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Global stability of discrete-time nonlinear systems
with descriptor standard and fractional positive

linear parts and scalar feedbacks

T. KACZOREK and A. RUSZEWSKI

The global stability of discrete-time nonlinear systems with descriptor positive linear parts
and positive scalar feedbacks is addressed. Sufficient conditions for the global stability of
standard and fractional nonlinear systems are established. The effectiveness of these conditions
is illustrated on numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs take only nonnegative
values for any nonnegative inputs and nonnegative initial conditions, see [1, 4, 5].
Examples of positive systems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage systems, compartmental
systems, water and atmospheric pollutions models. A variety of models having
positive behaviour can be found in engineering, management science, economics,
social sciences, biology and medicine, etc. An overview of state of the art in pos-
itive systems theory is given in the monographs [1, 4, 5, 8, 17].

Mathematical fundamentals of the fractional calculus are given in the mono-
graphs [8, 17, 21, 22]. The fractional linear systems have been investigated in [3,
6–9, 23–26]. Positive linear systems with different fractional orders have been
addressed in [6, 7, 26]. Descriptor positive systems have been analyzed in [2, 26].
Linear positive electrical circuits with state feedbacks have been addressed in [2].
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The superstabilization of positive linear electrical circuits by state feedbacks have
been analyzed in [13] and the stability of nonlinear systems in [10, 11, 12, 14, 18].
The global stability of nonlinear systems with negative feedbacks and positive
not necessary asymptotically stable linear parts has been investigated in [15].
The global stability of nonlinear continuous-time standard and fractional positive
systems have been analyzed in [16].

In this paper the global stability of discrete-time nonlinear systems with
positive descriptor linear parts and positive scalar feedbacks will be addressed.

The paper is organized as follows. In section 2 the basic definitions and theo-
rems concerning the positive discrete-time descriptor linear systems are recalled.
New sufficient conditions for the global stability of positive standard discrete-time
nonlinear systems are established in section 3. Similar sufficient conditions for
fractional positive nonlinear systems are given in section 4. Concluding remarks
are given in section 5.

The following notation will be used:ℜ – the set of real numbers,ℜn×m – the
set of n×m real matrices,ℜn×m

+ – the set of n×m real matrices with nonnegative
entries andℜn

+ = ℜn×1
+ , In – the n × n identity matrix.

2. Positive discrete-time descriptor linear systems

Consider the descriptor discrete-time standard linear system

Exi+1 = Axi + Bui , i = 0, 1, . . . , (1)

yi = Cxi , (2)
where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input and output vectors and
E, A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n. It is assumed that the pencil (E, A) of (1)
is regular, i.e.

det
[
Ez − A

]
, 0, z ∈ C , (3)

where C is the field of complex numbers.

Definition 1 The descriptor system (1), (2) is called (internally) positive if xi ∈
ℜn
+, yi ∈ ℜp

+, i = 0, 1, . . . for every consistent nonnegative initial conditions
x0 ∈ ℜn

+ and all inputs ui ∈ ℜm
+ .

The transfer matrix of the system (1), (2) is given by

T (z) = C
[
Ez − A

]−1B ∈ ℜp×m(z), (4)

whereℜp×m(z) is the set of p × m rational matrices in z. The transfer matrix (4)
can be always decomposed into the strictly proper transfer matrix

Tsp(z) = C1
[
In1 z − A1

]−1 B1 (5)
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and the polynomial matrix

P(z) = D0 + D1z + . . . + Dqzq ∈ ℜp×m(z), (6)

where ℜp×m(z) is the set of p × m polynomial matrices in z and q is the index
of E.

Theorem 1 [17] The descriptor system (1), (2) is positive if and only if

A1 ∈ ℜn1×n1
+ , B1 ∈ ℜn1×m

+ , C1 ∈ ℜp×n1
+ (7)

and
Dk ∈ ℜp×m

+ for k = 0, 1, . . . , q. (8)

It is assumed that the singular matrix E has only n1 < n linearly independent
columns and the pencil (E, A) is regular. In this case by Weierstrass-Kronecker
theorem [17] there exist nonsingular matrices P ∈ ℜn×n and Q ∈ ℜn×n monomial
(in each row and in each column only one entry is positive and the remaining
entries are zero) such that

PEQ =
[

In1 0
0 N

]
, PAQ =

[
A1 0
0 In2

]
, n = n1 + n2 , (9)

where N ∈ ℜn2×n2 is the nilpotent matrix such that N µ = 0, N µ−1 , 0, µ is the
nilpotency index, A1 ∈ ℜn1×n1 and n1 = deg det[Ez − A].

