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Nomenclature
	 I_ k	 –	 Short-circuit current at node k
	 I_	 –	 Vector of nodal currents
	 κ	 –	� Distance of a fault
	 ∆κ	 –	 Step length for analysis of sliding fault
	 V_	 –	 Vector of nodal voltages
	 V_ k

0	 –	 Voltage at node k in the pre-fault state
	 V_ k	 –	 Voltage at node k in the fault state
	 Y_	 –	� Nodal admittance matrix for network without 

sliding fault
	 Y_ ij	 –	 Element of Y_ matrix
	 Z_	 –	 Nodal impedance matrix (inversion of Y_)
	 Z_ ij	 –	 Element of  Z_ matrix
	 Z_ F	 –	 Impedance of the short circuit
	 z_ L	 –	 Impedance of a selected transmission line L
	 Z_Th	 –	 Thevenin’s impedance
	 Y_ ext	 –	� Extended admittance matrix for the network 

including a sliding fault location
	 Z_ ext	 –	� Extended nodal impedance matrix for the network 

including a sliding fault location
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Abstract. Short-circuit analysis is conducted based on the nodal impedance matrix, which is the inversion of the nodal admittance matrix. If 
analysis is conducted for sliding faults, then for each fault location four elements of the nodal admittance matrix are subject to changes and the 
calculation of the admittance matrix inversion needs to be repeated many times. For large-scale networks such an approach is time consuming 
and unsatisfactory. This paper proves that for each new fault location a new impedance matrix can be found without recalculation of the matrix 
inversion. It can be found by a simple extension of the initial nodal impedance matrix calculated once for the input model of the network. This 
paper derives formulas suitable for such an extension and presents a flowchart of the computational method. Numerical tests performed for 
a test power system confirm the validity and usefulness of the proposed method.
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1.	 Introduction

1.1. Background and Related works. Fault analysis is one of 
the most frequently used analyses in power engineering [1, 2]. 
The fault analyses are performed in off-line studies for the bulk 
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power system [3] and microgrids [4, 5] as well in the on-line 
systems [6, 7] and fault locators [8].

In off-line studies the fault analysis consists of the cal-
culation of short-circuit currents and their flows in network 
branches. The short-circuit current at a given node is calcu-
lated using the Thevenin’s theorem. Nodal voltages and current 
flows in the fault state are calculated using the nodal imped-
ance matrix, which is the inversion of the nodal admittance 
matrix obtained for the network model with all voltage sources 
short-circuited to the reference node [9‒11].

Generally, the impedance matrix can be obtained by the 
inversion of the admittance matrix [12].

In the past, when computer memories used to be small, the 
impedance matrix was generated using El-Abiad’s method [13] 
based on the laws of the circuit theory. A detailed description 
of this method is in book [14]. In this method the impedance 
matrix is created step by step together with the network model 
using circuit operations such as connecting a radial branch to the 
network model with a new node and connecting a new branch 
between two nodes already existing in the network model.

Currently, columns of the impedance matrix are calculated 
by sparsity-oriented factorisation of the admittance matrix 
[11, 15‒17].

In typical off-line analyses the faults are located at busbars 
of the substations. For certain topics (e.g., concerning power 
system protections [18] or voltage sags [19‒22]), short-circuit 
currents and their flows in the network branches need to be 
calculated for sliding faults, in which the location of the fault 
can be moved across the entire length of the line.

Sliding fault analysis is offered as one of the options in 
power system analysis software [23]. Hence, fast computation 
methods are desirable. Although impedance matrix calcula-
tion for sliding fault analysis is a very important issue, only 
a limited research has been conducted on this topic. This paper 
addresses and develops this research.
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1.2. Motivation. Two simple approaches to analyse the sliding 
faults are illustrated in Fig. 1. In case of the first approach 
(Fig. 1a) one fictitious node c is inserted to the input network 
data placed on the selected line close to one of the end busbars. 
For such a modified network the nodal admittance matrix Y_ 
is modified and extended to matrix Y_ ext including a fictitious 
node c and the impedance matrix Z_ ext is computed as the inver-
sion of the nodal admittance matrix Y_ ext. The calculation of 
the impedance matrix is repeated consecutively for each new 
location of the fictitious node c moved along the line. The cal-
culation of the matrix inversion is the most time-consuming 
stage and the repetition of this operation many times slows 
down the analysis, which is particularly burdensome when the 
analysis must be performed for many lines of large-scale power 
systems. In the second approach (Fig. 1b) the extended matrix 
Y_ ext and its inversion Z_ ext are calculated considering many 
fictitious nodes c1, c2, ... cN placed across the entire length of 
a selected line. When a fault analysis is applied to many lines 
of large-scale power systems, this method leads to a significant 
increase in dimension of matrices and computing time.

Section 4 discusses a proposed method of determining of the 
extended impedance matrix. In Section 5 a proposed compu-
tation algorithm is presented. In Section 6 simulation results 
are provided to show the correctness of the proposed method. 
Section 7 concludes this paper.

2.	 Preliminaries

2.1. Calculation of short-circuit currents. In off-line fault 
analyses, each synchronous generator is modelled by electro-
motive force behind subtransient reactance [2, 9, 11, 12, 24] 
Lines and transformers are modelled by π-equivalent circuits. 
Composite loads are replaced by shunt admittances.

