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1. Introduction

It is known that the non integer order calculus can be applied in
modeling of processes and phenomena hard to analyse with the
use of other tools. Non integer order (NIO) or fractional order
(FO) models of different physical phenomena have been pre-
sented by many Authors. A amount of FO models of various
processes is collected in the book [1]. The book [2] presents
fractional order models of chaotic systems and Ionic Polymer
Metal Composites (IPMC). Fractional models of ultracapaci-
tors are “classics” of FO modeling. They are given for example
by [3]. Distributed parameter systems can be also described us-
ing FO approach. As an example diffusion processes discussed
in [4–6] can be given. A collection of recent results employ-
ing new Atangana-Baleanu operator can be found in [7]. In
this book i.e., the FO blood alcohol model, the Christov diffu-
sion equation and fractional advection-dispersion equation for
groundwater transport process are presented.

Heat transfer processes can also be described using non in-
teger order approach. For example a temperature–heat flux re-
lationship for heat flow in semi-infinite conductor is presented
in [1], the beam heating problem is given in [3], the FO trans-
fer function temperature models in a room are presented by [8],
temperature models in three dimensional solid body are given
in [9]. The use of fractional order approach to the modeling and
control of heat systems is also presented in [10].

This paper is devoted to presenting a new, discrete, FO model
of heat transfer process in one dimensional body. Such a pro-
cess is described by a partial differential equation (PDE) of
parabolic type. In the considered case the both partial deriva-
tives along time and length are fractional and expressed by
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the Grünwald- Letnikov operator. This operator best describes
the discrete fractional differentiation and it is discrete “from
its nature”.

The paper is organized as follows. Preliminaries recall some
elementary ideas and definitions from fractional calculus. Next,
the discrete state space model using Grünwald- Letnikov oper-
ator along time and space is proposed and its practical stability
is discussed. Finally, the experimental validation of theoretical
results is given.

2. Preliminaries

At the beginning the non integer order, integro-differential op-
erator is presented (see for example [1, 11–13]).

Definition 1. (The elementary non integer order operator) The
non integer order integro-differential operator is defined as fol-
lows:

aDα
t g(t) =




dα g(t)
dtα α > 0,

g(t) α = 0,
t∫

a

g(τ)(dτ)α α < 0,

. (1)

where a and t denote time limits for operator calculation, α ∈R
denotes the non integer order of the operation.

Next an idea of complete Gamma Euler function is recalled
(see for example [12]):

Definition 2. (The complete Gamma function)

Γ(x) =
∞∫

0

tx−1e−t dt. (2)
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The fractional order, integro-differential operator (1) is
described by different definitions, given by Grünwald and
Letnikov (GL definition), Riemann and Liouville (RL def-
inition) and Caputo (C definition). Relations between Ca-
puto and Riemann-Liouville, between Riemann-Liouville and
Grünwald-Letnikov operators are given for example in [1, 14].
Discrete versions of these operators are analysed with details
in [15]. In the further consideration the GL definition along time
and space is used and it needs to be recalled.

The GL derivative along the time from function g(t) is de-
fined as follows ( [2, 16]):

Definition 3. (The time Grünwald-Letnikov definition)

GL
0 Dα

t g(t) = lim
h→0

h−α
[ t

h ]

∑
l=0

(−1)l
(

α
l

)
g(t − lh). (3)

In (3) 0.0 < α ≤ 1.0 is the fractional order along the time,
h is the sample time, [..] is the nearest integer value,

(α
l

)
is the

binomial coefficient:

(
α
l

)
=




1, l = 0,
α(α −1) . . .(α − l +1)

l!
, l > 0.

(4)

Analogically the space GL derivative of the function g(x) is
defined as follows (see [17]):

Definition 4. (The space Grünwald-Letnikov definition)

GL
0 Dβ

1 g(x) = lim
∆x→0

∆x−β
N

∑
n=0

(−1)n
(

β
n

)
g(t −n∆x). (5)

In (5) 1.0 < β ≤ 2.0 is the fractional order along the space,
N is the number of space divisions, ∆x is the elementary step of

length. If the length of an object is equal 1, then ∆x =
1
N

. The

binomial coefficient
(

β
n

)
is defined by (4).

The GL definition is limit case for h→ 0, ∆x → 0 of the Frac-
tional Order Backward Difference (FOBD), commonly em-
ployed in discrete FO calculations (see for example [18], p. 68).
It can be defined for time and length separately.

