
10.24425/acs.2020.135848
Archives of Control Sciences

Volume 30(LXVI), 2020
No. 4, pages 701–719

Tuning rules for industrial use of the second-order
Reduced Active Disturbance Rejection Controller

P. NOWAK, J. CZECZOT and P. GRELEWICZ

In the paper, problem of proper tuning of second-order Reduced Active Disturbance Rejec-
tion Controller (RADRC2) is considered in application for industrial processes with significant
(but not dominant) delay time. For First-Order plus Delay Time (FOPDT) and Second-Order
plus Delay Time (SOPDT) processes, tuning rules are derived to provide minimal Integral Ab-
solute Error (IAE) assuming robustness defined by gain and phase margins. Derivation was
made using optimization procedure based on D-partition method. The paper also shows re-
sults of comprehensive simulation validation based on examplary benchmark processes of more
complex dynamics as well as final practical validation. Comparison with PID controller shows
that RADRC2 tuned by the proposed rules can be practical alternative for industrial control
applications.
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1. Introduction

Since its first English introduction [5], Active Disturbance Rejection Con-
troller (ADRC) received huge attention from both academia and industry as
the concept that promises effective control without detailed process modeling.
Shortly speaking, it is based on unified representation of process dynamics [9,
22]. This dynamic jointly with external disturbances are compensated by appli-
cation of Extended State Observer (ESO). Then, in ADRC control law, process
dynamics can be simplified to a cascade of integrators.
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Apart from a huge number of applications for drive control systems, ADRC
becomes more and more popular in process automation as a potential alternative
for conventional PID controllers [10, 11, 16]. At the same time, popularity of
reduced-order ADRC (RADRC) [8] is also growing due to easier implementation
and to reduction of phase lag comparing to conventional ADRC approach [19].

From a practical point of view, further increase in popularity of both algo-
rithms (ADRC and RADRC) depends on meeting certain requirements. The first
is a simple implementation in the form of function blocks in Programmable Logic
Controllers (PLC). For this case, some solutions can be found in works [7, 12].
The second even more critical requirement is to develop relatively simple and
effective tuning methods. Several tuning methods can be found for ADRC [3, 16,
21]. By contrast, according to the best authors’ knowledge, such a tuning method
was reported only for the first order RADRC (RADRC1) [13].

This paper concentrates on further development of industrial applicability of
RADRC approach. Namely, derivation of tuning method for the second-order
RADRC (RADRC2) is considered. Motivation for this research results from the
fact that potentially, in some cases RADRC2 is able to provide better control
performance comparing to RADRC1 but its robust and reliable tuning is still a
bottleneck.

There are two potential process approximations that can be considered as a
basis for tuning of RADRC2: one is FOPDT and the other is SOPDT model.
Both of them can be derived using process step response. In this paper, both
approximations are considered and for both of them, robust tuning rules are
developed by optimization method and assuming certain gain and phase margins.
Then, the suggested tuning rules are validated by simulation based on the selected
benchmark processes of different complex dynamics. Practical validation for the
laboratory pneumatic setup completes the paper and results are summarized in
conclusions.

The major novelty of this paper results from the following contributions:
• suggesting the approach for RADRC2 tuning using D-partition method,

• derivation of four RADRC2 tuning rules including rules based on SOPDT
model,

• simulation verification of the proposed methods for complex benchmark
processes,

• practical verification based on the pneumatic laboratory setup.

2. Problem statement and motivation

This study concentrates on RADRC2 control of lag-dominated processes
with significant dead time T0 and more complex stable dynamics. For controller
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design, it is assumed that these processes can be approximately described by the
simplified model:

Ÿ (t) = F
(
Ẏ (t),Y (t), d(t), u(t − T0)

)
+ b0u(t), (1)

where Y is a measured controlled variable, u is a manipulating variable, d repre-
sents disturbances, b0 is a scaling factor that potentially can be used as a tuning
parameter [20] and F ( ) is an unknown nonlinear function called a total distur-
bance and including process nonlinearities and potential modeling inaccuracies.
Readers should note presence of delay time T0 in Eq. (1).