Fig. 2. Illustration of: a) supplementary network model; b) Thevenin’s 
equivalent circuit

Fig. 1. Illustration of two simple approaches: a) with single fictitious 
node; b) with many fictitious nodes

(a) (b)

The two simple approaches described above have their 
drawbacks. The method similar to El-Abiad’s method would 
be the most suitable for the analysis of sliding faults. Such 
a method would allow us to modify the impedance matrix 
according to each location of the sliding fault without repe-
tition of the matrix inversion. The idea of such an approach 
is mentioned in paper [21]. Unfortunately, that paper does not 
provide a suitable mathematical derivation of the relevant for-
mulas. Moreover, El-Abiad’s method [13, 14] does not cover 
such a case as the insertion of a new node to a branch previ-
ously defined in the input data.

1.3. Paper contributions and organization. It is proved that 
for the purpose of sliding faults analysis there is no need to 
repeat calculations of the inversion of the nodal admittance 
matrix for each consecutive fault location (Fig. 1a) or to create 
many fictitious nodes in input data of the network (Fig. 1b). 
It is sufficient to calculate one impedance matrix Z_ for the 
network model including only the transmission lines and bus-
bars of substations. Based on matrix Z_ and formulas derived in 
this paper, it is possible to find the matrix Z_ ext concerning any 
location of the sliding fault. The flowchart of the computation 
algorithm is presented.

The paper consists of seven Sections. Section 2 focuses 
on the preliminaries. Section 3 presents problem formulation. 

(a)

(b)

The method used to compute the short-circuit current at 
a given node and its f lows in the network branches is derived 
from the superposition theorem. Node k is assumed to be 
short-circuited through impedance Z_F. Two opposing voltage 
sources +V_ k

0 and –V_ k
0 are connected to this impedance, where 

V_ k
0 is voltage at node k in the pre-fault state (superscript 0 

refers to the pre-fault state). Such modif ied network model 
is replaced by a sum of two models: a model for the pre-fault 
state and a supplementary model (Fig. 2a). The supplementary 
model is the difference between the models for the short-cir-
cuit state and the pre-fault state. In the supplementary model 
(Fig. 2a), all f ictitious nodes {G} with subtransient electromo-
tive forces of generators are short-circuited to the reference 
node N.

The part of the supplementary model in Fig. 2a surrounded 
by the dashed line can be described by the following equation: 
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or I_ = Y_ ¢ ∆V_, where Y_ is the admittance matrix; ∆V_ is the 
vector of differences between voltages in the fault state and 
the pre-fault state; I_ is vector with only one non-zero element 
equal to the negative value of the short-circuit current I_ k. For 
large-scale networks, the nodal admittance matrix is sparse and 
is memorized without zero elements [10, 15, 17].

The further considerations assume that the admittance 
matrix is symmetrical Y_T = Y_, which is typical for power sys-
tem networks. Asymmetry of Y_ occurs only when phase-shift-
ing transformers are installed in the network. The asymmetry 
of  Z_ = Y_–1 resulting from the phase-shifting transformers can 
be considered by method described in paper [25] and it is not 
considered here. 

The considered part of the supplementary model (Fig. 2a) 
can be replaced by Thevenin’s impedance Z_Th seen at nodes k 
and N. This leads to the equivalent circuit shown in Fig. 2b. 
For this circuit, the short-circuit current I_ k and voltage at node 
k can be calculated using the following formulas:

	 I_ k = 
V_ k

0

Z_ Th + Z_ F
;  V_ k = V_ k

0 ¡ Z_ Th I_ k ,� (2)

where Z_ F is the impedance of the short circuit (often assumed 
to be equal to zero).

2.2. Calculation of nodal voltages and branch currents. 
Equation (1) can be transformed into the following form:
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or IZV Δ  where 1 YZ .  
Matrix Z  has an interesting and important property 

resulting from equations (3) and (2). From equation (3) it 
is obtained:  

kkkkk IZVV  0                                          (4) 

Comparison of equations (4) and (2) leads to:  
kkZZ Th                                                      (5) 

which means that each diagonal element of matrix Z  is 
equal to Thevenin’s equivalent impedance. Therefore, 
when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  
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where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  
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that the nodes of the considered network model are 
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nodes {E}. The network model is described by the 
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  

RRR ΔVYI  ;    ER
1

EERERRR  YYYYY    (11) 

Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  

kikii IZVV  0                                             (6) 

kjkjj IZVV  0                                            (7) 

The current flowing through a branch with impedance 

Lz  connecting nodes ji,  can be calculated by Ohm’s 
law:  

k
jkik

ji
ji

ji I
z

ZZ
I

z

VV
I

L

0

L





                     (8) 

where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  

3. Problem formulation  

3.1. Important equalities of submatrices. It is assumed 
that the nodes of the considered network model are 
divided into two sets: retained nodes {R} and eliminated 
nodes {E}. The network model is described by the 
following nodal admittance equation:  
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  
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EERERRR  YYYYY    (11) 

Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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Equation (9) can be transformed into the following form 
referred to as the partial inversion:
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or VYI Δ   where Y  is the admittance matrix, VΔ  is 
the vector of differences between voltages in the fault 
state and the pre-fault state, I  is vector with only one 
non-zero element equal to the negative value of the short-
circuit current kI . For large-scale networks, the nodal 
admittance matrix is sparse and is memorized without 
zero elements [10], [15], [17].  

The further considerations assume that the admittance 
matrix is symmetrical YY T , which is typical for power 
system networks. Asymmetry of Y  occurs only when 
phase-shifting transformers are installed in the network. 
The asymmetry of and -1YZ   resulting from the phase-
shifting transformers can be taken into account by method 
described in paper [25] and it is not considered here.  