Definition 5. (The Fractional Order Backward Difference
along the time – FOBDT)

∆α g(t) =
1

hα

L

∑
l=0

(−1)l
(

α
l

)
g(t − lh). (6)

Denote coefficients (−1)l
(α

l

)
by dl :

dl = (−1)l
(

α
l

)
. (7)

The coefficients (7) can be also calculated with the use of
the following, equivalent recursive formula (see for example

[2], p. 12), useful in numerical calculations:

d0 = 1,

dl =

(
1− 1+α

l

)
dl−1, l = 1, . . . ,L.

(8)

It is proven in [19] that:

∞

∑
l=1

dl = 1−α. (9)

In (6) L denotes a memory length necessary to correct ap-
proximation of a non integer order operator. Unfortunately
good accuracy of approximation requires to use a long mem-
ory L what can make difficulties during implementation.

The FOBD along the space (FOBDS) can be defined analog-
ically. It is given for example in [20]:

Definition 6. (The Fractional Order Backward Difference
along the space – FOBDS)

∆β g(x) =
1

∆xβ

N

∑
n=0

(−1)nγng(x−n∆x). (10)

The coefficients γn are as follows:

γn =
Γ(n−β )

Γ(−β )Γ(n+1)
. (11)

The discrete, fractional order state equation using definition
(6) is written as follows (see for example [15, 21]):

{
∆α

L q(t +h) = A+q(t)+B+u(t),

y(t) =C+q(t),
(12)

where q(t) ∈ RN is the state vector, u(t) ∈ RP is the control,
y(t) ∈ RM is the output. A+, B+ and C+ are state, control and
output matrices respectively. If we shortly denote k-th time in-
stant: hk by k, then Eq. (12) turns to:

{
∆α

L q(k+1) = A+q(k)+B+u(k),

y(k) =C+q(k),
(13)

where:

A+ = hα A , (14)

B+ = hα B , (15)

C+ =C. (16)

The practical implementation of FO system (13) takes the form
of state equation with L delays in the state:

q(k+1) = P+q(k)−
L

∑
l=2

A+
l q(k− l)+B+u(k), (17)
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where:

P+ = A++αI = hα A+αI , (18)

A+
l = dlIN×N . (19)

Next an idea of practical stability is recalled (see for exam-
ple [19])

Definition 7. (The practical stability)
The fractional order system (13) is called practically stable if
its practical implementation (17) is asyptotically stable.

3. The experimental system and its PDE model

Figure 1 shows the simplified scheme of the considered heat
system. This is a thin copper rod heated by an electric heater
xu long, localized at one end of rod. The output temperature
is measured using miniature RTD sensors xs long. Assume to
simplify that the length of the rod equals 1. Then the centers of
sensors are in: x1 = 0.29, x2 = 0.50 and x3 = 0.73 of the rod
length. The length of each sensor is equal: xs = 0.06. More de-
tails about the construction of this laboratory system are given
in the section “Experimental Results”.

heater

xsxu

Pt 100 Pt 100Pt 100

xs xs

u(t) y2(t) y3(t)y1(t)

Fig. 1. The simplified scheme of the experimental system

The fundamental mathematical model describing the heat
transfer in the rod is the PDE of the parabolic type. Both frontal
surfaces of the rod are much smaller than its side surface. This
allows to assume the homogeneous Neumann boundary condi-
tions at the both ends as well as the heat exchange along the
length needs to be considered. The control and observation are
distributed because the size of heater and sensors should be also
considered. Such a model with integer orders of both differen-
tiations has been considered in papers [22–24]. Its fractional
version is as follows:



C
0 Dα

t Q(x, t) = aw
∂ β Q(x, t)

∂xβ −RaQ(x, t)+b(x)u(t),

∂Q(0, t)
dx

= 0, t ≥ 0,

∂Q(1, t)
dx

= 0, t ≥ 0,

Q(x,0) = Q0, 0 ≤ x ≤ 1,

y(t) = k0

1∫

0

Q(x, t)c(x)dx.

(20)

In (20) α and β are non integer orders of the system, aw > 0,
Ra ≥ 0 denote coefficients of heat conduction and heat ex-

change, k0 is a steady-state gain of the model, b(x) and c(x)
are heater and sensor functions. They take the following form:

b(x) =

{
1, x ∈ [0,xu] ,

0, x �∈ [0,xu] ;
(21)

c(x) =

{
1, x ∈ [x j −0.5xs,x j +0.5xs] ,

0, x �∈ [x j −0.5xs,x j +0.5xs],
(22)

where j = 1,2,3 denotes the output sensor.