In general, ADRC methodology applies unified extended state observer (ESO)
to estimate the total disturbance F ( ), controlled variable Y and its consecutive
time derivatives to provide compensation for higher-order dynamics. In process
automation, when Y is measured, reduced-order ESO (RESO) can be applied
[8]. For the considered case of second-order process model (1), RESO has the
following form:

ż′2 = −2ωoz′2 + z′3 − 3ωoY + b0u,

ż′3 = −ω2
oz′2 − 2ω3

oY,

z2 = z′2 + 2ωoY,

z3 = z′3 + ω
2
oY,

(2)

where z2 and z3 respectively estimate Ẏ and F ( ). Auxiliary variables z′2 and z′3
are introduced to avoid numerical computation of Ẏ . Tuning of RESO (2) is made
by proper adjusting the observer bandwidth ωo [6]. Assuming that z3 ≈ F ( ) and
using a simple control law in the form u = (u0 − z3)/b0, the complex process (1)
can be reduced to a simple double integral form. Then, this type of process can
be easily controlled by conventional PD controller, so the final form of RADRC2
control law is:

u =
ω2

c (SP − Y ) − 2ωcz2 − z3

b0
, (3)

where SP is the set-point and ωc is the RADRC2 tuning parameter (controller
bandwidth [6]). In general, RADRC2 has three tuning parameters ωo (2) ωc (3)
and b0 (1). Adjustment of their values is discussed in the next section.

3. D-partition method for RADRC2 tuning

In this paper, derivation of tuning rules for RADRC2 is based on applica-
tion of D-partition method for determining correlation between parameters of
closed-loop characteristic equation and stability region on controller parameter
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plane [1, 14]. This concept was successfully applied for deriving tuning rules for
RADRC1 based on process FOPDT approximation and readers are referred to
[13] for more details. In this paper, it is shown how this concept was adapted for
a much more complex case of RADRC2 control of industrial processes. Only the
most important stages and the most significant differences are described.

When a process assumed as FOPDT or SOPDT is to be controlled by
RADRC2, closed-loop system must be completed with virtual gain-phase mar-
gin tester to determine gain or phase margin boundary [18, 20]. The gain-phase
margin tester is a virtual block defined as A e− jφ where A and φ are real values
representing assumed virtual gain and phase, respectively. Then, after applying
Laplace transform to Eqs. (2) and (3), this system can be represented as it is shown
in Fig. 1. Note that its complexity exceeds similar cases with PID controller and
with ADRC1, which promises a potential improvement in control performance.

Figure 1: Representation of the closed-loop system with RADRC2 and gain-margin tester

After deriving open-loop transfer function of the control system, characteristic
equation χ(s) = 0 can be determined. Then, after assuming b0 = const and
substituting s = jω, e− j (ωT0+φ) = cos

(
ωT0 + φ

) − j sin
(
ωT0 + φ

)
, location of

roots of characteristic equation depends only on the values of RADRC2 tuning
parameters ωc, ωo, on FOPDT/SOPDT process parameters and on assumed
virtual gain A and phase φ margins. χ(s) = 0 has three possible solutions called
D-boundaries, which correspond to ω = 0 (real roots boundary), 0 < ω < ∞ and
ω → ∞ (complex roots boundary). Then, for ω = 0, two intuitive boundaries
ωc = 0, ωo = 0 are derived. At the same time, the boundary for 0 < ω < ∞
can be decomposed into its real and imaginary parts forming the following set of
highly nonlinear stability equations:

Re { χ(s)} = A1ωc + B1ωo + C1ω
2
c + D1ω

2
o + E1ωcωo+

+ F1ω
2
cωo + G1ωcω

2
o + H1ω

2
cω

2
o + I1 = 0,

Im { χ(s)} = A2ωc + B2ωo + C2ω
2
c + D2ω

2
o + E2ωcωo+

+ F2ω
2
cωo + G2ωcω

2
o + H2ω

2
cω

2
o + I2 = 0,

(4)
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where A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2, G1, G2, H1, H2, I1, I2 are the
real coefficients depending on FOPDT/SOPDT process parameters, on assumed
gain-phase margins A, φ, on RADRC2 tuning parameter b0 and on frequency ω.
By assuming required gain A and phase φ margins, for a certain process, one can
determine gain (GM) and phase (PM) margin boundaries that determine GM/PM
margin region at ωc − ωo parameter plane [20]. When the tunings ωc, ωo are
located within this region, closed-loop system preserves required or higher gain
and phase margins. However, potentially there is an infinite number of tunings
location that meet the desired GM/PM requirements but for all of them, control
performance can be different. Thus, optimization procedure must be applied to
determine the tunings ωc, ωo that not only preserve GM/PM margins but also
minimizes assumed control performance index. Readers should note that this
procedure should also consider the influence of b0 because as it was said before,
it is very important RADRC2 tuning parameter.

In this work, it is assumed that RADRC2-based closed-loop system shown
in Fig. 1 should minimize Integral Absolute Error (IAE) for load disturbance
rejection, defined as:

Q (b0, ωc, ωo) =

Tmax∫
0

|SP − Y | dt. (5)

Then, the constrained optimization problem is defined as:

minimize
b0,ωc,ωo∈R+

Q

subject to GM ­ GMbound and
PM ­ PMbound ,

(6)

where GMbound and PMbound denote defined GM/PM margin boundaries. This
problem is convex but still complex so it needs to be solved numerically, as it is
partially described in [13]. This procedure allows for adjusting optimal settings
that ensure assumed amplitude and phase margins. However, it has very high
complexity. From a practical point of view, direct form of the tuning rules that
are ready to be used and based on the chosen approximation of process dynamics
is preferred. This form is derived in the next section.

4. RADRC2 tunings rules derivation

First, let us assume that the process has FOPDT dynamics and it is to be
controlled by RADRC2. It is assumed to concentrate on lag-dominated processes
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with relative delay time L = T0/T limited to 0 < L ¬ 1, where T0 and T
are respectively delay time and time constant of FOPDT process. Fig. 2 shows
examplary solution of the problem (6) for assumed GM = 2.5 and PM = 60◦,
obtained for FOPDT processes of different L value. The solution was numerically
computed for FOPDT processes of unitary gain and of different L and these results
are denoted by ‘*’. Solid lines represent approximating formulas describing tuning
rule – in this case, the rule A1 given by Eq. (7). In a very similar way, the tuning
rule A2 was derived for GM = 2 and PM = 45◦ and it is given by Eq. (8). Both
tuning rules are normalized with respect to process gain k and its time constant T .

Figure 2: Optimal RADRC2 tunings vs. FOPDT relative delay
time L, for GM = 2.5, PM = 60◦

A1: RADRC2 tuning rule for FOPDT process, GM = 2.5, PM = 60◦, distur-
bance rejection

b0 =
(
8.38L−0.62 + 5.25

) k
T2 ,

ωc = ωo =
(
2.14L−0.7 + 1.32

) 1
T
.

(7)

A2: RADRC2 tuning rule for FOPDT process, GM= 2, PM= 45◦, disturbance
rejection

b0 =
(
8.63L−0.78 + 3.62

) k
T2 ,

ωc = ωo =
(
2.55L−083 + 1.17

) 1
T
.