The considered part of the supplementary model 
(Fig. 2a) can be replaced by Thevenin's impedance ThZ  
seen at nodes k and N. This leads to the equivalent circuit 
shown in Fig. 2b. For this circuit, the short-circuit current 

kI  and voltage at node k  can be calculated using the 
following formulas:  
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where FZ  is the impedance of the short circuit (often 
assumed to be equal to zero).  

2.2. Calculation of nodal voltages and branch currents. 
Equation (1) can be transformed to the following form:  
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or IZV Δ  where 1 YZ .  
Matrix Z  has an interesting and important property 

resulting from equations (3) and (2). From equation (3) it 
is obtained:  

kkkkk IZVV  0                                          (4) 

Comparison of equations (4) and (2) leads to:  
kkZZ Th                                                      (5) 

which means that each diagonal element of matrix Z  is 
equal to Thevenin’s equivalent impedance. Therefore, 
when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  

kikii IZVV  0                                             (6) 

kjkjj IZVV  0                                            (7) 

The current flowing through a branch with impedance 

Lz  connecting nodes ji,  can be calculated by Ohm’s 
law:  
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where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  

3. Problem formulation  

3.1. Important equalities of submatrices. It is assumed 
that the nodes of the considered network model are 
divided into two sets: retained nodes {R} and eliminated 
nodes {E}. The network model is described by the 
following nodal admittance equation:  
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  
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EERERRR  YYYYY    (11) 

Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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When at all nodes {E} nodal currents I_ E = 0 then:

	 I_ R = Y_ R∆V_R ;  Y_ R = Y_ RR ¡ Y_ REY_ –1
EEY_ ER.� (11)

Matrix Y_ R in Eq. (11) determines the parameters of an equiva-
lent network that directly connects nodes {R} and therefore is 
referred to as the transfer equivalent matrix [2].

When the entire admittance matrix Y_ is inverted, the fol-
lowing is obtained from Eq. (9):

	

3 

or VYI Δ   where Y  is the admittance matrix, VΔ  is 
the vector of differences between voltages in the fault 
state and the pre-fault state, I  is vector with only one 
non-zero element equal to the negative value of the short-
circuit current kI . For large-scale networks, the nodal 
admittance matrix is sparse and is memorized without 
zero elements [10], [15], [17].  

The further considerations assume that the admittance 
matrix is symmetrical YY T , which is typical for power 
system networks. Asymmetry of Y  occurs only when 
phase-shifting transformers are installed in the network. 
The asymmetry of and -1YZ   resulting from the phase-
shifting transformers can be taken into account by method 
described in paper [25] and it is not considered here.  

The considered part of the supplementary model 
(Fig. 2a) can be replaced by Thevenin's impedance ThZ  
seen at nodes k and N. This leads to the equivalent circuit 
shown in Fig. 2b. For this circuit, the short-circuit current 

kI  and voltage at node k  can be calculated using the 
following formulas:  
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where FZ  is the impedance of the short circuit (often 
assumed to be equal to zero).  

2.2. Calculation of nodal voltages and branch currents. 
Equation (1) can be transformed to the following form:  
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or IZV Δ  where 1 YZ .  
Matrix Z  has an interesting and important property 

resulting from equations (3) and (2). From equation (3) it 
is obtained:  

kkkkk IZVV  0                                          (4) 

Comparison of equations (4) and (2) leads to:  
kkZZ Th                                                      (5) 

which means that each diagonal element of matrix Z  is 
equal to Thevenin’s equivalent impedance. Therefore, 
when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  

kikii IZVV  0                                             (6) 

kjkjj IZVV  0                                            (7) 

The current flowing through a branch with impedance 

Lz  connecting nodes ji,  can be calculated by Ohm’s 
law:  
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where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  

3. Problem formulation  

3.1. Important equalities of submatrices. It is assumed 
that the nodes of the considered network model are 
divided into two sets: retained nodes {R} and eliminated 
nodes {E}. The network model is described by the 
following nodal admittance equation:  
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  
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EERERRR  YYYYY    (11) 

Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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where Z_ = Y_ –1 is the nodal impedance matrix. Equation (12) 
can be transformed into the following form:
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or VYI Δ   where Y  is the admittance matrix, VΔ  is 
the vector of differences between voltages in the fault 
state and the pre-fault state, I  is vector with only one 
non-zero element equal to the negative value of the short-
circuit current kI . For large-scale networks, the nodal 
admittance matrix is sparse and is memorized without 
zero elements [10], [15], [17].  

The further considerations assume that the admittance 
matrix is symmetrical YY T , which is typical for power 
system networks. Asymmetry of Y  occurs only when 
phase-shifting transformers are installed in the network. 
The asymmetry of and -1YZ   resulting from the phase-
shifting transformers can be taken into account by method 
described in paper [25] and it is not considered here.  

The considered part of the supplementary model 
(Fig. 2a) can be replaced by Thevenin's impedance ThZ  
seen at nodes k and N. This leads to the equivalent circuit 
shown in Fig. 2b. For this circuit, the short-circuit current 

kI  and voltage at node k  can be calculated using the 
following formulas:  
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where FZ  is the impedance of the short circuit (often 
assumed to be equal to zero).  