4. The proposed discrete model

The proposed discrete FO model follows directly from
parabolic equation (20) after use (6) and (10).

Firstly estimate the spatial derivative using (10). In order to
do it, divide the length of the rod into N short sectors, each

∆x =
1
N

long. Next denote temperature in the n-th point by:

Q(n∆x, t) = Qn(t), n = 1, . . . ,N. The homogenous Neumann
boundary condition in (20) can be written as follows:

∆β Q1(t) = Q0(t),

∆β QN(t) = QN−1(t).
(23)

Using (10) and with respect to (20) the spatial derivative from
temperature in the n-th node (n = 2, . . . ,N −1) is as follows:

∆β Qn(t)≈
n+1

∑
m=2

emQn−k+1(t)+ e1Qn(t)+ e0Qn+1(t),

n = 2, . . . ,N −1,

(24)

where:

en =
γnaw

∆xβ = γnawNβ . (25)

In (25) γn are expressed by (11).
Using (23) and (24) the single FOPDE (20) can be trans-

formed to the following set of ordinary FO differential equa-
tions:





Dα Q1(t) = (e1 + e2 −Ra)Q1(t)+b1u(t),

· · ·

Dα Qn(t) =
n+1

∑
m=2

anQn−m+1(t)+

+(e1 −Ra)Qn(t)+ e0Qn+1(t)+bnu(t),

· · ·

Dα QN−1(t) =
N

∑
m=2

anQn−m+1(t)+

+(e0 + e1 −Ra)QN−1(t)+ e0QN(t)+bN−1u(t).

(26)
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Equation (26) can be expressed as the finite, time-continuous
FO state equation:

{
Dα Q(t) = AQ(t)+Bu(t),

y(t) =CQ(t),
(27)

where Q(t) = [Q1(t), . . . ,QN−1(t)]T is the state vector, the state
matrix A is as follows:

A =



e1+e2 −Ra e0 0 . . . . . . 0
e2+e3 e1−Ra e0 . . . . . . 0
e3+e4 e2 e1−Ra e0 . . . 0
. . . . . . . . . . . . . . . . . .

en+en+1 en−1 . . . e1−Ra . . . 0
. . . . . . . . . . . . . . . e0

eN−1+eN eN−1 eN−2 . . . e2 e0+e1−Ra




.
(28)

The control matrix B takes the following form:

B =
[
b1, . . . ,bN

]T
. (29)

Each element bn is defined as follows:

bn =

{
1, n∆x ∈ [0,xu]

0, n∆x �∈ [0,xu]
n = 0,1, . . . ,N. (30)

The output matrix C takes the following form:

C =
[
C1,C2,C3

]T
. (31)

Each row of matrix (31) is associated to one sensor:

Cj =
[
c j,0, . . . ,c j,N

]
, j = 1,2,3. (32)

The elements of each row C1-C3 are defined as follows:

c j,n =

{
1, x ∈ [x j−0.5xs,x j+0.5xs]

0, n∆x �∈ [x j−0.5xs,x j+0.5s]

for

{
n = 0,1, . . . ,N,

j = 1,2,3.

(33)

Next replace the time continuous FO derivative in Eq. (27) by
FOBDT (6). Then we obtain the fractional order, difference
equation along both coordinates. It takes the form (13) with ma-
trices A+ and B+ defined by (14) and (15). The solution of this
equation is as (17) with matrix P+ defined as follows:

P+ =




R+
1 e+0 0 . . . . . . 0

e+2 + e+3 R+ e+0 . . . . . . 0
e+3 + e+4 e2 R+ e+0 . . . 0

. . . . . . . . . . . . . . . . . .

e+n + e+n+1 e+n−1 . . . R+ . . . 0
. . . . . . . . . . . . . . . . . .

e+N−1 + e+N e+N−1 e+N−2 . . . e+2 R+
N




, (34)

where:
e+n = hα en , n = 0,1, . . . ,N, (35)

R+
1 = hα((e1 + e2)−Ra

)
+α,

R+ = hα(e1 −Ra)+α,

R+
N = hα((e0 + e1)−Ra

)
+α.