Premultiplying the equation (1) by the matrix P ∈ ℜn×n and defining the new
state vector[

x1i

x2i

]
= Q−1xi , x1i ∈ ℜn1, x2i ∈ ℜn2, i = 0, 1, . . . (10)

we obtain

x1,i+1 = A1x1i + B1ui , (11)
N x2,i+1 = x2i + B2ui , (12)

where A1 ∈ ℜn1×n1 , B1 ∈ ℜn1×m, B2 ∈ ℜn2×m and
[

B1
B2

]
= PB.

Note that if Q ∈ ℜn×n
+ is monomial then Q−1 ∈ ℜn×n

+ and x1i ∈ ℜn1
+ and

x2i ∈ ℜn2
+ for i = 0, 1, . . . if xi ∈ ℜn

+, i = 0, 1, . . .. Defining CQ = [ C1 C2 ],
C1 ∈ ℜp×n1

+ , C2 ∈ ℜp×n2 for any C ∈ ℜp×n
+ from (2) we have

yi = C1x1i + C2x2i . (13)
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It is easy to verify that

T (z) = C[Ez − A]−1B = CQ [P(Ez − A)Q]−1PB

=
[
C1 C2

] [
In1 z − A1 0

0 N z − In2

]−1 [B1
B2

]
= C1

[
In1 z − A1

]−1 B1 − C2
[
In2 + N z + . . . + N µ−1zµ−1

]
B2 .

(14)

From (11), (12) and (13) we have the following theorem.

Theorem 2 [17] The descriptor discret-time system (1), (2) is positive if and
only if

A1 ∈ ℜn1×n1
+ , B1 ∈ ℜn1×m

+ , −B2 ∈ ℜn2×m
+ ,

C1 ∈ ℜp×n1
+ , C2 ∈ ℜp×n2

+ .
(15)

Theorem 3 [8, 17] The positive linear discrete-time system (11) is asymptotically
stable (the matrix A1 is Schur) if and only if one of the following equivalent
conditions is satisfied:

1. All coefficient of the characteristic polynomial

pn(z) = det [In(z + 1) − A1] = zn + an−1zn−1 + . . . + a1z + a0 (16)

are positive, i.e. ai > 0 for i = 0, 1, . . . , n − 1.

2. There exists strictly positive vector λT =
[
λ1 · · · λn

]T , λk > 0,
k = 1, . . . , n such that

(A1 − In1 )λ < 0 or λT (A1 − In1 ) < 0. (17)

3. Global stability of standard descriptor nonlinear feedback systems

Consider the nonlinear feedback system shown in Fig. 1 which consists of the
descriptor positive linear part, the nonlinear element with characteristic u = f (e)
and positive scalar gain feedback h. The descriptor linear part is described by the
equations

Exi+1 = Axi + Bui , i = 0, 1, . . . , (18)

yi = Cxi , (19)
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Figure 1: The nonlinear feedback system

where xi ∈ ℜn, ui ∈ ℜ1, yi ∈ ℜ1 are the state vector, input and output of
the system E, A ∈ ℜn×n, B ∈ ℜn×1, C ∈ ℜ1×n. The characteristic f (e) of the
nonlinear element (Fig. 2) satisfies the condition

0 < f (e) < ke, 0 < k < ∞. (20)

It is assumed that:

1) the pencil (E, A) is regular (the condition (3) is satisfied),

2) the matrix E has n1 linearly independent columns,

3) rankE = deg det[Ez − A] = n1.