2.2. Calculation of nodal voltages and branch currents. 
Equation (1) can be transformed to the following form:  
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or IZV Δ  where 1 YZ .  
Matrix Z  has an interesting and important property 

resulting from equations (3) and (2). From equation (3) it 
is obtained:  

kkkkk IZVV  0                                          (4) 

Comparison of equations (4) and (2) leads to:  
kkZZ Th                                                      (5) 

which means that each diagonal element of matrix Z  is 
equal to Thevenin’s equivalent impedance. Therefore, 
when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  

kikii IZVV  0                                             (6) 

kjkjj IZVV  0                                            (7) 

The current flowing through a branch with impedance 

Lz  connecting nodes ji,  can be calculated by Ohm’s 
law:  
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where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  

3. Problem formulation  

3.1. Important equalities of submatrices. It is assumed 
that the nodes of the considered network model are 
divided into two sets: retained nodes {R} and eliminated 
nodes {E}. The network model is described by the 
following nodal admittance equation:  
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  
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EERERRR  YYYYY    (11) 

Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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or VYI Δ   where Y  is the admittance matrix, VΔ  is 
the vector of differences between voltages in the fault 
state and the pre-fault state, I  is vector with only one 
non-zero element equal to the negative value of the short-
circuit current kI . For large-scale networks, the nodal 
admittance matrix is sparse and is memorized without 
zero elements [10], [15], [17].  

The further considerations assume that the admittance 
matrix is symmetrical YY T , which is typical for power 
system networks. Asymmetry of Y  occurs only when 
phase-shifting transformers are installed in the network. 
The asymmetry of and -1YZ   resulting from the phase-
shifting transformers can be taken into account by method 
described in paper [25] and it is not considered here.  

The considered part of the supplementary model 
(Fig. 2a) can be replaced by Thevenin's impedance ThZ  
seen at nodes k and N. This leads to the equivalent circuit 
shown in Fig. 2b. For this circuit, the short-circuit current 

kI  and voltage at node k  can be calculated using the 
following formulas:  
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where FZ  is the impedance of the short circuit (often 
assumed to be equal to zero).  

2.2. Calculation of nodal voltages and branch currents. 
Equation (1) can be transformed to the following form:  
































































































kkkkjki

jkjjji

ikijii

kk

jj

ii

IZZZ
ZZZ
ZZZ

VV

VV
VV

0
0

    
0

0

0

          (3) 

or IZV Δ  where 1 YZ .  
Matrix Z  has an interesting and important property 

resulting from equations (3) and (2). From equation (3) it 
is obtained:  

kkkkk IZVV  0                                          (4) 

Comparison of equations (4) and (2) leads to:  
kkZZ Th                                                      (5) 

which means that each diagonal element of matrix Z  is 
equal to Thevenin’s equivalent impedance. Therefore, 
when matrix Z  is known, short-circuit currents at all 
network nodes can be calculated by formula (2). Then 
voltages at any nodes can be calculated by equation (3):  
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The current flowing through a branch with impedance 

Lz  connecting nodes ji,  can be calculated by Ohm’s 
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where L
000 /)( zVVI jiji   corresponds to the current 

flowing through the branch in the pre-fault state, ikZ , 

jkZ  are elements of the nodal impedance matrix.  

3. Problem formulation  

3.1. Important equalities of submatrices. It is assumed 
that the nodes of the considered network model are 
divided into two sets: retained nodes {R} and eliminated 
nodes {E}. The network model is described by the 
following nodal admittance equation:  
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Equation (9) can be transformed to the following form 
referred to as the partial inversion:  
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When at all nodes {E} nodal currents 0EI  then:  
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Matrix RY  in equation (11) determines the parameters of 
an equivalent network that directly connects nodes {R} 
and therefore is referred to as the transfer equivalent 
matrix [2].  

When the entire admittance matrix Y  is inverted, the 
following is obtained from equation (9):  
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where 1YZ  is the nodal impedance matrix. Equation 
(12) can be transformed into the following form:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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When at all nodes {E} nodal currents 0EI  then:  
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Four equalities result from the comparison of submatrices 
in equations (10) and (13). One of them is important for 
further considerations:  
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where R Y  describes the equivalent network obtained by 
elimination of all nodes {E}.  
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where Y_ R describes the equivalent network obtained by elim-
ination of all nodes {E}.

In the particular case when the set of retained nodes {R} 
contains only one node k and all remaining nodes are elimi-
nated, Eq. (14) yields the following:
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In the particular case when the set of retained nodes 
{R} contains only one node k  and all remaining nodes 
are eliminated, equation (14) yields the following:  
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where Th/1 ZY k   is the equivalent shunt admittance 
replacing the whole network and Th Z  is Thevenin’s 
impedance seen from node k .  

Equations (10) (13) (14) lead to the following 
conclusions:  
(i) Elimination of nodes in the network model in the 

nodal admittance matrix Y  is equivalent to the 
elimination of relevant rows and columns and in the 
nodal impedance matrix is equivalent to the removal 
of the relevant row and column. 

(ii) The transfer equivalent matrix R Y  can be calculated 
as the inverse of RRZ  which is the submatrix of the 
nodal impedance matrix Z .  

In large-scale power systems the fault analysis is not 
carried out for the entire network, but for a selected area 
of interest defined as a set of nodes {R}. Rows (or 
columns) of the nodal impedance matrix are only 
calculated for this set of nodes, i.e., only RRZ is 
calculated. For the sake of simplicity, subscript R is 
removed from all symbols below.  

3.2. Task formulation. The aim of this paper is to find 
mathematical formulas which enable to find the extended 
impedance matrix extZ  without calculation of additional 
matrix inversion and only on the basis of the impedance 
matrix Z  and impedance Lz  of the considered 
transmission line Lz and the fault distance  .  