(36)

Matrices B+ and C+ are as follows:

B+ = hα B = [b+1 , . . . ,b
+
N ]

T , (37)

C+ =C. (38)

With respect to (26), (34), (35) and (36) the solution of the
state equation (17) in the n-th point and k+1 time instant takes
the following form:





Q1(k+1) = R+
1 Q1(k)+ e+0 Q+

2 (k)

−
L

∑
l=2

dlQ1(k− l)+b+1 u(k),

Q2(k+1) =
= (e+2 + e+3 )Q1(k)+R+Q2(k)+ e+0 Q3(k)

−
L

∑
l=2

dlQ2(k− l)+b+2 u(k),

· · ·
Qn(k+1) =
= (e+n + e+n+1)Q1(k)+ . . .+RQn(k)+ e+0 Qn+1(k)

−
L

∑
l=2

dlQn(k− l)+b+n u(k),

· · ·
QN−1(k+1) =
= (e+N−1 + e+N )Q1(k)+ . . .+RQN−1(k)+ e+0 QN(k)

−
L

∑
l=2

dlQN−1(k− l)+b+N u(k).

(39)

The output of the discrete model is as follows:

y+(k) =C+Q(k). (40)

Equations (39) and (40) can be written as the practical im-
plementation of FO model analogically as (17):




Q(k+1) = P+Q(k)−
L

∑
l=2

AlQ(k− l)+B+U(k),

y+(k) =C+Q(k),
(41)

where P+ is expressed by (34), matrices Al are as follows:

Al = dlI . (42)

Equation (41) can be applied to compute time responses of the
considered plant. Particularly it can be employed to calculate
the step response.
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Next write the state equation with L delays in state (41) as
the equivalent equation without delay, analogically as in [25].
To do it denote the vector delayed by l steps Q(k− l) by Ql(k),
l = 1, . . . ,L and introduce the new state vector Q, NL long:

Q=




Q(k)
Q(k−1)

. . .

Q(k− i)
. . .

Q(k−L)



=




Q1(k)
Q2(k)
. . .

Ql(k)
. . .

QL(k)



. (43)

Consequently the state equation (41) with delay can be rewrit-
ten in the equivalent form without delay:

{
Q(k+1) = AQ(k)+Bu(k),

y(k) = CQ(k),
(44)

where:

A=




P+ −A2 −A3 . . . −AL

I 0 0 . . . 0
0 I 0 . . . 0
. . . . . . . . . . . . . . .

0 0 . . . I 0




NL×NL

, (45)

B=
[

B+ 0 0 . . . 0
]T

, (46)

C=
[

C+ 0 0 . . . 0
]
. (47)

Equation (44) is the discrete, integer order equation equivalent
to the continuous FO equation (20). It can be solved using stan-
dard tools, for example step function in MATLAB. Its main
disadvantage is high dimension, equal NL, where the mem-
ory length L needs to be L > 100 to assure good accuracy of
the model. However its form is convenient to practical stability
analysis due to (44) is the typical, integer order, discrete state
equation. The analysis of the practical stability using such an
approach is given in the next section.

5. Practical stability of the proposed model

The practical stability of the model we deal with, depends on
the number of length divisions N, sample time h and memory
length L. Analysis of other parameters: α , β aw and Ra does
not make sense because they are determined by the modeled
process. At the beginning consider the practical stability as a
function of N. It is described by the following proposition:

Proposition 1. (The maximum number of N assuring the prac-
tical stability)

Consider the discrete fractional order system described by
(41) or equivalently by (44)–(47).

This system is practically stable if (but not iff) the number of
length divisions N meets the following inequality:

N <

(
1+α −hα Ra −ds

(1+β + γN12 + γ3N)awhα

) 1
β
, (48)

where:

γN12 = |γN+2 + γN+1| ,

γ3N =
N

∑
n=3

|γn|.
(49)

Proof. The condition (48) is proven using model without delay
(43)-(47) and Gershgorin theorem. Let Dn(sn,rn) denote Ger-
shgorin disc centered at sn and with radius equal rn. The form
of the state matrix (45) allows to note that the stronger limita-
tion of its eigenvalues will be given by discs associated to rows.
For rows N+1 to NL the only one, unit Gershgorin disc is de-
fined: DI(0,1). This disc is not critical for stability because it
describes the stability condition of each discrete model inde-
penendently on its parameters. The stability as a function of
model parameters is determined by other discs, associated to
rows 1−N in matrix (45). Denote these discs by D1(s1,r1)–
DN(sN ,rN), where n is the number of row. Location of these
discs in the complex plane is determined by the parameters of
the model and it estimates its stability. With respect to (25),
(34), (35) and (36) center of the sn-th disc is as follows:

sn =




α −hα(βNβ aw +Ra −Nβ awγ2), n = 1,

α −hα(βNβ aw +Ra), n = 2, . . . ,N −1,

α −hα(βNβ aw +Ra −Nβ aw), n = N.