Figure 2: The characteristic of nonlinear element
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If the assumptions are satisfied then by Weirstrass-Kronecker theorem there exist
nonsingular matrices P ∈ ℜn×n and Q ∈ ℜn×n monomial such that

PEQ =
[

In1 0
0 0

]
, PAQ =

[
A1 0
0 In2

]
, n = n1 + n2 , (21)

where A1 ∈ ℜn1×n1 and n1 = deg det[Es − A].
Premultiplying the equation (18) by the matrix P ∈ ℜn×n and defining new

state vector [
x1i

x2i

]
= Q−1xi , x1i ∈ ℜn1, x2i ∈ ℜn2 (22)

we obtain

x1,i+1 = A1x1i + B1ui , (23)

0 = x2i + B2ui , (24)

where A1 ∈ ℜn1×n1 , B1 ∈ ℜn1×1, B2 ∈ ℜn2×1 and[
B1
B2

]
= PB. (25)

Note that if Q ∈ ℜn×n
+ is monomial then Q−1 ∈ ℜn×n

+ and x1i ∈ ℜn1
+ and

x2i = 0 for i = 0, 1, . . ., B2 = 0 since N = 0. In this case defining CQ = [ C1 C2 ],
C1 ∈ ℜ1×n1

+ , C2 ∈ ℜ1×n2 for any C ∈ ℜ1×n
+ from (19) we have

yi = C1x1i . (26)

Definition 2 The nonlinear positive system is called globally stable if it is asymp-
totically stable for all nonnegative initial conditions x0 ∈ ℜ+.

The following theorem gives sufficient conditions for the global stability of
the descriptor positive nonlinear system.

Theorem 4 The nonlinear system consisting of the positive linear part satisfying
the assumptions 1), 2), 3), the nonlinear element satisfying the condition (20) and
the gain feedback h is globally stable if the matrix

A1 + khB1C1 ∈ ℜn1
+ (27)

is Schur.
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Proof. The proof will be accomplished by the use of the Lyapunov method [19,
20]. As the Lyapunov function V (x1i) we choose

V (x1i) = λT x1i ­ 0 for xi1 ∈ ℜn1
+ , (28)

where λ is strictly positive vector, i.e. λk > 0, k = 1, . . . , n1.
Using (28) and (23) we obtain

∆V (x1i) = V (x1,i+1) − V (x1i) = λT (x1,i+1 − x1i)

= λT (A1 − In1 )x1i + B1h f (e) ¬ λT (A1 + khB1C1)x1i ,
(29)

since λT (A1 − In1 ) < 0 and (In1 − A1)x1i > B1h f (e).
From (29) it follows that ∆V (x1i) < 0 if the matrix (27) is Schur and the

nonlinear system is globally stable. □

Example 1. Consider the nonlinear system with the descriptor positive linear part
with the matrices

E =


0 0 0 1
0 1 0 1
0 1 0 1
0 0 0 1


, A =


0 0.1 0 0.2
1 0.5 0 0.5
1 0.5 1 0.5
1 0.1 0 0.2


,

B =


0.5
1
1

0.5


, C =

[ 0 0.6 0 0.2 ]
,

(30)

the nonlinear element satisfying the condition (20) and the gain feedback h = 0.5.
Find k satisfying (20) for which the nonlinear system is globally stable.

In this case the matrices P and Q have the forms

P =


1 0 0 0
0 1 0 −1
0 −1 1 0
−1 0 0 1


, Q =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


. (31)

Using (21), (30) and (31) we obtain

PEQ =
[

I2 0
0 0

]
, (32)

PAQ =
[

A1 0
0 I2

]
=


0.2 0.1 0 0
0.3 0.4 0 0
0 0 1 0
0 0 0 1


, (33)
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PB =
[

B1
B2

]
=


0.5
0.5
0
0


, (34)

CQ =
[

C1 C2
]
=

[
0.2 0.6 0 0

]
. (35)

Taking into account (27), (32)–(35) and h = 0.5 we obtain

A1 + khB1C1 =

[
0.2 0.1
0.3 0.4

]
+ k

[
0.25
0.25

] [
0.2 0.6

]
=

[
0.2 + 0.05k 0.1 + 0.15k
0.3 + 0.05k 0.4 + 0.15k

] (36)

and

det [I2(z + 1) − A1 − khB1C1] = det
[

z + 0.8 − 0.05k −0.1 − 0.15k
−0.3 − 0.05k z + 0.6 − 0.15k

]
= z2 + (1.4 − 0.2k)z + 0.45 − 0.2k .