 
Fig. 3. Illustration of the input system model 
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nodes representing the busbars of substations and the 
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the sliding faults are defined in the input data. For such an 
input model, the nodal impedance matrix Z  is computed. 

Further such a matrix is referred to as the initial 
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Fig. 3 illustrates input system model. Assuming that a 
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or IZV Δ . Based on equation (16), voltages at nodes 
ba,  are determined by the following equations:  
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where )/( FTh
0 ZZVI ii   is the short-circuit current.  

The current flowing through the branch connecting nodes 
ba,  results from Ohm’s law:  
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where Lz  is the impedance of this branch.  

 

Fig. 4. Illustration of the extended system model 
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representing a given fault location is further denoted as 

extY  and referred to as the extended admittance matrix.  
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where Y_ k = 1/Z_Th is the equivalent shunt admittance replacing 
the whole network and Z_Th is Thevenin’s impedance seen from 
node k.

Equations (10), (13) and (14) lead to the following con-
clusions:
i(i) �Elimination of nodes in the network model in the nodal 

admittance matrix Y_ is equivalent to the elimination of 
relevant rows and columns and in the nodal impedance 
matrix is equivalent to the removal of the relevant row 
and column.

(ii) �The transfer equivalent matrix Y_ R can be calculated as the 
inverse of Z_ RR which is the submatrix of the nodal imped-
ance matrix Z_.
In large-scale power systems the fault analysis is not carried 

out for the entire network, but for a selected area of interest 
defined as a set of nodes {R}. Rows (or columns) of the nodal 
impedance matrix are only calculated for this set of nodes, i.e. 
only Z_ RR is calculated. For the sake of simplicity, subscript R 
is removed from all symbols below. 

3.2. Task formulation. The aim of this paper is to find math-
ematical formulas which enable to find the extended imped-
ance matrix Z_ ext without the calculation of additional matrix 
inversion and only on the basis of the impedance matrix Z_ and 
impedance z_ L of the considered transmission line z_ L and the 
fault distance κ.

4.	 Problem solution

4.1. Input data and initial impedance matrix. The input data 
fed into the short-circuit program contain only the nodes repre-
senting the busbars of substations and the branches representing 
the lines and transformers connecting these nodes. No fictitious 
nodes representing the sliding faults are defined in the input 
data. For such an input model, the nodal impedance matrix Z_ 
is computed. Further such a matrix is referred to as the initial 
impedance matrix.

An input system model is illustrated in Fig. 3. Assuming 
that a short circuit is located at any node i, the following nodal 
impedance equation can be written for this model:
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or IZV Δ . Based on equation (16), voltages at nodes 
ba,  are determined by the following equations:  

ii IZVV a
0
aa                                        (17) 

ii IZVV b
0
bb                                        (18) 

where )/( FTh
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where Lz  is the impedance of this branch.  
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or ∆V_ = Z_ ¢ I_. Based on Eq. (16), voltages at nodes a, b are 
determined by the following equations:
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In the particular case when the set of retained nodes 
{R} contains only one node k  and all remaining nodes 
are eliminated, equation (14) yields the following:  
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where Th/1 ZY k   is the equivalent shunt admittance 
replacing the whole network and Th Z  is Thevenin’s 
impedance seen from node k .  

Equations (10) (13) (14) lead to the following 
conclusions:  
(i) Elimination of nodes in the network model in the 

nodal admittance matrix Y  is equivalent to the 
elimination of relevant rows and columns and in the 
nodal impedance matrix is equivalent to the removal 
of the relevant row and column. 

(ii) The transfer equivalent matrix R Y  can be calculated 
as the inverse of RRZ  which is the submatrix of the 
nodal impedance matrix Z .  

In large-scale power systems the fault analysis is not 
carried out for the entire network, but for a selected area 
of interest defined as a set of nodes {R}. Rows (or 
columns) of the nodal impedance matrix are only 
calculated for this set of nodes, i.e., only RRZ is 
calculated. For the sake of simplicity, subscript R is 
removed from all symbols below.  

3.2. Task formulation. The aim of this paper is to find 
mathematical formulas which enable to find the extended 
impedance matrix extZ  without calculation of additional 
matrix inversion and only on the basis of the impedance 
matrix Z  and impedance Lz  of the considered 
transmission line Lz and the fault distance  .  
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or IZV Δ . Based on equation (16), voltages at nodes 
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where Lz  is the impedance of this branch.  
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or IZV Δ . Based on equation (16), voltages at nodes 
ba,  are determined by the following equations:  
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where Lz  is the impedance of this branch.  
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where I_ i = Vi
0/(Z_Th + Z_ F) is the short-circuit current.

The current flowing through the branch connecting nodes 
a, b results from Ohm’s law:
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or IZV Δ . Based on equation (16), voltages at nodes 
ba,  are determined by the following equations:  
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where Lz  is the impedance of this branch.  
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where z_ L is the impedance of this branch.

4.2. Insertion of an additional node. Now it is assumed that 
the additional node c must be inserted inside the line connecting 
nodes a, b as shown in Fig. 4. The impedance of this line is z_ L. 
The location of node c is determined by coefficient κ such that 
the impedance between nodes a, c is κz_ L and between nodes b, c 
it is (1 ¡ κ)z_ L. The admittance matrix considering an additional 

Fig. 4. Illustration of the extended system model

Fig. 3. Illustration of the input system model
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node representing a given fault location is further denoted as 
Y_ ext and referred to as the extended admittance matrix.