(8)
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Methodology described in Section 3 allows also for deriving tuning rules for
RADRC2 applied for control of processes that have SOPDT dynamics. For this
purpose, minimization of (5), (6) was computed for the control system shown in
Fig. 1 with SOPDT processes with unitary gain, two time constants T1 ­ T2 and
time delay T0. Fig. 3 shows results for assumed GM = 2.5 and PM = 60◦, for
SOPDT processes of different ratios L1 = T0/T1 and L2 = T2/T1 characterizing
their dynamics. It is assumed to concentrate on processes with the limitations
0 < L1 ¬ 1 and 0.4 ¬ L2 ¬ 1. The second limitation results from the fact that
for such processes significantly dominated by time constant T1 (L2 < 0.4), a very
similar control performance can be obtained when one of tuning rules A1–A2 is
applied based on the FOPDT process approximation.

Figure 3: Optimal RADRC2 tunings vs. SOPDT ratios L1 and L2, for GM = 2.5,
PM = 60◦

Resulting formulas describing RADRC2 tuning rules for SOPDT processes
are given by Eqs. (9), (10), where a = L3

1L2
2, b = L2

1L2
2, c = L2

1L2, d = L1L2
2,

e = L1L2. They are normalized with respect to process gain k and its dominant
time constant T1.

A3: RADRC2 tuning rule for SOPDT process, GM = 2.5, PM = 60◦, distur-
bance rejection

b0 = *,
−1.7a+6.5b−4.48c−7.17d+10.52e−1.2L1+0.9L2

2+0.08L2+0.31
L2

2

+- k
T2

1
,

ωc = ωo =
(
2L−0.18

1 L−0.4
2

) 1
T1
.

(9)
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A4: RADRC2 tuning rule for SOPDT process, GM= 2, PM= 45◦, disturbance
rejection

b0 = *,
−2.2a+7.19b−5.13c−6.1d+8.91e−0.79L1+0.59L2

2+0528L2+0.2
L2

2

+- k
T2

1
,

ωc = ωo =
(
2.12L−0.26

1 L−0.38
2

) 1
T1
.

(10)

Readers should note that for each RADRC2 tuning rule A1–A4, optimal tuning is
obtained by adjusting ωc = ωo, in contrast to the most popular rule of thumb [6].

Summarizing, if the process has SOPDT dynamics, it can be controlled by
RADRC2 tuned based on its FOPDT approximation (A1–A2) or on its real
SOPDT dynamics (A3–A4). Additionally, readers should note that if FOPDT
process approximation is derived for tuning RADRC2, it can be also applied
for tuning RADRC1 by using the rules suggested in [13]. Thus, the question
arises, which tuning provides better control performance for SOPDT processes.
The answer can be seen in Fig. 4, which shows Integral Absolute Error (IAE)
values computed for closed-loop systems with selected SOPDT processes and
RADRC1 or RADRC2 controllers tuned to preserve the same GM = 2.5 and

0.4 0.5 0.6 0.7 0.8 0.9 1

L

0

0.5

1

1.5

2

IA
E

RADRC1: FOPDT

RADRC2: FOPDT

RADRC2: SOPDT

Figure 4: Integral Absolute Error (IAE) for the selected SOPDT processes and
RADRC1/RADRC2 controllers, tuned based on FOPDT approximation or SOPDT dy-
namics for GM = 2.5, PM = 60◦
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PM = 60◦. Results were obtained by simulation using three sets of SOPDT
processes parameters: (a) T1 = 0.96, T2 = 0.32, T0 ∈ (0.1, 0.8), (b) T1 = 0.84,
T2 = 0.54, T0 ∈ (0.1, 0.6), (c) T1 = 0.78, T2 = 0.6, T0 ∈ (0.1, 0.5). They were
selected to cover the range of L ∈ (0.4, 1) for FOPDT approximation. RADRC1
was tuned by the rule B1 [13] while RADRC2 by the rules A1 and A3.