(50)

Notice that all the Gershgorin discs have only 3 centres inde-
pendently on N, because the main diagonal of A contains only
three different elements: in 1st row, N-th row and the same ele-
ments in rows 2 to N−1. The radii of discs are as follows:

rn =




hα Nβ aw +ds, n = 1,
· · ·

hα Nβ aw

(
1+ |γN+2 + γN+1|+

N

∑
n=3

|γn|

)
+ds,

n = N −1,

hα Nβ aw

N

∑
n=3

|γn|+ds, n = N,

(51)

where:

ds =
L

∑
l=2

|dl |. (52)

The discrete system will be asymptotically stable if and only
if its whole spectrum is located inside the unit disc DI . This is
expressed as follows:

∀n = 1, . . . ,N : Dn(sn,rn)⊂ DI(0,1). (53)
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[
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[
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]
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Equation (44) is the discrete, integer order equation equivalent
to the continuous FO equation (20). It can be solved using stan-
dard tools, for example step function in MATLAB. Its main
disadvantage is high dimension, equal NL, where the mem-
ory length L needs to be L > 100 to assure good accuracy of
the model. However its form is convenient to practical stability
analysis due to (44) is the typical, integer order, discrete state
equation. The analysis of the practical stability using such an
approach is given in the next section.

5. Practical stability of the proposed model

The practical stability of the model we deal with, depends on
the number of length divisions N, sample time h and memory
length L. Analysis of other parameters: α , β aw and Ra does
not make sense because they are determined by the modeled
process. At the beginning consider the practical stability as a
function of N. It is described by the following proposition:

Proposition 1. (The maximum number of N assuring the prac-
tical stability)

Consider the discrete fractional order system described by
(41) or equivalently by (44)–(47).

This system is practically stable if (but not iff) the number of
length divisions N meets the following inequality:

N <

(
1+α −hα Ra −ds

(1+β + γN12 + γ3N)awhα

) 1
β
, (48)

where:

γN12 = |γN+2 + γN+1| ,

γ3N =
N

∑
n=3

|γn|.
(49)

Proof. The condition (48) is proven using model without delay
(43)-(47) and Gershgorin theorem. Let Dn(sn,rn) denote Ger-
shgorin disc centered at sn and with radius equal rn. The form
of the state matrix (45) allows to note that the stronger limita-
tion of its eigenvalues will be given by discs associated to rows.
For rows N+1 to NL the only one, unit Gershgorin disc is de-
fined: DI(0,1). This disc is not critical for stability because it
describes the stability condition of each discrete model inde-
penendently on its parameters. The stability as a function of
model parameters is determined by other discs, associated to
rows 1−N in matrix (45). Denote these discs by D1(s1,r1)–
DN(sN ,rN), where n is the number of row. Location of these
discs in the complex plane is determined by the parameters of
the model and it estimates its stability. With respect to (25),
(34), (35) and (36) center of the sn-th disc is as follows:

sn =




α −hα(βNβ aw +Ra −Nβ awγ2), n = 1,

α −hα(βNβ aw +Ra), n = 2, . . . ,N −1,

α −hα(βNβ aw +Ra −Nβ aw), n = N.

(50)

Notice that all the Gershgorin discs have only 3 centres inde-
pendently on N, because the main diagonal of A contains only
three different elements: in 1st row, N-th row and the same ele-
ments in rows 2 to N−1. The radii of discs are as follows:

rn =




hα Nβ aw +ds, n = 1,
· · ·

hα Nβ aw

(
1+ |γN+2 + γN+1|+

N

∑
n=3

|γn|

)
+ds,

n = N −1,

hα Nβ aw

N

∑
n=3

|γn|+ds, n = N,

(51)

where:

ds =
L

∑
l=2

|dl |. (52)

The discrete system will be asymptotically stable if and only
if its whole spectrum is located inside the unit disc DI . This is
expressed as follows:

∀n = 1, . . . ,N : Dn(sn,rn)⊂ DI(0,1). (53)
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The form of all discs, described by (50) and (51) suggests that
not all need to be analyzed because the stability is determined
by a biggest disc with center furthest from zero. This is disc
DN−1(sN−1,rN−1) and it will be used in further analysis.