The considered extended model (Fig. 4) can be described 
by the following equation (similar to Eq. (16)):
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In the particular case when the set of retained nodes 
{R} contains only one node k  and all remaining nodes 
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or IZV Δ . Based on equation (16), voltages at nodes 
ba,  are determined by the following equations:  

ii IZVV a
0
aa                                        (17) 

ii IZVV b
0
bb                                        (18) 

where )/( FTh
0 ZZVI ii   is the short-circuit current.  

The current flowing through the branch connecting nodes 
ba,  results from Ohm’s law:  
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
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where Lz  is the impedance of this branch.  

 

Fig. 4. Illustration of the extended system model 

4.2. Insertion of an additional node. Now it is assumed 
that the additional node c  must be inserted inside the line 
connecting nodes ba,  as shown in Fig. 4. The impedance 
of this line is L z . The location of node c  is determined 
by coefficient   such that the impedance between nodes 

ca,  is Lz  and between nodes cb,  it is L)1( z . The 
admittance matrix taking into account an additional node 
representing a given fault location is further denoted as 

extY  and referred to as the extended admittance matrix.  
The considered extended model (Fig. 4) can be 

described by the following equation (similar to equation 
(16)):   
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,� (20)

or ∆V_ ext = Z_ ext ¢ I_ ext, where the last row and the last column of 
matrix Z_ ext concerning the additional node c are unknown. The 
remaining part of matrix Z_ ext is the same as in Eq. (16), i.e. it 
is equal to the initial matrix Z_ computed for the input model. 
This can be justified by two facts:
i(i) �Inserting node c inside the line connecting nodes a, b does 

not change the electrical state of any of the remaining nodes 
and the short-circuit currents and nodal voltages in the net-
work.

(ii) �As demonstrated in Section 3, the elimination of any node 
from the network is equivalent to the removal of the rel-
evant row and column from the nodal impedance matrix. 
This also means, that elimination of node c from the model 
shown in Fig. 4 reduces the extended matrix Z_ ext to the 
initial matrix Z_ describing the model shown in Fig. 3.

4.3. Off-diagonal elements of the extended matrix. To deter-
mine the off-diagonal elements of matrix Z_ ext, voltage V_c

0 needs 
to be found at additional node c in the pre-fault state and volt-
age V_ c in the fault state in the case of the short-circuit at node i. 
The relevant values result directly from Kirchhoff’s and Ohm’s 
laws applied to the circuit in Fig. 4. For the pre-fault state the 
following can be written:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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ii I
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and hence  

iii IZZIzVV )( ba
0

baLac                    (23) 

From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  

L
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
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0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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where I_ 0
a ¡ b = (V_ 0

a ¡ V_ 0
b)/z_ L and I_ a ¡ b are the pre-fault and 

fault currents in the line a ¡ b. Substituting the fault current  
I_ a ¡ b resulting from (19) into Eq. (22) leads to: 

V_ c = V_ a ¡ κz_ L I_ 0
a ¡ b ¡  Z_ ai ¡ Z_ bi

z_ L
I_ i ,

and hence
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
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0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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From Eq. (21) it results that –κz_ L I_ 0
a ¡ b = V_ 0

c ¡ V_ 0
a. Substituting 

this into Eq. (23) gives:

V_ c = V_ a + V_ 0
c ¡ V_ 0

a + κ(Z_ ai ¡ Z_ bi)I_ i ,

or
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  
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b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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ii I
z
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and hence  

iii IZZIzVV )( ba
0

baLac                    (23) 

From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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From Eq. (17) it results V_ a ¡ V_ 0
a = – Z_ ai I_ i. Substituting this 

into Eq. (24) gives:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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ii I
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L
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and hence  

iii IZZIzVV )( ba
0

baLac                    (23) 

From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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However, from Eq. (20) it results that:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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
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ii I
z

ZZ
IzVV

L
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and hence  

iii IZZIzVV )( ba
0

baLac                    (23) 

From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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Comparison of Eqs. (25) and (26) leads to:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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and hence  

iii IZZIzVV )( ba
0

baLac                    (23) 

From equation (21) it results that 0
a

0
c

0
b-aL VVIz  . 

Substituting this into equation (23) gives:  

iii IZZVVVV )( ba
0
a

0
cac    

or 

iii IZZVVVV )( ba
0
aa

0
cc                     (24) 

From equation (17) it results ii IZVV a
0
aa  . 

Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  

1
)1(

11
)1( LL

cc
L

cb

L

ca 
















zz
Z

z
Z

z
Z


 

Lcbcacc )1()1( zZZZ    

.� (27)

Equation (27) applies to any node i in the input model and at 
the same time to i = a and i = b. Hence:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  

0
b-aL

0
a

0
c IzVV                                          (21) 

b-aLac IzVV                                          (22) 

where L
0
b

0
a

0
b-a /)( zVVI   and baI  are the pre-fault 

and fault currents in the line b-a . Substituting the fault 
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network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  
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current baI  resulting from (19) into equation (22) leads 
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However, from equation (20) it results that:  
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cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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Admittance and impedance matrices describing the network 
model used for short-circuit analysis are symmetrical and there-
fore Z_ ic = Z_ci.