Results shown in Fig. 4 confirm that for each considered process, RADRC2
tuned by A3 based on SOPDT dynamics provides the best control performance
regardless of value of L for its FOPDT approximation. Then, deterioration in
control performance is observed when RADRC2 is applied and tuned by A1
based on FOPDT approximation of the real SOPDT process dynamics. This
deterioration is relatively large for processes with less significant delay time and
it decreases with increment of L. Finally, as it was expected, RADRC1 tuned
by B1 [13] and based on the same FOPDT approximation of SOPDT process
provides the highest values of IAE. Thus, it can be concluded that if the process
has SOPDT dynamics, it is always advised to control it by RADRC2 tuned by
A3 or A4 (depending on required robustness) based on real SOPDT dynamics.
However, this conclusion is based on unrealistic assumption that the real process
has SOPDT dynamics and that its parameters are perfectly known. In the next
section, more realistic cases are considered.

5. Simulation validation

In practice, process dynamics can be more complex than SOPDT and then,
FOPDT or SOPDT model can be derived only as a more or less accurate approx-
imation of process dynamics. Thus, it is reasonable to investigate how suggested
tuning rules work for such processes. For this purpose, benchmark processes P1–
P12 have been selected and presented in Appendix and numerous tests have been
done to assess practical applicability of the suggested RADRC2 tuning rules.

First, tuning rules were tested in terms of deviations from active boundary
GM/PM assumed for each tuning method. These deviations result from inaccuracy
of applied FOPDT or SOPDT approximation of process dynamics and they are
shown in Fig. 5. Positive deviation shows the case when robustness is improved at
the cost of more conservative tuning. Negative value denotes breaking assumed
GM/PM and consequently more aggressive tuning at the price of lower robustness.

Fig. 5 shows that assumed GM is preserved for almost all processes except
P8 and A3 tuning method, where very small negative deviation appears. For
all processes, RADRC2 tuned based on FOPDT approximation also provides
significantly larger GM comparing to RADRC2 tuning based on SOPDT model.
It can be also seen that for some processes, PM is broken but∆PM does not exceed
−3◦. Additionally, it is worth noting that for P1 and P2, assumed limitation for
L2 > 0.4 is not met but RADRC2-based control system still works properly.
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Figure 5: Increments ∆ GM and ∆ PM for benchmark processes tuned based on FOPDT
approximation (rules A1–A2) and SOPDT approximation (rules A3–A4)

Performance of RADRC2-based closed systems tuned based on the suggested
rules A1–A4 were also compared with conventional PID control for each bench-
mark process. Three rules of PID tuning were applied: Chien-Hrones-Reswick
method with 0% overshoot for load disturbance rejection (CHR) [4], the method
proposed by Vilanova [17] and SIMC method [15], which is based on SOPDT
process approximation. Results of this qualitative comparison are presented in
Fig. 6. Each experiment includes tracking performance in the presence of unitary
set point step applied at t = 0 and load disturbance rejection in the presence of
negative unitary step change of load disturbance applied at the middle of each
simulation period.

More quantitative comparison can be made using popular quality indices
frequently used for assessing control performance: IAE value, settling time Yset
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Figure 6: Closed-loop performance for different controllers and different tuning methods,
for benchmark processes P1–P12
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and maximum overshoot Ymax. Each index was separately computed for track-
ing (SP subscript) and for disturbance rejection (DR subscript). Table 1 shows
mean values of these indices for each controller and each tuning method, uni-
fied according to specific dynamics of each process and then averaged by all
benchmark processes P1–P12. Due to normalization to the minimum value, the
best control performance corresponds to a unitary value. The only exception is
tracking (Y max SP) where there was no necessity of any normalization and results
should be considered as mean percentage maximum overshoot. Additionally, in
Table 1, mean values of PM and GM are shown jointly with mean sensitivity
function value MS = |S( jω) | where S( jω) = 1/(1+ K ( jω)) and K ( jω) denotes
open-loop transfer function.