(37)

The matrix (36) is Schur if the coefficients of the polynomial (37) are positive, i.e.
if 1.4 − 0.2k > 0 and 0.45 − 0.2k > 0 and this implies that k < 2.25. Therefore,
the nonlinear positive system is globally stable if the characteristic u = f (e) of
the nonlinear element satisfies the condition (20) for k < 2.25.

4. Global stability of fractional descriptor nonlinear feedback systems

Consider the fractional discrete-time linear system, described by the state-
space equations

E∆αxi+1 = Axi + Bui , i = 0, 1, . . . , (38)

yi = Cxi , (39)

where xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp are the state, input and output vectors and
E, A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n.

In this paper the following definition of the fractional discrete-time derivative
will be used [8]

∆
αxi =

∞∑
k=0

ck xi−k , (40)
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where α ∈ ℜ is the order of the fractional difference and

ck = (−1)k
(
α
k

)
=


1 for k = 0,

(−1)k α(α−1) . . . (α−k+1)
k!

for k = 1, 2, . . . .
(41)

Note that values of coefficients ck for α ∈ (0, 1) are negative and
∞∑

k=1
ck = −1.

Theorem 5 [8, 17] Let 0 < α < 1. Then the fractional system (38), (39) is
positive if and only if

A + Eα ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ . (42)

Consider the fractional nonlinear feedback system shown in Fig. 3 which
consists of the positive linear part, the nonlinear element with characteristic
u = f (e) and scalar feedbacks. The characteristic of the nonlinear element is
shown in Fig. 2 and it satisfies the condition (20).

Figure 3: The fractional nonlinear system

The positive linear part is described by the equations

E∆αxi+1 = Axi + Bui , i = 0, 1, . . . , α ∈ (0, 1), (43)

yi = Cxi , (44)
where xi ∈ ℜn

+, ui ∈ ℜ1
+, yi ∈ ℜ1

+ are the state, input and output vectors of the
system E, A ∈ ℜn×n, B ∈ ℜn×1, C ∈ ℜ1×n.

Using the definition (40) we may write the equations (43), (44) in the form

Exi+1 = Aαxi − E
∞∑

k=2
ck xi−k+1 + Bui , (45)

yi = Cxi , (46)
where Aα = A + Eα.
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It is assumed that:

1) the pencil (E, A) is regular (the condition (3) is satisfied),

2) the matrix E has n1 linearly independent columns,

3) rank E = deg det[Ez − A] = n1.

If the assumptions are satisfied then by Weirstrass-Kronecker theorem from (45)
we have

PEQQ−1xi+1 = PAQ−1xi − PEQ
∞∑

k=2
ckQ−1xi−k+1 + PBui , (47)

hence [
In1 0
0 0

] [
x1,i+1
x2,i+1

]
=

[
A1 0
0 In2

] [
x1i

x2i

]
−
[

In1 0
0 0

] ∞∑
k=2

ck

[
x1,i−k+1
x2,i−k+1

]
+

[
B1
B2

]
ui

(48)

and

x1,i+1 = A1x1i −
∞∑

k=2
ck xi−k+1 + B1ui ,

B2 = 0, x2i = 0.

(49)

where A1 ∈ ℜn1×n1 , B1 ∈ ℜn1×1, B2 ∈ ℜn2×1, PB =
[

B1
B2

]
.

From (46) we have
yi = CQQ−1xi , (50)

hence
yi =

[
C1 C2

] [ x1i

x2i

]
(51)

and
yi = C1x1i ,

C2 = 0,
(52)

where C1 ∈ ℜ1×n1
+ , C2 ∈ ℜ1×n2 , CQ =

[
C1 C2

]
.

The following theorem gives sufficient conditions for the global stability of
the fractional descriptor positive nonlinear system.
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Theorem 6 The fractional nonlinear system consisting of the positive linear part
satisfying the assumptions 1), 2), 3), the nonlinear element with characteristics
satisfying the condition (20) and the gain feedback h is globally stable if the
matrix

A1α + khB1C1 ∈ ℜn1
+ (53)

is Schur, where A1α = A1 − In1α.

