.2
Fe 0.7 0.3
Zn 1.7 0.6

When the high sliding speed and higher sliding distance is 
at 3 m/s and 1.5 km, the surface is melted due to a higher tem-
perature developed by friction. The melting point of β-Mg17Al12 
(437°C) [28].

The AZ91D surface is softened by the frictional heat of the 
revolving disc. The worn surface in Fig. 11 shows that plastic 
deformation occurred due to a high sliding speed and high load. 
The metal surface is either softened by the higher frictional 
temperature of the transport, or the metal surface of specimens 
is deformed against the rotation direction [27, 29].
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Fig. 12. SEM image at optimized condition (SV – 3 m/s, L – 2.8 kg, 
and D – 0.5 km)

3.7. Wear surface morphology in optimized conditions. The 
wear surface of MA AZ91D is analysed in its optimized condi-
tion. The optimized parameters are the sliding velocity of 3 m/s, 
the load of 2.8 kg, and the distance of 0.5 km. These parameters 
are considered in the validation experiments shown in Table 7. 
They wear worn surfaces in optimized conditions characterized 
by SEM in an optimized validated experiment.

●	The optimized values using RSM were sliding velocity 
3 m/s, load 2.818 kg, distance 0.5 km and responses wear 
rate was 0.9529 mm3/kg.km and CoF 0.1046.

●	Optimized values using GA were sliding velocity 3.016 m/s, 
load 2.812 kg, distance 0.515 km and responses wear rate 
was 0.9554 mm3/kg.km and CoF 0.106.

●	The developed models had good agreements with experimen-
tal and predicted value, and with much fewer errors in GA.

●	The MA AZ91D dry condition tribology surface was anal-
ysed. The wear mechanisms identified were abrasive, oxi-
dation, delamination, and plastic deformation.

●	RSM optimized models were developed for input param-
eters sliding velocity, load, and distance, for the response 
of wear rates and coefficient of friction, respectively. The 
results of ANOVA confirm the prediction models had an 
adequate approximation to the actual values.

●	The interaction effects on the tribology properties of MA 
AZ91D were investigated using a 3D response surface. The 
comparison was made between the predicted and actual val-
ues using a GA.

●	The optimum wear rate and a low CoF were obtained for 
MA AZ91D. The optimal parameters were SV = 3 m/s, 
L = 2.8 kg, D = 0.5 km.
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