Table 1: Benchmark dynamical processes

Quality
index

Applied controller and its tuning method

RADRC2 PID

A1 A2 A3 A4 CHR SIMC Vil

IAESP 2.52 2.21 1.77 1.41 1.74 1 2.51

T set SP 2.27 2.37 1.81 1.4 2.23 1.1 1.68

Y max SP 8 16 4 7 2 19 0

IAEDR 4.09 2.87 1.76 1.06 3.67 1.43 6.95

T set DR 2.58 2.07 1.34 1.03 2.64 1.46 2.76

Y max DR 2.18 1.85 1.31 1.07 1.87 1.09 2.93

PM 60.83 49.05 62.73 49.38 78.32 51.47 69.33

GM 11.63 9.41 4.66 3.69 7.64 3.19 8.69

MS 1.27 1.48 1.54 1.79 1.35 1.95 1.34

For tracking performance, PID tuned by SIMC provides the best IAESP and
T set SP values but at the price of high 20% overshoot shown by Y max SP. For
disturbance rejection, RADRC2 tuned by A4 provides the rm best I AESP and
T set SP, this time with very small overshoot of 7%. At the same time, RADRC2
tuned by A1 provides very good robustness shown by the indices PM, GM and MS.

Conclusion is that tuning of RADRC2 based on SOPDT process approxima-
tion provides better control performance. PID controller provides better tracking
but RADRC2 ensures better disturbance rejection, which is very important in
process automation. Thus, results shown in Table I confirm that RADRC2 tuned
by the suggested rules can be an alternative for conventional PID controller.
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6. Practical validation

Practical validation is based on the setup designed as a serial connection of
three pneumatic tanks shown in Fig. 7. Supplying pressure ps is adjusted within
the range 0–5 bar by proportional valve MPPES-3-1 from Festo. Each tank has
different volume denoted respectively as V1 = 5L, V2 = 2L and V3 = 0.75L.
Pressures in tanks are respectively denoted as p1, p2, p3 bar and they are mea-
surable on-line. There is a single outlet from the last tank and air flows out
through swiching pneumatic resistance Rpout. Switching takes place automati-
cally between two different pneumatic valves representing different pneumatic
resistances. On-line measurement data is collected by dedicated SCADA sys-
tem implemented in Zenon from COPA-DATA. All considered controllers were
implemented in industrial PLC – Siemens S7-1500.

Figure 7: Laboratory pneumatic setup – overview and simplified diagram

During experiments, problem of stabilization of process output Y = p3 at the
setpoint SP was considered as the control goal. Controller output was the sup-
plying pressure u = ps. Experiments were designed to validate both tracking and
disturbance rejection. For the latter, one possibility is to apply load disturbance
∆ps (bar) added directly to controller output. This disturbance influences process
output without any changes in its dynamics. The other disturbance is switching
between two different pneumatic resistances Rpout at the outlet from the last tank.
In this case, apart from disturbing process output, switching significantly changes
dynamics of the process due to its nonlinear nature [11].

For tuning of considered controllers, process step response was approximated
by FOPDT and SOPDT models. For the chosen operating point (ps = 2.5 at
inlet and corresponding p3 = 1.0, with disturbing Rpout1 at outlet and ∆ps = 0),
FOPDT parameters are: k = 0.65 (–), T = 12.54 (s), T0 = 4.25 (s) and SOPDT
parameters are: k = 0.65 (–),T1 = 10.97 (s),T2 = 4.13 (s),T0 = 1.29 (s). Based on
these values, RADRC2 was tuned by the suggested rules A1-A4. For comparison,
conventional PID controller was applied and tuned by SIMC and CHR.
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For better clarity, validation was divided into two stages. The first stage was
based on scenario including step changes of setpoint from 1 bar to 1.4 bar at
t = 30 s. Then, setpoint was changed again to 1 bar in t = 110 s and at t = 190 s,
load disturbance ∆ps = 1.5 was applied to the system. ∆ps = 0 was set back at
t = 250 s. At this stage, outlet pneumatic resistance Rpout was not changed so
dynamical properties of the process remain unaffected over whole experiment.
Results are shown in Fig. 8.
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Figure 8: Practical validation for the pneumatic setup, stage one
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Figure 9: Practical validation for the pneumatic setup, stage two