For this disc the condition (53) can be written as follows:
{

sN−1 + rN−1 < 1.0,

sN−1 − rN−1 >−1.0.
. (54)

Using (50) and (51) in (54) yields:



N <

(
1−α +hα Ra −ds

(1−β + γN12 + γ3N)awhα

) 1
β
,

N <

(
1+α −hα Ra −ds

(1+β + γN12 + γ3N)awhα

) 1
β
.

(55)

Selection the stronger limitation in (55) gives directly condition
(48) and the proof is completed. �

The conclusion from the above proposition is a little bit
surprising, because the shortening a length discretization step

∆x =
1
N

causes the loss of practical stability.
Next the practical stability as a function of sample time h can

be considered. It can be estimated as follows:

Proposition 2. (The maximum size of sample time h assur-
ing the practical stability) Consider the discrete fractional order
system described by (41) or equivalently by (44)–(47).

This system is practically stable if (but not iff) the sample
time h meets the following inequality:

h <

(
1+α −ds

Nβ aw(1+β + γN12 + γ3N)+Ra

) 1
α
, (56)

where γN12 and γ3N are expressed by (49).

Proof. The proof is analogical as previous one. We start from
condition (54). Using (50) and (51) we obtain:




hα <

(
1−α −ds

Nβ aw(1−β + γN12 + γ3N)−Ra

)
,

hα <

(
1+α −ds

Nβ aw(1+β + γN12 + γ3N)+Ra

)
.

. (57)

The first inequality in (57) does not have solution due to its
right side is negative. The second one gives directly (56) and
the proof is completed. �

The condition (48) allows to conclude that shortening the
sample time h allows to increase the number of length divi-
sions N. The same is seen in condition (56), where increasing
N causes descreasing the permissible range of sample time h.
For N → ∞ the sample time h → 0.

An interesting issue is to estimate the sensitivity of stability
estimations (48) and (56) to uncertainty of plant parameters aw
and Ra. It can be generally defined as the ratio of the disturbed
value to the nominal one:

sMp =
Mdist

Mnom
, (58)

where M = N,h denotes the considered model parameter: num-
ber of length divisions N or sample time h, p = aw,Ra denotes
the considered parameter, indices "nom" and "dist" denote val-
ues of N or h for nominal or disturbed parameters aw or Ra
respectively. Denote the deviations of parameter aw or Ra from
nominal value by ∆a and ∆R respectively. Then the sensitivity
functions are equal:

sNaw =

(
1

1+∆a

) 1
β
,

sNRa =

(
1+α −ds −hα Ra

1+α −ds −hα Ra(1+∆R)

) 1
β
,

shaw =

(
awNβ (1+β + γN12 + γ3N)+Ra

aw(1+∆a)Nβ (1+β + γN12 + γ3N)+Ra

) 1
α

,

shRa =

(
awNβ (1+β + γN12 + γ3N)+Ra

awNβ (1+β + γN12 + γ3N)+Ra(1+∆R)

) 1
α

.

(59)

All the above sensitivity functions can be also expressed in per-
cents:

SMp =
∣∣1− sMp

∣∣∗100% . (60)

Finally deal with the impact of memory length L on practi-
cal stability. This factor is the hardest to consider due to fact
that the sum ds(L) is a strongly implicit function of memory
length L (see (8), (52)). On the other hand, its value for L→∞ is
bounded by (9). For range of α correctly describing the consid-
ered heat process the value of ds is small and it can be ignored
during stability analysis.

6. Experimental validation of results

Experiments were done using laboratory system shown in
Fig. 2. It is supervised by PLC SIEMENS S7 1500. The in-
put signal is given as standard current 0- 20 [mA] by analog
output from PLC. It is amplified to range 0–1.5 [A] and sent
to the heater. The temperature of the rod is measured using the

Fig. 2. The experimental system
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miniature RTD-s of Pt-100 type. Signals from RTD-s are read
directly by universal analog inputs of PLC. Trends of temper-
ature and control signal are collected by SCADA application
built with the use of INTOUCH v12. The time-spatial tempera-
ture distribution in the plant is shown in Fig. 3.
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Fig. 3. The time-spatial temperature distribution in the plant