4.4. Diagonal element of the extended matrix. A different 
approach is needed to derive the formula determining the 
diagonal element Z_cc. The simplest way is to use the fact that 
Z_ ext ¢ Y_ ext = 1, where 1 is the identity matrix. As shown in 
Fig. 4, node c is directly connected only to nodes a, b. Hence, 
matrix Y_ ext in the last row and the last column has only three 
non-zero elements:
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  
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b-aLac IzVV                                          (22) 

where L
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and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
to:  
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From equation (21) it results that 0
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Substituting this into equation (23) gives:  
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or 
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From equation (17) it results ii IZVV a
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Substituting this into equation (24) gives:  

iiiiii IZIZIZVV baa
0
cc    

  iii IZZVV  )1( ba
0
cc              (25) 

However, from equation (20) it results that:  

ii IZVV  c
0
cc                                          (26) 

Comparison of equations (25) and (26) leads to:  
iii ZZZ bac )1(                                    (27) 

Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  

baaaca )1( ZZZ                                 (28) 

bbabcb )1( ZZZ                                 (29) 
Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 

1ccccbccbacca  YZYZYZ                        (32) 
Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 

pre-fault state and voltage cV  in the fault state in the 
case of the short-circuit at node i . The relevant values 
result directly from Kirchhoff's and Ohm’s laws applied to 
the circuit in Fig. 4. For the pre-fault state the following 
can be written:  
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and fault currents in the line b-a . Substituting the fault 
current baI  resulting from (19) into equation (22) leads 
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Substituting this into equation (23) gives:  
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However, from equation (20) it results that:  
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Comparison of equations (25) and (26) leads to:  
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Equation (27) applies to any node i  in the input model 
and at the same time to ai  and bi . Hence:  
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Admittance and impedance matrices describing the 

network model used for short-circuit analysis are 
symmetrical and therefore ii ZZ cc  .  
4.4. Diagonal elements of the extended matrix. A 
different approach is needed to derive the formula 
determining the diagonal element ccZ . The simplest way 
is to use the fact that 1 extext YZ , where 1  is the 
identity matrix. As shown in Fig. 4, node c  is directly 
connected only to nodes ba, . Hence, matrix extY  in the 
last row and the last column has only three non-zero 
elements:  
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Taking into account these non-zero elements, the 
following equation can be written:  
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 
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Admittances acY , bcY , ccY  in equation (32) can be 
replaced by admittances determined by equations (30) 
(31). After such operation it is obtained:  
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or extextextΔ IZV   where the last row and the last 
column of matrix extZ  concerning the additional node c  
are unknown. The remaining part of matrix extZ  is the 
same as in equation (16), i.e., it is equal to the initial 
matrix Z  computed for the input model. This can be 
justified by two facts:  
(i) Inserting node c  inside the line connecting nodes ba,  

does not change the electrical state of any of the 
remaining nodes and the short-circuit currents and 
nodal voltages in the network.  

(ii) As demonstrated in Section III, the elimination of any 
node from the network is equivalent to the removal of 
the relevant row and column from the nodal 
impedance matrix. This also means, that elimination 
of node c from the model shown in Fig. 4 reduces the 
extended matrix extZ  to the initial matrix Z  
describing the model shown in Fig. 3.  

4.3. Off-diagonal elements of the extended 
matrix  

4.3. Off-diagonal elements of the extended matrix. To 
determine the off-diagonal elements of matrix extZ , 

voltage 0
cV  needs to be found at additional node c  in the 
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result directly from Kirchhoff's and Ohm’s laws applied to 
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 
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Considering these non-zero elements, the following equation 
can be written: 
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
result  is obtained: 
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By multiplying the last column of matrix Y_ ext by the last row 
of matrix Z_ ext in the above equation, the following result is 
obtained:
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By multiplying the last column of matrix extY  by the last 
row of matrix extZ  in the above equation, the following  
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Admittances Y_ ac, Y_ bc, Y_ cc in Eq. (32) can be replaced by admit-
tances determined by Eqs. (30) and (31). After such an opera-
tion it is obtained: 

– Z_ ca

κz_ L
 ¡  Z_ cb

(1 ¡ κ)z_ L
 + Z_cc

1
κz_ L

 +  1
(1 ¡ κ)z_ L

 = 1,

Z_ cc = (1 ¡ κ)Z_ ca + _κZ cb + κ (1 ¡ κ)z_ L.

Impedances Z_ ca, Z_ cb in the above equation can be replaced by 
impedances determined by Eqs. (28) and (29). Then the follow-
ing equation is obtained:
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Impedances caZ , cbZ  in the above equation can be 
replaced by impedances determined by equations (28) 
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where ccZ  is the diagonal element of the extended 
impedance matrix and the same time the Thevenin’s 
equivalent impedance for node c .  
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elements of the extended matrix based on the proposed 
method. A short-circuit analysis for the consecutive fault 
location is performed in block 10.  
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where Z_cc in the above equation is the diagonal element of the 
extended impedance matrix and the same time the Thevenin’s 
equivalent impedance for node c.

4.5. Features of extended impedance matrix. The consider-
ation regarding the extended impedance matrix Z_ ext presented 
above can be summarized as follows: 
ii(i) �The extended impedance matrix Z_ ext can be found without 

the need to calculate the inversion of the extended admit-
tance matrix Y_ ext.

i(ii) �The unknown diagonal and off-diagonal elements of 
the extended impedance matrix Z_ ext are the functions of 
appropriate elements of the initial impedance matrix Z_ and 
impedances κz_ L and (1 ¡ κ)z_ L.

(iii) �The calculation of the diagonal and off-diagonal ele-
ments of the extended impedance matrix Z_ ext based on 
Eqs. (27‒29, and 33) is very simple.

5.	 Computation algorithm

A flowchart of the proposed computational algorithm is shown 
in Fig. 5. It is assumed that, based on the initial impedance 
matrix Z_ computed for the area of interest, a computer pro-
gram based on the proposed method computes the extended 
impedance matrix Z_ ext for all lines and all sliding faults without 
repetition of the inversion or factorisation of the nodal admit-
tance matrix.