The second stage of validation shows behaviour of the system after pneumatic
resistance Rpout has been switched at t = 310 s. The rest of experiment has
the same scenario as at the first stage shown in Fig. 8 except load disturbance
∆ps = 0.5, applied due to limited performance of air supply system. Note that
after canging value of Rpout, dynamics of the process changed significantly due
to its nonlinearity. However, this change was not considered in tuning because no
retuning was applied to any controller comparing to the first stage of validation.
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Results show that RADRC2 tuned by A4 provides the best control perfor-
mance. PID controller tuned by SIMC and RADRC2 tuned by A3 provide com-
parable control performance. For PID tuned by SIMC, significant oscillations
appear at process output. At the same time, RADRC2 tuned by A1–A4 meth-
ods provides significantly smoother variations of manipulating signal. Readers
should note that even if these variations are filtered by process dynamics, they
have a very negative impact on service life of actuators and consequently, such
behaviour can be a source of frequent actuator faults.

7. Conclusions

In the paper, it is confirmed that RADRC2 controller has the potential ability
of more efficient process control if it is properly tuned. Based on optimization tool
that uses D-partition method, it is shown how to ensure robust RADRC2 tuning
that provides minimization of IAE performance index. Robustness is defined by
gain and phase margins and optimisation results in ready to use tuning rules based
on FOPDT and SOPDT process approximation.

So far, lack of reliable and easy-to-use tuning rules has been the most sig-
nificant obstacle for increasing use of RADRC2 in industrial control systems.
Tuning rules suggested in this paper remove this obstacle and their applicability
is confirmed by comprehensive simulation and practical validation. Thus, practi-
tioners who want to implement RADRC2 for control of industrial processes with
significant delay time get a useful tool for its tuning.

Appendix

This section presents examplary benchmark processes [2] used for validation.
Their dynamics is obtained from the following transfer functions:

G1(s) =
1

(1 + s)γ
, (11)

G2(s) =
1

(1 + s)(1 + γs)
(
1 + γ2s

) (
1 + γ3s

) , (12)

G3(s) =
1

(1 + γs)2 e−s, (13)

G4(s) =
1 − γs

(1 + s)3 , (14)

by adjustment of parameter γ, as it is shown in Table 2. This table also shows
FOPDT and SOPDT approximations of each process obtained by fminsearch()
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function in MATLAB environment. Processes are arranged with respect to the
value of relative delay time L = T0/T parameter.

Table 2: Benchmark dynamical processes

Transfer
function

Approximation
Process FOPDT SOPDT

T T0 L T1 T2 T0
P1 G2, γ = 0.2 1.01 0.25 0.25 1 0.20 0.05
P2 G2, γ = 0.3 1.04 0.40 0.39 1 0.31 0.11
P3 G3, γ = 10 14.58 7.07 0.48 10 10 1
P4 G2, γ = 0.4 1.09 0.58 0.53 0.99 0.45 0.19
P5 G3, γ = 5 7.28 4.05 0.56 5 5 1
P6 G2, γ = 0.5 1.15 0.77 0.67 0.95 0.63 0.3
P7 G1, γ = 3 1.78 1.33 0.75 1.24 1.24 0.56
P8 G3, γ = 2 2.91 2.22 0.76 2 2 1
P9 G4, γ = 0.2 1.78 1.53 0.86 1.23 1.23 0.77
P10 G1, γ = 4 2.06 2.10 1.02 1.43 1.43 1.20
P11 G4, γ = 0.5 1.76 1.82 1.04 1.22 1.22 1.07
P12 G3, γ = 1 1.45 1.61 1.11 1 1 1
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