The parameters of the model expressed by (34)–(42) can
be identified by minimization the Mean Square Error (MSE)
cost function describing the difference between step response
of plant and model at the same time mesh:

MSE =
1

3K

K

∑
k=1

(y(k)− ye(k))
2 . (61)

In (61) K is the number of all collected samples, y(k) is the
step response of the model, computed using (13) and (41), ye(k)
is the experimental response measured at the same time mo-
ments k. Parameters of the model minimizing the cost function
(61) are given in Table 1. Orders N and L were assigned to as-
sure the practical stability of the model with respect to Proposi-
tions 11 and 2. The step responses of the proposed model com-
pared to experimental results are presented in Fig. 4. Next the

Fig. 4. The comparison of step responses for model and plant. The
model is marked by black, experimental data are marked by red

Table 1
Parameters of the model and the MSE cost function

α β aw Ra N L MSE

0.9070 1.9987 0.0003 0.0222 22 100 0.0445

practical stability of the proposed model was tested using con-
ditions (48) and (56). Using parameters from Table 1 we obtain
the following limit values: N = 39 for h = 1 and h = 3.3878[s]
for N = 22. To verify this result in Figs. 5–7 are shown Ger-
shgorin discs for different combinations of N and h and other
parameters given in Table 1. The distribution of spectrum of the
state matrix A is shown in Figs. 8–10.

Fig. 5. Gershgorin circles for N = 22, h = 1, the both criteria met

Fig. 6. Gershgorin circles for N = 60, h = 1, the 1st criterion not met

Next the the robustness analysis using sensitivity functions
(58)–(60) will be given. To do it consider the plant parame-
ters given in the Table 1 and assume that the deviations from
nominal values for the both parameters are equal 10%. All the
sensitivity functions are collected in the Table 2.
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ters given in the Table 1 and assume that the deviations from
nominal values for the both parameters are equal 10%. All the
sensitivity functions are collected in the Table 2.
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Fig. 7. Gershgorin circles for N = 22, h = 5, the 2nd criterion not met

Fig. 8. Spectrum of the system (44) for N = 22, h = 1, the system is
stable

Fig. 9. Spectrum of the system (44) for for N = 60, h = 1, the system
is unstable

Results given in Table 2 allow to conclude that the proposed
stability criterions are practically unsensitive to disturbation of
the heat exchange coefficient Ra. The sensitivity to disturbation

Fig. 10. Spectrum of the system (44) for for N = 22, h = 5, the system
is unstable

Table 2
Sensitivity functions (60) for plant parameters from Table 1

and ∆a = ∆R = 0.1 (10%)

SNaw [%] SNRa [%] Shaw [%] ShRa [%]

4.6567 0.0620 9.6401 0.4062

of heat conduction coefficient aw is bigger, but its value is res-
onable. Next, the sample time h is generally more senstive to
parameters uncertainty than number of length divisions N.

To complete the presentation of numerical results it is worth
to compare the duration of calculations using practical imple-
mentation with delay (41) to calculation using the state space
model without delay (44). During experiments the step re-
sponse was assigned, all the parameters of model are given in
Table 1, the number of tests was equal 1000, the duration of cal-
culations was tested using MATLAB function cputime. Results
are illustated by histograms 11, 12 and described in Table 3.

Fig. 11. Duration of calculations for practical implementation (41)
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Fig. 12. Duration of calculations for state space model without de-
lay (44)

Analysis Table 3 allows to conclude immidiately that com-
puting of step response with the use of practical implementa-
tion (41) is circa 28 times faster than analogical calculation em-
ploying the state space model without delay (44) and MATLAB
function step.

Table 3
Duration of calculations using the standard implementation (41) and

state space model without delay (44)

model min [s] max [s] mean [s] std dev [s]

model (41) 0.0469 0.1250 0.0561 0.0106

model (44) 1.4688 2.1875 1.7014 0.0491

7. Final conclusions

The main final conclusion from this paper is that the discrete
FO Grünwald-Letnikov operator allows to precisely describe
partial derivatives along time and length. The proposed model
is accurate in the sense of MSE cost function.The practical sta-
bility of the model as well as its numerical complexity were
analyzed too.

Further investigation of the proposed model will cover its
comparing to another similar models proposed previously. The
analytical tests of complexity as well as convergence and accu-
racy seem also to be interesting.

Another issue to further analysis is the use of discrete ver-
sions of C and RL operators in the proposed model.
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