In the flowchart shown in Fig. 5 the blocks 1‒3 relate to the 
input data of considered network and determination of the area 
of interest, which is the part of typical short-circuit analysis. 
The step length for analysis of sliding fault ∆κ is determined in 
block 4 and the line for such an analysis is selected in block 5. 
Blocks 6‒9 perform calculations of diagonal and off-diagonal 
elements of the extended matrix based on the proposed method. 
A short-circuit analysis for the consecutive fault location is per-
formed in block 10. Fig. 5. Flowchart of computation algorithm
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6.	 Case studies

6.1. Test system. There are various test systems. It is sufficient 
to use the test system shown in Fig. 6 to verify the correctness 
of the proposed method. The network of the test system con-
sists of six transmission lines with nominal voltage 220 kV, 
two generating units G1, G2 and an equivalent generator G3, 
which is an equivalent source for the remaining part of a larger 
system. Network data for the considered test system are given 
in Table 1.

row of matrix Z_ is multiplied by (1 ¡ κ ) = 0.8, and the sixth 
row is multiplied by κ  = 0.2. As a result, the row matrices (A3) 
and (A4) are obtained. Sum of them is equal to the row matrix 
(A5). For κ  = 0.2 it is obtained from Eq. (33): 

Z_ cc = 0.64 ¢ Z_ 5.5 + 0.32 ¢ Z_ 5.6 + 0.04 ¢ Z_ 6.6 + 0.16 ¢ z_ L =

Z_ cc = 2.96 + 34.51i.

Finally, the extended impedance matrix (A6) can be written in 
which the off-diagonal elements of the seventh row are equal to 
the row matrix Z_∑ from (A5) and Z_ 7.7 = Z_ cc, which is obtained 
above.

The following additional calculations are performed to 
verify the correctness of the proposed method. In line L4, at 
a distance κ  = 0.2, additional node c is inserted, and for such 
a model, the extended admittance matrix (A7) is created. The 
calculation of the inversion of this matrix yields the imped-
ance matrix (A8). A comparison of matrices (A6) and (A8) 
shows that Z_ ext = Y_ –1

ext, i.e. the extended impedance matrix 
Z_ ext computed by the proposed method is the same as the 
extended impedance matrix obtained by the inversion Y_ –1

ext of 
the extended admittance matrix.

Figure 7 shows the plot of functions Ic(κ ) and ∆Va(κ ), 
∆Vb(κ ), where the short-circuit current I_ c is calculated from 
Eq. (2) for the pre-fault voltage Vc

0 = 1.05 ¢ 220/ 2 and voltage 
sags at nodes a, b from ∆Va = jZ_ac I_ cj and ∆Vb = jZ_cb I_ cj.Fig. 6. Circuit diagram of 3G test system

Fig. 7. Plots of short-circuit current and voltage sags

6.2. Calculation results. The admittance matrix (A1) shown 
in Appendix can be obtained based on the data from Table 1 
and circuit diagram from Fig. 6 without additional node c. The 
dimension of this matrix is 6£6. In this matrix the numbering 
of rows and columns is consistent with the numbering of the 
nodes. Calculations of inversion of matrix (A1) yields the initial 
impedance matrix (A2).

In the considered example it is assumed that a sliding fault 
occurs in line L4 at node c at a distance κ from node B5 and 
(1 ¡ κ ) from node B6. It is assumed now that κ  = 0.2. In 
accordance with the flowchart (Fig. 5) and Eq. (27), the fifth 

Table 1 
Data of the 3G test system from Fig. 6 

Branch Nodes Impedance Admittance 

L1 B1 B2 6.0 + 59.5i (1.68 ¡ 16.64i) ¢ 10‒3

L2 B2 B3 10.7 + 90.0i (1.30 ¡ 10.96i) ¢ 10‒3

L3 B2 B6 3.5 + 30.8i (3.64 ¡ 32.05i) ¢ 10‒3

L5 B3 B5 4.2 + 47.0i (1.89 ¡ 21.11i) ¢ 10‒3

L6 B4 B5 3.5 + 30.8i (3.64 ¡ 32.05i) ¢ 10‒3

L4 B5 B6 5.3 + 56.0i (1.68 ¡ 17.70i) ¢ 10‒3

G1 B1 N 3.5 + 70.2i (0.71 ¡ 14.21i) ¢ 10‒3

G2 B6 N 2.2 + 40.3i (1.35 ¡ 24.74i) ¢ 10‒3

G3 B3 N 0.4 + 6.1i (10.70 ¡ 163.23i) ¢ 10‒3

7.	 Conclusions

Mathematical considerations provided in this paper show that 
the analysis of the sliding faults can be performed without 
recalculation of the matrix inversion and without extension 
of the network model with many additional nodes. This paper 
demonstrates that the impedance matrix incorporating any loca-
tion of the sliding fault can be easily created by extension of 
the initial impedance matrix using simple formulas. A typical 
short-circuit computer program can be easily modified using 
the flowchart presented in this paper.
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The proposed method has two advantages: (i) all quantities 
calculated for the sliding faults can be explicitly expressed as 
functions of the fault distance, which simplifies the analysis and 
plotting of the relevant diagrams; (ii) it makes the sliding faults 
analysis very fast, which is important for large-scale networks. 
As a result, the proposed method reduces the computational 
complexity, and simplifies the analysis of the sliding faults.
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