Proof. We choose

V (x1i) = λT x1i ­ 0, i = 0, 1, . . . , (54)

where λ is strictly positive vector. Then

∆V (x1i) = V (x1,i+1) − V (x1,i) = λT (x1,i+1 − x1,i)

= λT
(A1 − In1 )x1,i −

∞∑
k=2

ck x1,i−k+1

 + B1ui

= λT (A1 − In1 )x1,i + khB1C1x1,i −
∞∑

k=2
ck x1,i−k+1

¬ λT (A1α + khB1C1)x1,i

(55)

since
∞∑

k=2
ck = α − 1 and −

∞∑
k=2

ck x1,i−k+1 > 0.

From (55) it follows that ∆V (x1i) < 0 if the matrix (53) is Schur and the
fractional nonlinear system is globally stable. □

Example 2. Consider the nonlinear system with the fractional descriptor positive
linear part with the matrices

E =


1 0 0 0
0 0 0 2.5
0 0 0 0
0 0 0 2.5


, A =


0.7 1 0 0.3
0.25 0 1 1.25

0 1 0 0
0.25 0 2 1.25


,

B =


0.6
0.5
0

0.5


, C =

[
0.5 0 0 1

]
,

(56)

the nonlinear element satisfying the condition (20) and the gain feedback h = 0.5.
Find k satisfying (20) for which the nonlinear system is globally stable forα = 0.2.
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In this case the matrices P and Q have the forms

P =


1 0 −1 0
0 0.8 0 −0.4
0 0 1 0
0 −1 0 1


, Q =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


. (57)

Using (21), (56) and (57) we obtain

PEQ =
[

I2 0
0 0

]
, (58)

PAQ =
[

A1 0
0 I2

]
=


0.7 0.3 0 0
0.1 0.5 0 0
0 0 1 0
0 0 0 1


, (59)

PB =
[

B1
B2

]
=


0.6
0.2
0
0


, (60)

CQ =
[

C1 C2
]
=

[
0.5 1 0 0

]
. (61)

Taking into account (53), (58)–(61) h = 0.5 and α = 0.2 we obtain

A1α + khB1C1 =

[
0.5 0.3
0.1 0.3

]
+ k

[
0.3
0.1

] [
0.5 1

]
=

[
0.5 + 0.15k 0.3 + 0.3k
0.1 + 0.05k 0.3 + 0.1k

] (62)

and

det [I2(z + 1) − A1α − khB1C1] = det
[

z + 0.5 − 0.15k −0.3 − 0.3k
−0.1 − 0.005k z + 0.7 − 0.1k

]
= z2 + (1.2 − 0.25k)z + 0.32 − 0.2k .

(63)

The matrix (62) is Schur if the coefficients of the polynomial (63) are positive, i.e.
if 1.2 − 0.25k > 0 and 0.32 − 0.2k > 0 and this implies that k < 1.6. Therefore,
the fractional nonlinear positive system is globally stable if the characteristic
u = f (e) of the nonlinear element satisfies the condition (20) for k < 1.6.
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5. Concluding remarks

The global stability of discrete-time nonlinear systems with descriptor pos-
itive linear parts and positive scalar feedbacks has been investigated. Sufficient
conditions for the global stability of this class of nonlinear systems have been
established (Theorem 4). Similar results have been obtained for fractional nonlin-
ear discrete-time systems (Theorem 6). The effectiveness of these conditions has
been illustrated on numerical examples. An open problem is an extension of the
considerations to nonlinear systems of fractional orders with descriptor positive
linear parts and interval state matrices.
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482–487.

[26] Ł. Sajewski: Stabilization of positive descriptor fractional discrete-time
linear systems with two different fractional orders by decentralized con-
troller, Bulletin of the Polish Academy of Sciences, Technical Sciences,
65(5), (2017), 709–714.


	T. Kaczorek A. Ruszewski: Global stability of discrete-time nonlinear systems with descriptor standard and fractional positive linear parts and scalar feedbacks
	Introduction
	Positive discrete-time descriptor linear systems
	Global stability of standard descriptor nonlinear feedback systems
	Global stability of fractional descriptor nonlinear feedback systems
	Concluding remarks
	References

